AUTHOR	Beaton, Albert E.; And Others
TITLE	Expanding the New Design: The NAEP 1985-86 Technical Report.
INSTITUTION	Educational Testing Service, Princeton, N.J.; National Assessment of Educational Progress,
SPONS AGENCY	Princeton, NJ.; Westat, Inc., Rockville, MD. Office of Educational Research and Improvement (ED), Washington, DC.
REPORT NO	ISBN-0-88685-086-X; NAEP-17-TR-20
PUB DATE	Nov 88
CONTRACT	NIE-G-83-0011
NOTE	672 p .
AVAILABLE FROM	National Assessment of Educational Progress at Educational Testing Service, Rosedale Road, Princeton, NJ 08541.
PUB TYPE	Collected Works - General (020) -- Statistical Data (110) -- Reports - Evaluative/Feasibility (142)

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

MF03/PC27 Plus Postage.
*Databases; *Data Collection; Data Processing; Field Ttsts; Grade 8; Junior High Schools; "Junior High School Students; National Surveys; *Research Design; Research Methodology; *Sampling; Scaling; Scoring; Student Characteristics; Student Evaluation; "Tables (Data) ; Test Items; Test Results
*National Assessment of Educational Progress

ABSTRACT

This report supplies details of the design and data analysis of the 1986 National Assessment of Educational Progress (NAEP) to allow the reader to judge the utility of the design, data quality, reasonableness of assumptions, appropriateness of data analyses, and generalizability of inferences made from the data. After an introduction by A. E. Beaton, the following reports are included: (1) "Overview of Part I: The Design and Implementation of the 1986 NAEP" (A. E. Beaton); (2) "Developing the 1986 National Assessment Objectives, Items, and Background Questions" (I. V. S. Mullis, W. MacDonald, and N. A. Mead); (3) "Sample Design" (M. H. Hansen, K. Rust, and J. Burke); (4) "Instrument and Item Information" (J. R. Johnson); (5) "Field Administration" (N. Caldwell and R. Slobasky); (6) "Materials Processing and Datatase Creation" (J. L. Barone) ; (7) "Processing Assessment Materials" (A. M. Rogers and N. A. Norris); (8) "Professional Scoring" (A. Campbell); (9) "Data Transcription Systems" (A. M. Rogers) ; (10) "Editing Data" (A. M. Rogers) ; (11) "Quality Control of Data Entry" (J. J. Ferris); (12) "Database Creation" (A. M. Rogers) ; (13) "Public-Use Data Tape Construction" (A. M. Rogers); (14) "Overview of Part II: The Analysis of the 1986 NAEP" (A. E. Beaton) ; (15) "Scaling Procedures" (R. J. Mislevy) ; (16) "Reading Data Analysis" (R. Zwick); (17) "Mathematics Data Analysis" (E. G. Johnson); (18) "Science Data Analysis" (K. Yamamoto); (19) "Computer Competence Data Analysis" (N. A. Mead); (20) "History and Literature Data Analysis" (R. Zwick); (21) "Weighting Procedures and Variance Estimation" (E. G. Johnson, J. Burke, J. Braden, M. H. Hansen, J. A. Lago, and B. J. Tepping); and (22) "Statistical Summary of the 1986 NAEP Sample and Estimates of the Proficiencies of American Students" (A. E. Beaton, D. S. Freund, B. A. Kaplan, and M. A. Narcowich). A total of 169 tables and 8 figures illustrate the text. Six appendixes with 116 additional tables provide supplemental information about the research methodology. (Contains 60 references.) (SLD)

-Expanding the New Design

The NAEP 1985-86 Technical Report

The National Assessment of Educational Progress is funded by the U.S. Department of Education under a Trant to Educational Testing Service. National Assessment is an education research project mandated by Congress to collect data over time on the performance of young Americans in various subject areas. It makes avalable information on assessment procedures to state and local education agencies.

The Foundations of Literacy Project is funded by the National Endowment for the Humanities under a grant to the Educational Excellence Network, Columbia Unuversity. The Educational Excellence Network subcontracted the assessment of 17 -year-old and 11th grade students' knowledge of history and literature to NAEP.

This report, No. 17-TR-20, can be ordered from the National Assessment of Educational Progress at Educational Testing Service, Rosedale Road, Princeton, New Jersey 08541.

Library of Congress Cataloy Card Number 88-63274
ISBN 0-88685-086-X
This document is based upon work performed pursuant to Grant No. NIE-G-83-0011 of the Office for Educational Research and Improvement. Center for Education Statistics. It does not, however, necessanly reflect the views of that agency.

Educational Testing Service is an equal opportunity/affirmative action employer.
Educational Testing Service, ETS, and (5) are registered trademarks of Educational Testing Service.

Expanding the New Design

The NAEP 1985-86
 Technical Report

Albert E. Beaton

in collaboration with
John L. Barone, Anne Campbell, John J. Ferris, David S. Freund, Eugene G. Johnson, Janet R. Johnson, Bruce A. Kaplan, Debra L. Kline, Walter MacDonald, Nancy A. Mead, Robert J. Mislevy, Ina V.S. Mullis, Michael A. Narcowich, Norma A. Norris, Alfred M. Rogers,
Kathleen M. Sheehan, Kentaro Yamamotc, Rebecca Zwick
Educational Testing Service \bullet Princeton, NJ
and
Jill Braden, John Burke, Nancy Caidwell, Morris H. Hansen,
Josefina A. Lago, Keith Rust, Renee Slobasky, Benjamin J. Tepping
Westat, Inc. • Washington, DC
November 1988

EXPANDING THE NEW DESIGN: THE NAEP 1985-86 TECHNICAL REPORT

CONTENTS

Index of Tables and Figures
Acknowledgments V
Introduction
Albert E. Beaton
PART I
Chapter 1 Overview of Part I: The Design and Implementation of the 1986 NAEP
rilbert E. Beaton 19
Chapter 2 Developing the 1986 National Assessment Objectives, Items, and Background Questions 37
Ina V. S. Mullis, Walter MacDonald, Nancy A. Mead
Chapter 3 Sample Design 67Morris H. Hansen, Keith Rast, John Burke
Chapter 4 Instrument and Item Information 77 Janet R. Johnson
Chapter $5 \quad$ Field Administration 85
Nancy Caldwell, Renee Slobasky
Chapter 6 Materials Processing and Database Creation 91
Chapter 6.1 Processing Assessment Materials 99
Alfred M. Rogers, Norma A. Norris
Chapter 6.2 Professional Scoring
Anne Campbel 115
Chapter 6.3 Data Transcription Systems 125
Alfred M. Rogers
Chapter 6.4 Editing Data 137
Alfred M. Rogers
Chapter 6.5 Quality Control of Data Entry 143
John J. Ferris
Chapter 6.6 Database Creation 151
Alfred M. Rogers
Chapter 6.7 Public-use Data Tape Construction 157Alfred M. Rogers

PART II

Chapter $7 \quad$ Overview of Part II: The Analysis of the 1986 NAEP 169 Albert E. Beaton
Chapter 8 Scaling Procedures 177 .
Robert J. Mislevy
Chapter 9 Reading Data Analysis 207 Rebecca Zwick
Chapter 10 Mathematics Data Analysis 215
Eugene G. Johnsun
Chapter 11 Science Data Analysis 243Kentaro Yamamoto
Chapter 12 Computer Competence Data Analysis 259
Nancy A. Mead
Chapter 13 History and Literature Data Analysis 265Rebecca Zwick
Chapter 14 Weighting Procedures and Variance Estimation 273
Eugene G. Johnson, John Burke, Jill Braden, Morris H. Hansen, Josefina A. Lago, Benjamin J. Tepping
PART III
Chapter 15 Statistical Summary of the 1986 NAEP and
Estimates of the Proficiency of American Students 297
Albert E. Beaton, David S. Freund, Bruce A. Kaplan, Michael A. Narcowich
Appendix A: Instrument and Item Tables 421
Appendix B: Conditioning Variables Tables 461
Appendix C: WARM Variables Tables 523
Bruce A. Kaplan
Appendix D: The IRT Linking Procedures Used to Place the 1986
Intermediary Scaling Results onto the 1984 Reading Calibration Scale 555
Kathleen M. Sheehan
Appendix E: IRT Item Parameter Tables 569
Appendix F: U. S. History and Literature Items 615
References 625

EXPANDING THE NEW DESIGN: THE NAEP 1985-86 TECHNICAL REPORT

Index of Tables and Figures

Table 1.1 Assessment schedule 21
1.2 The 1986 NAEP samples 24
3.1 The sampling subuniverses and the number of noncertainty strata in each
69
69
3.2 Grade definition of school eligibility for frame inclusion 70
3.3 School sample sizes, refusals, and substitutes 71
3.4 Participation and exclusion rates by age class 73
4.1 Number of subject area blocks administered
78
78
4.2 Bridge A booklet configuration
78
78
4.3 Bridge B booklet configuration 79
4.4 Subjects taught by 1986 teacher sample 80
5.1 Comparison of 1986 and 1984 student participation rates 87
Figure 6.1 Data flow overview 93
6.1.1 Data entry system main menu 102
6.1.2 School worksheet entry screen \#1 103
6.1.3 School worksheet entry screen \#2 103
6.1.4 Student session data entry screen
108
108
6.1.5 Student booklet cover data entry screen
109
109
6.1.6 Questionnaire data entry screen 111
Table 6.2.1 Distribution of open-ended reađing, science, and computer competence items
116
116
6.2.2 Percentages of exact score point agreement and intraclass correlation coefficients for 1986 open-ended reading, science, and computer competence items 121
6.2.3 Reliability statistics for scoring of cpen-ended items 122
Figure 6.3.1 Intelligent data entry system 126
Table 6.5.1 Observed error rate and upper confidence limit 147
8.1 Proportions of proficiency variance accounted for 193
8.2 Estimation error variances and related coefficients for the 1986 grade-level reading assessments 195
8.3 Number of WARM composite variables by subject and grade/age
196
196
8.4 Variables conditioned on for 1986 by grade/age
197
197
8.5 Contrast codings for 1986 conditioning variables 198
Table $\quad 9.1$ Reading scale item information, by sample 207
9.2 Dichotomization rules for open-ended reading items used in scaling 208
9.3 Reading item scores excluded from IRT scale 209
9.4 Students included in BILOG run, by sample 210
10.1 Distribution of the members of items by booklet within each of the mathematics content areas, grade 3 /age 9 218
10.2 Distribution of the members of items by booklet within each of the mathematics content areas, grade 7 /age 13 219
10.3 Distribution of the members of items by booklet within each of the mathematics content areas, grade 11 /age 17 220
10.4 Mathematics items deleted for specifiei populations because of differential functioning 223
10.5 Number of items by subscale and percent not reached 224
10.6 Mathematics items deleted for percent nonresponse ≥ 45 225
10.7 Number of mathematics items scaled, by subscale and grade/age 226
10.8 Comparison of the subscale means and standard deviations based on the multivariate plausible values with the univariate BILOG results 227
10.9 Estimated correlations between subscales 231
10.10 Defining weights for the mathematics composite 232
10.11 Coefficients of the linear transformations of the subscales from their original units to the units of the composite 232
10.12 Comparison by grade and demographic subgroup of the mathematics composite mean with the mean of the three age-spanning subscales 234
10.13 Student sample sizes for matlematics trend scaling 236
10.14 Samples of students used in the scaling for trend 237
10.15 Counts of mathematics trend items by age, year, and content area 239
10.16 Coefficients of the linear transformation of the trend scale from original units to units of the composite 239
11.1 Science scale information, by sample 243
11.2 Identification of science subscales and number of items used for analysis 246
11.3 Science items dropped for specified populations because of lack of fit to IRT 246
11.4 Comparison of the subscale means and standard deviations based on the multivariate plausible values with the univariate BILOG results 248
11.5 Defining weights for the science composite by grade/age 249
11.6 Coefficients of the linear transformations of the subscales from the calibrating scale to the units of the reporting proficiency scale 250
11.7 Samples of students used in scaling for trend 253
11.8 Number of items in common across the three ages 253
11.9 Coefficients of the linear transformation of the trend scale from the calibration units to the units of the composite 254
13.1 NAEP history and literature assessment, descriptive statistics 266
13.2 Results of MINRES factor analyses of guessing-corrected tetrachoric matrices of NAEP items 268
Table 14.1 Major subgroups for poststratification 281
14.2 Distribution of design effects by demographic subgroup forthe cognitive reading items given in 1986, grade 3
288
14.3 Distribution of design effects by demographic subgroup for the cognitive reading items given in 1986, grade 7
289
289
14.4 Distribution of design effects by demographic subgroup for the cognitive reading items given in 1986, grade 11 290
15.1 Measurement instruments developed for 1986 NAEP 303
15.2 Number of items administered 304
15.3 Number of cognitive items by type of administration 305
15.4 Characteristics of schools in main NAEP (spiral) sample 306
15.5 Number of responses to teacher questionnaire 308
15.6 Number of assessment sessions by type of administration 309
15.7 Number of students assessed and excluded by type of administration 310
15.8 Number of students in the main NAEP sample, grade $3 /$ age 9 311
15.9 Number of students in the main NAEP sample, grade 7/age 13 312
15.10 Number of students in the main NAEP sample, grade 11/age 17 313
15.11 Number of students in the bridge A sample 314
15.12 Number of students in the bridge B sample 315
15.13 Excluded student sample by demographic characteristics, grade 3/age 9 316
15.14 Excluded student sample by demographic characteristics, grade 7/age 13 317
15.15 Excluded student sample by demographic characteristics, grade 11/age 17 318
15.16 Number of students by grade/age and type of assessment 319
15.17 Number of spiral students, grade 3/age 9
320
320
15.18 Number of spiral students, grade 7/age 13 321
15.19 Number of spiral students, grade 11/age 17 322
15.20 Number of bridge students, age 9 323
15.21 Number of bridge students, age 13 324
15.22 Number of bridge students, age 17
325
325
15.23 Estimated total of students in the population eligible for spiral assessment, grade 3/age 9, weighted 326
15.24 Estimated total of students in the population eligible for spiral assessment, grade 7/age 13 , weighted 327
15.25 Estimated total of students in the population el.gible for spiral assessment, grade 11 /age 17 , weighted 328
15.26 Estimated total of students eligible for assessment by bridge sample, age 9, weighted 329
15.27 Estimated total of students eligible for assessment by bridge sample, age 13 , weighted 330
15.28 Estimated total of students eligible for assessment by bridge sample, age 17 , weighted 331
15.29 Estimated total population of excluded students, grade 3/age 9, weighted 332
15.30 Estimated total population of excluded students, grade 7 /age 13 , weighted 333
15.31 Estimated total population of excluded students, grade 11/age 17, weighted
334
334
15.32 Spiral sample students with reading scale scores, grade 3/age 9 335
15.33 Spiral sample students with reading scale scores, grade 7 /age 13 336
15.34 Spiral sample students with reading scale scores, grade 11 /age 17 337
15.35 Spiral sample students with mathematics scale scores, grade 3/age 9 338
$\begin{array}{llllll}\text { Table } & 15.36 & \text { Spiral sample students with mathematics scale scores, grade } 7 / \text { age } & 13 & 339\end{array}$
15.37 3piral sample students with mathematics scale scores, grade 11/age 17340
15.38 Spiral sample students with science scale scores, grade 3/age 9 341
15.39 Spiral sample students with science scale scor s, grade 7/age 13
15.40 Spiral sample students with science scale scores, grade 11/age 17333
15.41 Spiral sample students with history scale scores, grade 11/age 17
15.42 Spiral sample students with literature scale scores, grade 11/age $17 \quad 345$
15.43 Weighted means, standard deviations, and percentiles for
reporting groups, reading, grade 3
$\begin{array}{ll}15.44 & \text { Weighted means, standard deviations, and percentiles for } \\ \text { reporting groups, mathematics, grade 3 }\end{array}$
$\begin{array}{ll}\text { 15.45 } & \text { Weighted means, standard deviations, and percentiles for } \\ \text { reporting groups, science, grade 3 }\end{array}$
$\begin{array}{ll}15.46 & \begin{array}{l}\text { Weighted means, standard deviations, and percentiles for } \\ \text { reporting groups, reading, grade } 7\end{array} \\ & 349\end{array}$
$\begin{array}{lll}15.47 & \begin{array}{l}\text { Weighted means, standard deviations, and percentiles for } \\ \text { reporting groups, mathematics, grade } 7\end{array} & 350\end{array}$
$\begin{array}{lll}15.48 & \text { Weighted means, standard deviations, and percentiles for } \\ \text { reporting groups, science, grade 7 }\end{array}$
$\begin{array}{ll}15.49 & \begin{array}{l}\text { Weighted means, standard deviations, and percentiles for } \\ \text { reporting groups, reading, grade 11 }\end{array}\end{array}$
$\begin{array}{ll}15.50 & \begin{array}{l}\text { Weighted means, standard deviations, and percentiles for } \\ \text { reporting groups, mathematics, grade } 11\end{array} \\ \end{array}$
$\begin{array}{ll}15.51 & \text { Weighted means, standard deviations, and percentiles for } \\ \text { reporting groups, science, grade } 11\end{array}$
$\begin{array}{ll}15.52 & \begin{array}{l}\text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 3, total sample }\end{array}\end{array}$
$\begin{array}{lll}15.53 & \begin{array}{l}\text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 3, by sex of subject }\end{array} & 356\end{array}$
$\begin{array}{lll}15.54 & \begin{array}{l}\text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 3, by region of country }\end{array} & 357\end{array}$
$15.55 \begin{aligned} & \text { Weighted response percentages and general reading } \\ & \text { proficiency means, grade 3, by derived race }\end{aligned}$
$\begin{array}{lll}15.56 & \begin{array}{l}\text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 3, by level of parents' education }\end{array} & 359\end{array}$
15.57 Weighted response percentages and general reading proficiency means, grade 3, by articles in the home 360
15.58 Weighted response percentages and general reading proficiency means, grade 3 , by television vier. ng 361
$\begin{array}{lll}15.59 & \begin{array}{l}\text { Weighted response percentages and gen: } \\ \text { proficiency means, grade 3, total sample }\end{array} & 362\end{array}$
15.60 Weighted response percentages and general mathematics proficiency means, grade 3 , by sex of subject 363

15.61 Weighted response percentages and general mathematics
proficiency means, grade 3 , by region of country
15.62 Weighted response percentages and general mathematics proficiency means, grade 3, by derived race365
15.63 Weighted response percentages and general mathematics proficiency means, grade 3, by level of parents' education 366
15.64 Weighted response percentages and general mathematics proficiency means, grade 3, by articles in the home 367
15.65 Weighted response percentages and general mathematics proficiency means, grade 3 , by television viewing 368
15.66 Weighted response percentages and general science proficiency means, grade 3 , total sample 369

Weighted response percentages and general science proficiency means, grade 3, by sex of subject
15.68 Weighted response percentages and general science proficiency means, grade 3, by region of country
15.69 Weighted response percentages and general science proficiency means, grade 3, by derived race372
15.70 Weighted response percentages and general science proficiency means, grade 3, by level of parents' education 373
15.71 Weighted response percentages and general science proficiency means, grade 3, by articles in the home
15.72 Weighted response percentages and general science
15.73 Wroficiency means, grade 3, by television viewing375

proficiency means, grade 7 , total sample15.74 Weighted response percentages and general reading376
proficiency means, grade 7, by sex of subject 15.75 377Weighted response percentages and general reading
proficiency means, grade 7, by region of country 15.76 Weighted response percentages and general reading 378proficiency means, grade 7, by derived race
379
15.77 Weighted response percentages and general reading proficiency means, grade 7, by level of parents' education 380
15.78 Weighted response percentages and general reading
proficiency means, grade 7, by articles in the home
381
15.79 Weighted response percentages and general reading proficiency means, grade 7, by television viewing 382
Weighted response percentages and general
mathematics proficiency means, grade 7 , total sample
mathematics proficiency means, grade 7 , total sample 383 383
15.81 Weighted response percentages and general mathematics proficiency means, grade 7, by sex of subject 384
15.82 Weighted response percentages and general mathematics proficiency means, grade 7, by region of country 385
15.83 Weighted response percentages and general mathematics proficiency means, grade 7, by derived race
386
386
15.84 Weighted response percentages and general mathematics proficiency means, grade 7, by level of parents' education 387
15.85 Weighted response percentages and general mathematics proficiency means, grade 7, by articles in the home 388
15.86 Weighted response percentages and general mathematics proficiency means, grade 7, by television viewing
389
389
15.87 Weighted response percentages and general science proficiency means, grade 7, total sample 390
15.88 Weighted response percentages and general science proficiency means, grade 7, by sex of subject 391
15.89 Weighted response percentages and general science proficiency means, grade 7, by region of country
392
392
15.90 Weighted response percentages and general science proficiency means, grade 7, by derived race 393
15.91 Weighted response percentages and general science proficiency means, grade 7, by level of parents' education 394
15.92 Weighted response percentages and general science proficiency means, grade 7, by articles in the home 395
15.93 Weighted response percentages and general science proficiency means, grade 7, by television viewing 396
$\begin{array}{llll}\text { Table } & 15.94 & \begin{array}{l}\text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 11, total sample }\end{array} & 397\end{array}$
$\begin{array}{lll}15.95 & \begin{array}{l}\text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 11, by sex of subject }\end{array} & 398\end{array}$
$\begin{array}{lll}15.96 & \begin{array}{l}\text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 11, by region of country }\end{array} & 399\end{array}$
$\begin{array}{ll}15.97 & \begin{array}{l}\text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 11, by derived race }\end{array}\end{array}$
$\begin{array}{lll}15.98 & \begin{array}{l}\text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 11, by level of parents' education }\end{array} & 401\end{array}$
$\begin{array}{lll}15.99 & \text { Weighted response percentages and general reading } \\ \text { proficiency means, grade 11, by articles in the home }\end{array}$
15.100 Weighted response percentages and general reading
proficiency means, grade 11, by television viewing
15.101 Weighted response percentages and general mathematics
proficiency means, grade 11, total sample
15.102 Weighted response percentages and general mathematics
proficiency means, grade 11, by sex of subject
$\begin{array}{ll}15.103 & \text { Weighted response percentages and general mathematics } \\ \text { proficiency means, grade 11, by region of country }\end{array}$
15.104 Weighted response percentages and general mathematics
proficiency means, grade 11, by derived race
$\begin{array}{ll}15.105 & \begin{array}{l}\text { Weighted response percentages and general mathematics } \\ \text { proficiency means, grade 11, by level of parents' education }\end{array}\end{array}$
15.106 Weighted response percentages and general mathematics
proficiency means, grade 11, by articles in the home
$\begin{array}{ll}15.107 & \text { Weighted response percentages and general mathematics } \\ \text { proficiency means, grade 11, by television viewing }\end{array}$
$\begin{array}{lll}15.108 & \text { Weighted response percentages and general science } \\ \text { proficiency means, grade 11, total sample }\end{array}$
$\begin{array}{ll}15.109 & \text { Weighted response percentages and general science } \\ \text { proficiency means, grade 11, by sex of subject }\end{array}$
15.110 Weighted response percentages and general science
proficiency means, grade 11, by region of cour:ry
$\begin{array}{ll}15.111 & \text { Weighted response percentages and general science } \\ \text { proficiency means, grade 11, by derived race }\end{array}$
15.112 Weighted response percentages and general science
proficiency means, grade 11, by level of parents' education
15.113 Weighted response percentages and general science proficiency means, grade 11, by articles in the home416
$\begin{array}{lll}15.114 & \begin{array}{l}\text { Weighted response percentages and general science } \\ \text { proficiency means, grade 11, by television viewing }\end{array} & 417\end{array}$

ACKNOWLEDGMENTS

This report, as well as the data and analyses that it documents, is the result of the contributions of many persons at ETS, Westat, and elsewhere. It is fitting that these individuals be acknowledged for their contributions to NAEP.

NAEP is funded through the Office for Educational Research and Improvement (OERI) of the Department of Education. The staff of OERI have worked in cooperation with the ETS staff in many ways and have played an important role in helping NAEP fulfill its function. I wish to take this opportunity to thank Emerson Elliott, David Sweet, Gary Phillips, and Gene Owen, who have all been particularly helpful.

The ETS and NAEP management staffs have also been very supportive of the technical work of NAEP. Special thanks go to Greg Anrir Vi Jolomon, Vic Bunderson, Jules Goodison, of ETS management and to Archie Lapointe, Ina Mullis, Paul Barton, Jules Goodison, and Doug Rhodes of NAEP management.

Ina Mullis deserves special note for her major influence on our evolving concept of NAEP, from its design through instrument development to the interpretation of results.

Nancy Mead and Norma Norris were primarily responsible for the operational aspects of the 1986 NAEP.

Kent Ashworth and Janice Askew have been particularly helpful in the design and production of this and other reports.

The NAEP Design and Analysis Committee, which oversees the technical aspects of NAEP, has been outstanding. The members are Robert Linn (Chair), John B. Carroll, Bert Green, Robert Glaser, Sylvia Johnson, Ingram Olkin, Tej Pandey, Richard Snow, and John

The design and the data analysis of the 1986 NAEP, including the writing of this report, was largely the function of the NAEP data analysis staff. The staff members have made many creative contributions to the statistical and psychometric aspects of the assessment as well as managing the day-to-day data analytic operations. I am particularly indebted for the major contributions of Janet Johnson, Gene Johnson, Maxine Kingston, Bob Mislevy, Peter Pashley, Kathy Sheehan, Kentaro Yamamoto, and Rebecca Zwick, and for the assistance of Jo-Ling Liang.

The Data Analysis Department, under the extraordinary direction of John Barone, was responsible for developing the operating systems and producing the data analyses. Developing and operating the NAEP data management systems under severe time constraints were the province of Al Rogers and Norma Norris. Other members of this group who made substantial contributions of their talent and important contributions to the NAEP data analyses were Laurie Barnett, Jim Ferris, Dave Freund, Doug Gentile, Tom Jirele, Bruce Kaplan, Ed Kulick, Laura McCamley, Mike Narcowich, Jennifer Nelson, Kate Pashley, Ira Sample, and Minhwei Wang. Although all of these persons made important
contributions, I would be remiss not to single out the extraordinary work of Norma Norris, Al Rogers, Dave Freund, Bruce Kaplan, and Ed Kulick.

Westat, Inc. has also contributed its wea.: 'i of wisdom and experience to the design and implementation of NAEP, including this report. Morris Hansen supervised the NAEP sampling and Renee Slobasky the field operations. I am also grateful to Jill Braden, John Burke, Nancy Caldwell, Morris Hansen, Josefina Lago, Keith Rust, and Ben Tepping.

Without an able secretarial staff, this report would have been impossible. I wish to thank Sharon Stewart, Mary Varone, and Marcy Yates for their hard work and dedication.

Other ETS staff members made important contributions to the design, development, and implementation of NAEP. These include Joan Baratz, Anne Campbell, Kalle Gerritz, Peg Goertz, Ann Jungeblut, Walt MacDonald, Andy Mychajlowycz, and Gita Wilder.

Thanks also go to Pete Simonelli, Pete Stremic, and their respective staffs, who were responsible for the printing of the report in its various drafts as well as in final form; and to Joe Belica, who designed the cover.

Special acknowledgment and thanks are due to the 25 collaborating authors of this report. I would also like to thank Paul Barton, Henry Braun, Archie Lapointe, and Ina Mullis for their helpful reviews.

Finally, special thanks are due to the outstanding work of Debbic Kline, the editor of this report, who was responsible for the report's writing schcdule, its editing, supervising its production, and assuring its cohesiveness.

Albert E. Beaton
Director of Data Analysis
National Assessment of
Educational Progress
November 1, 1988

INTRODUCTION

EXPANDING THE NEW DESIGN:
 THE NAEP 1985-86 TECHMICAL REPORT

INTRODUCTION

Albert E. Beaton
Educational Testing Service

The 1986^{1} National Assessment of Educational Progress (NAEP) surveyed what students knew and could do in the subject areas of reading, mathematics, science, conputer competence, and, for older students only, U.S. history and literature. The populations that were sampled incIuded American public and private school students of ages 9,13 , and 17 as well as those in 3 rd, 7 th, and 11th grades.

This technical report is intended to supply the details of the design and data analysis of the 1986 assessment. Our aim is to give the reader sufficient information to judge the utility of the design, the quality of the NAEP data, the reasonableness of the assumptions made, the appropriateness of the data analyses, and the generalizability of the inferences made from the data. This report covers only the technical aspects of the 1986 NAEP. It does not attempt to provide the substantive results that might be of interest to educational policymakers; such results are provided in the NAEP crosssectional and trend reports on student achievement in the various subject areas. This technical documentation is intended to support the proficiency reports by presenting detailed information about the data and analyses that were interpreted and presented in the reports. Analyses performed specifically for the achievement reports are discussed in the procedural appendices of those reports.

The NAEP staff, of course, did not do this work alone. It had the policy guidance of the Assessment Policy Committee (APC), chaired by Senator Pat Frank of Florida. It is also important to recognize the many thoughtful discussions, recommendations, reviews, comments, and other substantial help on technical issues that the NAEP staff received from the highly accomplished members of its Design and Analysis Committee (formerly the Technical Advisory Committee) chaired by Professor Robert Linn (University of Colorado). Other members of this committee are Professor John $\overline{\mathrm{B}}$. Carroll (University of North Carolina), Professor Robert Glaser (University of Pittsburgh), Professor Bert Green (Johns Hopkins University), Professor Sylvia Johnson (Howard University), Professor Ingram Olkin (Stanford University), Dr. Tej Pandey (California Department of Education), Professor Richard Snow (Stanford University), and Professor John W. Tukey (Princeton University).
${ }^{1}$ Throughout this report, the assessments conducted during the 1983-84 and 1985-86 school years will be referred to respectively as the 1984 and 1980° assessments.

This technical report is organized into three parts:
Part I begins with Chapter l, which contains a discussion of the NAEP 1986 design and a summary of the steps followed in the process of developing the basic data. This chapter is followed by chapters covering the development of the items in the subject areas that were assessed; the sampling; the measurement instruments; the field administration (including attainment of school cooperation); and the data entry, item scoring, and construction of the NAEP database and public-use data tapes. Quality control is cove:ed throughout Part I.

Part II explains the steps involved in data analysis. Chapter 7, the first chapter in this part, begins with an overview of the aims of the data analysis and a summary of the procedures. Chapter 8 contains an overview of the scaling procedures used in NAEP and recommended analytic procedures. Subsequent chapters describe the application of the data analytic procedures in reading, mathematics, science, computer competence, and history and literature. The final chapter in Part II discusses the sampling weights and variance estimation.

Part III presents some basic data from the 1986 NAEP, including the properties of the measuring instruments, characteristics of the selected sample, and some estimates of the proficiency of the students in American schools. Only a few of the huge number of possible population proficiency estimates are presented, and these include estimates of the means, standard deviations, and selected percentiles of populations of students in various subject areas at various grade levels. Population estimates are also reported separately by gender, racial/ethnic grouping, and other subpopulations. Estimates of the average values for cross-classifications of several important variables are also reported. Estimated standard errors are provided with all parameter estimates.

The rest of this introduction contains general background information about NAEP and comment on the rationale for some of the modifications that have been implemented in design and analysis. The section gives the legislative mandate under which this assessmert was conducted. Subsequent sections briefly describe the changes in the design of NAEP in the 1986 assessment, the steps in implementing NAEP, important changes in analytic procedures, the effect of the several changes on the National Assessment, the rationale for the public-use data tapes, and the organization strategy of this report.

CONGRESSIONAL mandate for naep

The National Assessment of Educational Progress is a continuing, congressionally mandated, national survey of educational achievement. The

Congressional Act (Public Law 95-561-Nov. 1, 1978) under which the NAEP grant, including the 1986 assessment, was offered stated that
"[NAEP]...shall have as a prianary purpose the assessment of performance of children and young adults in the basic skills of reading, mathematics, and communication. Such a National Assessment shall...
(A) collect and report at least once every five years data assessing the performance of students at various age or grade levels in each of the areas of reading, writing, and mathematics;
(B) report periodically data on changes in knowledge and skills of such students over a period of time;
(C) conduct special assessments of other educational areas, as the need for additional information arises; and
(D) provide technical assistance to State educational agencies and to local educational agencies on the use of the National Assessment objectives, primarily pertaining to the basic skills of reading, mathematics, and communication, and on making comparisons of such assessments with the national profile and change data developed by the National Assessment."

In addition to fulfilling this Congressional mandate, NAEP also gathered ancillary data that can be of use in interpreting the basic findings about the knowledge and skills of young Americans. It is the first ongoing effort to obtain comprehensive and dependable achievement data on a national basis in a uniform, scientific manner. NAEP was originally designed in the 1960 s and collected its first data in 1969. The NAEP grant was administered by the Education Commission of the States (ECS) until 1983 when the grant was moved to Educational Testing Service (ETS). Since its inception, NAEP has collected information not only on reading, writing, and mathematics, as required by the 1978 law, but also on a number of other subject areas such as science, citizenship, art, and music.

In 1982, ETS proposed a new, comprehensive design for NAEP. The design was described extensively in The Conduct of the National Assessment of Educational Progress, a Proposal in Response to RFP PA-82-001, submitted by ETS to the National Institute of Education, November 17, 1982. An overview: of the design was published in the report A New Design for A New Era (Messick, Beaton, \& Lord, 1983). Five years have passed since ETS received the grant to implement its design for NAEP; the concepts in the proposed design have now been put into practice, the students have been assessed, the resulting data have been analyzed, and reports have been published, including a previous technical report, Implementing the New Design: The NAEP 1983-84 Technical Report (Beaton, 1987a).

It should be noted that the Congressional mandate for NAEP has been modified and broadened to augment the design of the 1990 and ensuing

13
assessments by introducing summary proficiency estimates for individual states. The design of the 1990 assessment will be published in a separate document.

CHANGES IN THE NAEP DESIGN

Although the original design for NAEP was "brilliantly responsive to the political constrain's of the time" (Messick, Beaton, \& Lord, 1983, p.1), the structure of NAEP was changed in significant ways in the 1984 assessment and evolved even further in 1986. The design of the 1986 National Assessment is discussed fully in Chapter 1. The rationale for the major design changes is discussed here.

In measuring student progress over time, it is essential that NAEP remain stable in order to maintain the comparability of the results from one assessment year to another. However, as the concerns of educationai policymakers change and as new technologies become available, it is important to modify NAEP in order to increase its relevance and maintain its technical excellence. This tension between stability and change has presented, and continues to present, a challenge to the technical staff of NAEP.

Since receiving the grant in 1983, ETS has instituted a number of modifications in the way that NAEP is administered and its data analyzed. Balanced incomplete block (BIB) spiralling and IRT scaling were introduced in the 1984 assessment of reading and writing. Another modification to that assessment was the addition of grade-level sampling. Data were collected not only for students aged 9,13 , and 17 (as in past assessments) but also for students in grades 4,8 , and 11 . These changes have been reported previously (Messick, Beaton, \& Lord, 1983; Beaton, 1987a).

In 1986, reading, mathematics, science, and computer competence were assessed at grades 3, 7, and 11 and ages 9,13 , and 17. At grade 11/age 17 only, U.S. history and literature were also assessed. Since NAEP had not assessed computer competence, history, or literature before, there were no trend results to which new results could be compared and thus no opportunity to study the effects of changes. However, reading, mathematics, and science had been assessed several times in the past; thus, it was necessary to see what effects the changes in methodology had on the trend data for these three su'bject areas.

There were two major differences in the design of the 1986 assessment from past assessments:

- The definitions of the age populations and the time of year in which the assessment was administered were changed.
- Mathematics and science were assessed for the first time using only printed instructions and items, eliminating the paced aural presentation by tape recorders used in past assessments.

The changes in age and time of testing were introduced to make NAEP definitions uniform. In pre-1986 NAEP, the definition of age for 17-yearolds was not consistent with the definitions for 9 - and 13-year-olds, with the result that, although all 9 -year-olds would be eligible for the 13 -yearold sample in four years, most of NAEP's 13 -year-old students would not be eligible for the 17 -year-old sample four years later. Also, pre-1986 assessments sampled 13-year-olds in the fall, 9 -year-olds in the winter, and 17-year-olds in the spring, with the result that the apparent four-year difference between age samples was actually something different. In 1986 NAEP introduced consistent definitions of age and assessment of all ages at the same time of year.

The change from tape-recorded to printed administration was necessitated by the introduction of BIB spiralling. Before the 1984 assessment, NAEP was administered using matrix sampling and all students at an assessment session were assigned exactly the same items. It was possible, and deemed desirable, to administer the assessment using a tape recorder. However, the tape recorder had a negative effect on one of NAEP's aims--to develop items that can be used in other settings. Few other users of NAEP items chose to use tape-recorded administration. Also, since BIB spirilling assigned different assessment items to different students in the \mathfrak{z} ame session, administration by a single tape recorder was no longer feasible. For these and other reasons, the traditional tape-recorded administration method was replaced by a paper-and-pencil administration. In 1986, the change from tape-recorded to printed administration was new only for mathematics and science; reading had already been assessed using printed administration in 1984.

The main strategy used to protect the stability of NAEP as changes are introduced into the NAEP design has been the "bridge study." A bridge study entails collecting two separace but comparable sets of data. In order to maintain comparability with past assessments, one rational sample of students is assessed using the same methods as in the past, duplicating as closely as possible past administrative procedures. Another, equivalent sample is also assessed, using the new methods and procedures. The data from the two samples can then be compared and the effect of the changes, if any, estimated. If the two sets of data are equatable, then the data from the past assessments can be adjusted to make them comparable to the new, or vice versa. if the data from the two samples are so different as to be nonequatainle, the trend is continued using only the students assessed with the older methodology. Future assessments can be made comparable to either, depending on whether or not the value of the changes outweighs the value of the trend data. Two bridge studies were conducted in 1986: one to study the effect of changing the definitions of age and the time of year in which the assessment occurred and ar.other to study the effect of changing the method of administration.

2
BIB spiralling is described in Messick, Beaton, and Lord (1983) and Beaton (1987a).

IMPLEMENTATION OF THE NAEP DESIGN

The implementation of the 1986 NAEP design involved a large number of steps which are described briefly in the next chapter and then in some detail in Chapters 2 through 6. First, Learning Area Committees were formed to set the objectives for the several subject areas that were assessed. The reading, mathematics, and science items from past assessments were reviewed and reorganized, and new items developed and pretested in mathematics, science, computer competence, U.S. history, and literature. Background and attitude questions for students were selected or developed. Questionnaires for teachers, principals, computer coordinators, and excluded students were developed. Altogether, 56 different assessment booklets or questionnaires were printed for use at the elementary school level, 72 at the intermediate level, and 97 in the high schools.

Field administration was performed by Westat. Staff were recruited and trained in the randomly selected areas of the country where the assessment took place. Individual states, school districts, and schools were encouraged to participate. The assessment was administered in over 1,500 schools. The various forms and booklets were accounted for and returned to ETS. Quality control procedures were implemented and reviewed.

ETS had to assure that it received complete data from the field administrators. After receiving data, ETS professionally scored open-ended items and entered the data into its computers. While most of the data were machine-readable, some questionnaires were key-entered and verified. All data were carefully edited and placed in an integrated database. Careful quality control checks were made before the data were considered ready for data analysis. Westat prepared sampling weights foi each student in the sample. ETS then placed the data on public-use data tapes and prepared user docurentation.

After completion of the database with sampling weights, the data analysis and reporting process proceeded. The analysis process consisted of reviewing individual items to assure their correctness, then developing anchored scales. The scaled data were analyzed and tabulated in many ways. Reporting interacts with analysis, and consists of identifying the issues of interest, specifying data analyses, reviewing and interpreting results, and then preparing documents for review, revision, and printing.

CHANGES IN NAEP ANALYSIS

Part II of this report describes the procedures used to analyze the 1986 data. These procedures are summarized in Chapter 7 and presented in detail in Chapters 8 through 14. In this section, only major differences in analytic procedures from past assessments will be noted.

Since its inception, NAEP has had as its goal reporting to the interested public what students can and cannot do. NAEP was designed to report the achievement of students in the United States as a whole and in subpopulations such as groups based on regions of the country, ethnicity, and
gender. However, the way in which these goals have been achieved has evirived over time.

At first, NAEP reported what students knew and could do by estimating and publishing the proportion of students who could pass particular items, with the result of reporting with little summarization and in more detail than most audiences wanted. Reporting procedures were quickly modified to focus on estimating and publishing the proportion of students who could answer correctly certain specified populations of items. Although the data could be summarized in this way, the approach restricted the measurement of change over time to groups of items that were identical in several assessments and restricted the ways in which the data could be interpreted.

Since receiving the NiEP grant in 1983, ETS has used scaling technology to report student achievement. Using scaling technology does not preclude alternative reporting to maintain continuity with the past. Although NAEP now emphasizes scales in its reports, it makes its data available on fully documented public-use data tapes so that anyone interested may find out how students did on any or all of the items that were administered. For comparability with the past, NAEP continues to publish the average percentage correct for groups of items that were administered at different times.

The scaling within NAEP's different learning areas is heavily dependent on knowledge of the interitem correlations. In simplest terms, the main idea is that if the items could be placed in such an order that a person's answering an item correctly at a particular difficulty level implied that he or she could answer all easier items, knowing the most difficult item a student could answer correctly would imply what that student could and could not do for the entire population of items. Of course, few, if any, sets of real items are so rigidly ordered, and such ordering is clearly impossible where guessing is allowed. However, other, less demanding, item response theory (IRT) models are available to be applied when the data are approximately unidimensional. In the 1984, assessment the incroduction of BIB spiralling, a complex variant of multiple matrix sampling, facilitated the collection of interitem data in such a way that dimensionality could be explored.

If the dimensionality study showed that the items fell approximately on a single dimension, a single scale could summarize most of the information about student performance quite adequately. If the items fell on more than one dimension, a scale for each dimension would have to be developed, if sufficient data were available to support the scaling process; otherwise, other summarization procedures, such as the average percentages used in the past, could be employed. The 1984 NAEP showed that a majority of the reading items could be adequately fit to a unidimensional model and so these reading itens were scaled. Using the ordering of the items, the reading scale was behaviorally anchored so that points on the scale could be interpieted as levels of proficiency, describing what students at those levels could and could not do. The 1984 writing items were scaled using an alternative method that did not require the assumption of unidimensionality.

In 1986, the scaling technology was extended to subscales. It was assumed, a priori, that a single scale would not suffice for reporting mathematics and science. Multivariable scaling technology was developed to create subscales representing various categories of items that would be of interest to various audiences. Thus, several subscales were developed for mathematics and for science. In order to maintain a single overall measure of performance for each subject area, a global composite was also created for mathematics and for science. The global composite was anchored for each of these subject areas usirg a new technology developed for this purpose.

the effect of the changes

The changes in the design and analysis of the National Assessment were intended to facilitate analysis and reporting of NAEP data, and have done so. Our concern here is whether the changes in design have maintained the comparability of the newly collected data with the data collected by NAEP since its first data collection ir 1969-70.

The bridge samples that were collected to measure the effect of the changes made in the 1986 NAEP design were analyzed and the results are presented in a separate report entitled National Assessment of Educational Progress 1986 Bridge Studies (Kaplan: Beaton, Johnson, \& Johnson, 1988). That report concluded:
"...the effect of change in the mode of administration, while present, is accurately predictable and does not differentially affect the measures of performance for any of the subpopulations studied. The effect of the change in age definition and time of testing is more noticeable, is in the expected direction, and does not differentially affect the measures of performance for the vast majority of the assessed [sub]population[s]. Consequently, the data from the fast assessments can justifiably be adjusted to make them comparable with the data from the 1986 assessment."

However, an anomalous situation arose in the analysis of the reading data. The reading data were collected in the same way as in the 1984 assessment, to which performance was to be compared. Analysis of these data showed an inexplicable decline in reading proficiency, a decline so large as to be suspect. Eminent outside educational researchers also examined the NAEP reading results and concurred with the NAEP staff in their judgment that the results were unusual and advised further investigation. This decline was carefully investigated and documented in The NAEP 1985-86 Reading Anomaly: A Technical Report (Beaton, 1988). That report states:
"The results of the studies of the reading anomaly are inconclusive. Some hypotheses, such as inaccuracies in sampling, scaling, and quality control, can be ruled out beyond any reasonable doubt. However, some changes in the assessment process are inevitable, and these changes are documented in this report. The possibility that one or a combination of such changes may have
resulted in the declines in reading proficiency cannot be ruled out. The effect of such changes cannot be estimated from existing data."

Since the reading trend data have been deemed anomalous, the reading trend results have not yet been published. The 1988 NAEP design has been modified to collect additional data to help explain or sustain the unusual results from the 1986 reading trend analyses. The reading trend results will be published after the new data are collected and analyzed.

the naep database and public-use data tapes

All of the data collected during the 1986 national assessment are available on public-use data tapes, except for information that would breach confidentiality agreements by identifying individual states, schools, teachers or students. These tapes are fully documented in the National Assessment of Educational Progress 1985-86 Public-Use Data Tapes Version 2.0 Users' Guide (Rogers, Kline, Norris, Johnson, Mislevy, Zwick, Barone, \& Kaplan, 1988).

The NAEP staff was greatly concerned not only with producing its own reports but also with making its public-use data tapes available in a format which would be as easy for others to use as possible. The purpose of the public-use data tapes is to allow others to check our analyses, to perform alternate analyses using different methods, and to perform analyses for other purposes. The public-use data tapes are formatted for and have parameter statements for the commonly used statistical systems SAS and SPSS.

Despite the substantial effort devoted to making the public-use data tapes as easy to use as possible, it is impossible to make the use of a database as complex as NAEP's completely simple. A secondary user cannot use the database effectively without some knowledge of the NAEP design. For example, sampling by grade and age forces the user to consider which subsample is appropriate for a particular analysis. BIB spiralling results in a substantial amount of data which is missing by design (over 90 percent!); thus, the user must think carefully about missing data procedures. Although we have tried to make the public-use data tapes as easy to use as possible, their use will require some investment in understanding NAEP.

Two features of the tapes give the user additional analytic power. Most complex surveys require sampling weights to achieve proper population estimates, and the weights are supplied for use in analysis. This has been done for NAEP. However, with a complex sampling design, the weighted versions of standard formulas for independent and identically distributed variables are not appropriate for estimating sampling errors; while appropriate formulas can be developed, they are complex to apply. Some other method based on pseudoreplicates, such as the jackknife, is appropriate and simple in application. We have developed and applied one form of the jackknife method, which we have used in all NAEP analyses. It requires 38 sampling weights for each student in addition to the sampling weight usually
supplied. All of these weights are provided on the public-use data tapes in a way that makes possible the approximate estimation of sampling error using standard statistical systems as opposed to specialized software designed for survey data. Since this ability comes with the cost of more computing time, the secondary user may use this new ability or not, as he or she deems appropriate.

The other feature of the public-use data tapes is that they exceed the standard practice of providing only raw data by also providing derived variables for reading and writing. The complexity of the IRT scaling analysis prompted this inclusion. The underlying rationale follows.

The item-sampling designs that have characterized NAEP since its inception provided efficient estimates for average levels of performance in groups of students, but are too sparse to yield accurate estimates for individual students. Until 1984, NAEP reported only estimates of the proportions of students who could ansver individual items or sets of items correctly, avoided estimating student proficiency distributions, and did not make individual proficiency measures available to the secondary user. The lack of individual proficiency measurements encumbered analyses of the relationships between proficiency and student characteristics. Regrettably, it is common in educational surveys to carry out these latter analyses with poorly estimated scores for individuals, despite the demonstrable invalidity of their results (see Goldstein, 1980).

Recent developments in item response theory, in statistical estimation procedures, and in methodologies for handling missing data make it possible to estimate accurately student proficiency distributions and their relationships with background variables from complex, sparse sampling designs. The embodiment of these advances, the derived variables called "plausible values" for reading and writing, were constructed to yield consistent estimates of such population characteristics for the NAEP populations as a whole, and for the subpopulations defined by the traditional NAEP reporting categories. The intricacies and expense involved in obtaining optimal estimates from such a complex database for a specific analysis may prove prohibitive to most secondary analysts; thus, the plausible values mentioned above are provided for exploratory analyses. Part II of this report provides details on the construction and properties of plausible values and caveats on their use.

ORGANIZATION OF THE TECHNICAL REPORT

The organizational strategy for this report is to first provide overviews of the two components of NAEP described herein, design and analysis. These overviews direct the reader to chapters where details are provided. Each chapter begins with a summary, then presents a detailed exposition of its topic. In some cases, chapters refer to appendices or supplementary documents which contain even more detail. This strategy has

25
been adopted to aid the reader in reaching areas of special interest. The reader who wishes only a summary may read just the overviews (Chapters 1 and 7).

The chapters are separately authored and differ somewhat in style and point of view. In most cases, the person most responsible for the activity was assigned the writing zask. We hope that the chapters can be read independently, after the appropriate overviews are read. Although we have tried to cross-reference where necessary, the method of organization necessarily results in some redundancy from chapter to chapter.

PART I
$2 \because$

CHAPTER 1

Overview of Part I:
The Design and Implementation of 1986 NAEP

$$
20
$$

Chapter 1

OVERVIEW OF PART I: THE DESIGN AND IMPLEMENTATION OF 1986 NAEP

Albert E. Beaton
Educational Testing Service

This chapter provides a description of the 1986 NAEP design and an overview of the processes by which NAEP evolved from the planning stage into a database ready for analysis. The major components of the assessinent, with few details, are presented here with references to the appropriate chapters in Part I for more information. Although these chapters contain most of the important details about the design and implementation of the 1986 assessment, some of the chapters direct the reader to even greater detail to be found in appendices and supplementary documents. The report is organized to help an interested reader first to locate the areas of his or her znterest, then to study those areas in as much depth as necessary to understand the procedures and considerations involved in the collection of NAEP data. From this report, it is hoped that the reader will be provided with a comprehensive overview of the 1986 assessment and will be able to judge the quality, strengths, and weaknesses of the data.

This part of the technical report does not include a discussion of the procedures used in data analysis; these are summarized in Chapter 7 (the overview of Part II) and discussed in detail in Chapters 8 through 14. This report does not include the substantive results of the 1986 assessment, which are published separately in NAEP cross-sectional and trend reports on student achievement in individual subject areas.

The contents of this chapter are as follows:

- To provide background, section 1.1 presents the NAEP assessment schedule from the first year of data collection in 1969 to the 1986 assessment. The assessments in progress or planned through 1990 are also mentioned.
- An overview of the NAEP design for 1986 is presented in section 1.2. The general ETS approach to the design of NAEP is covertd extensively in A New Design for a New Era (Messick, Beaton, \& Lord, 1983) and Implementing the New Design: The NAEP 1983-84 Technical Report (Beaton, 1987a).
- The NAEP 1986 four-stage stratified random sampling procedure is described in section 1.3. Sampling is described more fully in Chapter 3.

2:

- $\quad \mathrm{T}$ e development of the objectives and items for different subject areas and the processes by which they were reviewed is summarized in section 1.4 with more detail provided in Chapter 2.
- The assignment of the NAEP cognitive and background and attitude questions to booklets is presented in section 1.5. Detailed information is presented in Chapter 4.
- The field administration procedures, including the training of the field administrators, attaining school cooperation, assessment administration, and quality control are summarized in section 1.6; more description is given in Chapter 5.
- The flow of data from their receipt at ETS through data entry, professional scoring, and entry into the database in final form, ready for analysis is summarized in section 1.7 and presented in detail in Chapter 6.

The data collected in the 1986 assessment have been prepared for public use in the form of a set of data tapes, documented in the National Assessment of Educational Progress 1985-86 Public-Use Data Tapes Version 2.0 Users' Guide (Rogers, Kline, Norris, Johnson, Mislevy, Zwick, Barone, \& Kaplan, 1988). These tapes contain the data available for the sampled students, their teachers, students excluded from the sample, principals, schools, and computer coordinators.

1.1 ASSESSMENT SCHEDULE

The coverage of assessments through 1986 is shown in Table 1.1. As this table illustrates, the subject areas assessed over the years have been many and varied, including not only reading, writing, mathematics, and science, but many other areas as we11--social studies, citizenship, literature, art, music, and career development. Many subject areas have been re-assessed periodically to determine trends in achievement over time. Note that, by decision of the Learning Area Committee for literature (see section 1.4), the 1986 literature assessment did not cover the same material as that of 1971; thus, there were no overlapping items and analyses of trends in literature could not be performed.

Assessments were conducted annually through 1980, but budget restrictions since then have reduced data collection to a biennial basis. Since its inception, NAEP has assessed 9-year-olds, 13-year-olds, and inschool 17-year-olds, although the definitions of 9 - and 13-year-olds changed in 1986 (see section 1.2). Budget restrictions have forced NAEP to eliminate the routine assessment of out-of-school 17 -year-olds and young adults. However, in 1985 a separately funded assessment of the literacy of young

53

Table 1.1
Subject Areas, Grades, and Ages Assessed: 1969-1986 GRADES/AGES ASSESSED
$\begin{array}{cccc}\text { Grade } & \text { Grade } \\ 3 & 4 & & \text { Age } \\ 9 & & & \end{array}$ SUBJECT AREA(S)

Science
Citizenship

ASSESSMENT
National Assessment of Educational Progress

[^0]Table 1.1
(continued)

adults was administered. The results have been published in Literacy: Profiles of America's Young Adults, Final Report (Kirsch \& Jungeblut, 1986) This survey also collected a small sample of out-of-school 17-year-olds.

Table 1.1 also indicates the initiation of data collection by grade as well as by age in 1984, a practice that was continued in the 1986 assessment.

Assessments through 1990 are either in progress or in the planning stage. The 1988 assessments of reading, writing, mathematics, science, civics, U.S. history, and geography are in progress. Current plans call for the assessment of reading, mathematics, and science in 1990.

1.2 THE 1986 NAEP DESIGN

The 1986 National Assessment was designed not only to assess student performance in 1986 but also to measure changes from past performance of students in American schools. Because new age definitions and tises of testing were introduced into the 1986 assessment, the design was adjusted to ensure the proper measurement of any changes from performance in earlier assessments conducted using the old definitions. This section describes that design.

The desiga of the 1986 national assessment included eight samples that differed in important ways. The samples can be classified into three different types:

- Main NAEP (spiral) samples. These are the largest samples and incorporate modifications from past assessments in population definition and assessment technology. These samples are not directly comparable with past NAEP data.
- Trend (Bridge A) samples. These samples employ the population defiritions and assessment technology of past assessments and thus are directly comparable with past NAEP data.
- Method (Bridge B) samples. These samples are from the same populations as the main NAEP samples but are measured in the same way as were past assessments. Their purpose is to measure the effect of the modifications that were implemented in the 1986 assessment.

The following sections describe the attributes of these samples. The design is summarized in Table 1.2.

$$
-23-3 .
$$

Table 1.2

	$\begin{gathered} \text { Fall } \\ 11 / 4 / 85-12 / 4 / 85 \end{gathered}$	$\begin{gathered} \text { Winter } \\ 1 / 6 / 86-1 / 31 / 86 \end{gathered}$	$\begin{gathered} \text { Spring } \\ 2 / 17 / 86-5 / 2 / 86 \\ \hline \end{gathered}$
Age 9		(9a) Bridge A: RMS $(6,932)$ [Mixed, CY, Age, MG=4]	(9) Main NAEP: $\operatorname{RMSC}(21,287)$ [Print, Not $C Y, A / G M G=3$] (9b) Bridge B: MS (4,042) [Tape, Not CY, Age, MG=3]
Age 13	(13a) Bridge A: RMS $(6,200)$ [Mixed, CY, Age, MG=8]		(13) Main NAEP: RMSC $(27,668)$ [Print, Not $\mathrm{CY}, \mathrm{A} / \mathrm{G} \mathrm{MG}=7$] (13b) Bridge B: MS $(4,178)$ [Tape, Not CY, Age, MG=7]
Age 17			(17) Main NAEP: RMSCHL (39, $\because 53$) [Print, Not CY, A/G, MG=11] (17b) Bridge B: MS $(3,868)$ [Tape, Not CY, Age, MG-11]

Legend
Print $=$ printed administration
Tape $=$ tape-recorded asministration
by tape recorder, but recding
administered by print
NAEP 1986 Student Samples

1.2.1 The NAEP Samples

The main NAEP samples, denoted (9), (13), and (17) in Table 1.2 incorporate all of the NAEP modifications introduced in 1986:

1) Students were defined as being age 9 , age 13 , or age 17 if they were born between October 1 and September 30 in the appropriate preceding years, that is,

Age 9: October 1, 1976 to September 30, 1977
Age 13: October 1, 1972 to September 30, 1973
Age 17: October 1, 1968 to September 30, 1979.
This definition of birthdates is of the same form as NAEP has used in past assessments for 17-year-olds but differs for 9- and 13-year-olds, who were previously defined on a calendar-year (January 1 to December 31) basis. This modification defines the three populations in an equivalent way; consequently, they may be considered as cohorts who were born four years apart.
2) Changes in age definitions for 9-year-olds and 13-year-olds also changed their corresponding modal grades (the grade attended by most of the students in that age group) Under the past NAEP definitions, at the time of assessment most of the 9 -year-olds had been in 4 th grade, most of the 13 -year-olds had been in 8 th grade, and most of the 17-year-olds had been in 11th grade. Under the new definitions, most of the 9 -year-olds were in 3 rd grade and most of the 13 -year-olds were in 7 th grade. Since the definition of the 17-year-old sample did not change, the modal grade for these students remained 11 th grade. This modification resulted in the grades sampled being four grades apart (grades 3, 7, and 11) rather than irregularly spaced (grades 4, 8, and 11) as in the past.
3) All populations were defined by both age and grade levels. That is, a student was eligible for assessment if he or she was either 9 -years-old or in the 3 rd grade, 13 -years-old or in the 7 th grade, or 17 -years-old ur in the 11th grade. Sampling by both grade and age, or "grade/age" sampling, was introduced in the 1984 assessment. The purpose of grade/age sampling was to permit data to be analyzed either by age, as in the past, or by grade, which is often preferred.
4) Students were all assessed near the end of the school year. We refer to this assessment period as the "spring" even though the assessment administration started on February 17 and continued until May 2, 1986. Assessing all ages at the same time of year allows a full four years of average academic growth between age populations.

$$
3=
$$

5) Studences were assessed in reading, mathematics, science, and computer competence. A subset of the grade $11 / a g e 17$ students was assessed in U.S. history and literature.
6) The main NAEP sample included a specially funded, separate probe of language minority students. Some language minority students were assigned a separately developed booklet with a section of NAEP reading items, a section of NAEP mathematics items, and a separate section that included items of special relevance to language minority students. This study is reported in The Educational Progress of Language Minority Children: Findings from the NAEP 1985-86 Special Study (Baratz-Snowden, Rock, Pollack, \& Wilder, 1988).
7) All samples were administered using BIB spiralling (see Messick, Beaton, \& Lord, 1983; Beaton, 1987a) and thus used printed instructions. The various subject areas were spiralled together so that of the three item blocks administered to each student a particular student might receive, for example, three reading blocks; some combiration of reading blocks and blocks from other subject areas; or no reading blocks and three blocks from other subject areas. BIB spiralling was introduced in the 1984 assessment of reading and writing and was used for assessments of mathematics and science for the first time in 1986.

1.2.2 Trend Samples

The several design changes introduced into the main NAEP sampies clearly make comparisons with past assessments difficult, and so several other samples were collected for use in trends. These samples were defined and administered in the same way as were past assessments. These samples are denoted (9a), (13a), and (17b) in Table 1.2.

The samples (9a) and (13a) contained 9-year-olds and 13-year-olds, respectively, who were sampled using the same calendar-year age definition used in past assessments. The ages were defined as follows as being born on or between the following dates:
Age 9: January 1, 1976 to December 30, 1977
Age 13: January 1, 1972 to December 30, 1973
Age 17: October 1, 1968 to September 30, 1969.

No attempt was made to augment the age 9 sample with other 4 th graders or the age 13 sample with other 8th graders since NAEP did not traditionally assess grades. These samples were assessed in reading, mathematics, and science since these were the only subject areas in which trend data were available for comparison. Reading was measured using printed administration, matching the procedures from the 1984 assessment, with which the data were to be compared. Mathematics and science were assessed using tape-recorded administration, matching the procedure used in the several previous assessments with which performance was to be compared.

The assessment of these samples was scheduled as in the past, with the 9 -year-old students assessed in the winter and the 13 -year-old students assessed in the fall of the school year. However, the age 9 sample was assessed only during January 1986, a somewhat earlier time span than for past assessments.

Since the definition of age and the time of assessment were not changed for the 17-year-olds, the major change in 1986 for this sample was the use of printed instructions instead of a paced aural presentation by tape recorder. For comparison with past data, a method sample, (17b) in Table 1.2, was appropriate. The sample differed from the main NAEP sample (17) in that the assessment was administered using a tape recorder and that only mathematics and science were assessed. A bridge sample for reading was not necessary for 17 -year-olds since the main NAEP sample for 1986 was similar in design to that for 1984.

1.2.3 Method Samples

The NAEP design also included several samples for measuring the effect of changing from administration by tape recorder to administration by print. These samples are denoted (9b), (13b), and (17b) in Table 1.2. These samples were selected from the same populations as the main NAEP samples; thus, their proficiencies in various subject areas can be expected to be the same as those of the main samples. In principle, since the only differences between these samples and the corresponding age subsamples of the main NAEP samples are due to changing from tape-recorded to printed administration and due to sampling error, comparing these samples can allow the estimation of the effects of changing methodology.

Ages were defined in the same way as for the main NAEP sample, that is, the students would be eligible for selection if born on or between the following dates:

> Age 9: October 1, 1976 to September 30,1977
> Age 13: October 1, 1972 to September 30, 1973
> Age 17: October 1, 1968 to September $30,1969$.

All three of the method samples were assessed only in mathematics and science, since these were the only areas that changed in method of administration since their last assessments. The samples were of age groups only, not grades, since past assessments used age-only sampling.

1.3 THE NAEP SAMPLING PLAN

The NAEP populations comprised students of various ages and grades in the 50 states and the District of Columbia. Both public and private school students were sampled. The precise subpopulations varied in different samples. In the main NAEP samples and the samples used to investigate the effect of changes in administrative procedures, $9-13$, or 17 -year-olds were
defined in such a way that the majority of them were in, respectively, 3rd, 7 th, and 11th grades (the modal grades). In trend samples, which defined age in the traditional NAEP manner, the majority of the 9 -year-olds were in the 4 th grade and the majority of the 13 -year-olds were in the 8 th grade.

The entire NAEP data collection effort involves a four-stage probability sample. The original sampling plan for NAEP was designed by the Research Triangle Institute but has been modified by Westat, Inc. The four stages are summarized briefly below and in somewhat more detail in Chapter 3. For a full description of the sampling plan, see National Assessment of Educational Progress--17th Year Sampling and Weighting Procedures. Final Report (Burke, Braden, Hansen, Lego, \& Pepping, 1987).

Stage 1: Primary sampling units. In the first stage of sampling, the United States was divided into geographical units comprising counties or groups of contiguous counties that met a minimum school enrollment size. These units, called primary sampling units (PUs), were classified into 12 strata, which were defined by region (Northeast, Southeast, Central, West), by 'ape of PSU (MSA [metropolitan statistical area], non-MSA) and by percent minority (less than 20 percent, 20 percent or more). Ninety-four PUs were selected from a total of 1,027 . Among the larger PUs, 34 were selected with certainty. Within each major stratum, further stratification was achieved by ordering the noncertainty PUs according to additional socioeconomic characielist'cs. Sixty other PUs were selected from the noncertainty PUs with piobaid city proportional to size.

Stage 2: Sampling schools. In the second stage of sampling, the frame cotiolsted of a file of schools obtained from Quality Education Data, Inc. The file included public, private, Catholic, Bureau of Indian Affairs, and D. partment of Defense schools, listed according to size and separately for the three grade/age groups, within each of the 94 PUs. High minority schools were assigned extra weight to increase the probability of selection and thereby increase minority sample sizes. Schools with fewer than 20 estimated grade/age eligibles were assigned lower weights because of the high costs of administration. The method of assigning weights to other schools is discussed in Chapter 3. Schools within each PSU were selected (systematically with random start and without replacement) with probability proportional to assigned size.

Stage 3: Assignment of sessions to schools, by type. In the third stage of sampling, assignment of sessions to schools was done separately by the three types of sessions, designated "spiral", "Bridge $A^{"}$, and "Bridge B," which represent separate samples of the population of students. Schools selected for Bridge A samples were excluded from the spiral and Bridge B samples because the Bridge A assessments took place during a different time of year. Except in the case of a smaller school, both spiral and Bridge B sessions were conducted in each Spring-selected school. Smaller schools were assigned randomly to either spiral or Bridge B assessment.

Stage 4: Sampling students. In the fourth stage of sampling, a consolidated list of all grade- and age-eligible students was established for
each selected school. A systematic selection of eligible students was made and, for schools in the spring assessment, students were assigned to spiral or Bridge B sessions, depending on whether the assessment was to be administered by pencil and paper (spiral) or by tape recorder (Bridge B).

Stage 4a: Sampling excluded students. Some selected students were deemed unassessable by school authorities because they had limited English language proficiency, were judged as being educable mentally retarded, or were functionally disabled. In these cases, an excluded student questionnaire was filled out by the school staff listing the reason for excluding the student and providing some background information.

Stage 4b: Sampling teachers. The teacher questionnaire was administered to the teachers of a subsample of the students sampled for spiral sessions. The purpose of this sample was to estimate the number (proportion) of students whose teachers had various attributes, not the percent of the teacher population who had various attributes. Therefore, statements such as " 20 percent of students have teachers who have..." are appropriate in discussing teacher questionnaire data, but statements such as " 20 percent of teachers have..." are not.

One subject area was designated for each spiral-allocated school. For grade 3 /age 9 , the subject area was always reading. For grade 7/age 13, the subject area could have been reading, mathematics, or science. For b de 11/age 17, the subject area could have been reading, mathematics, scien $2 e$, or U.S. history. Teachers of only one such subject area were sampled in a school.

For each spiral session in each school, a subsample of students was selected and the school coordinator was asked to ideritify, for each selected student, the teacher in the designated subject area who was teaching the student. (For reading, English or language arts teachers were selected.) These teachers were asked to complete the teacher questionnaire. Since a number of students may have had the same teacher, and some teachers did not complete the questionnaire, the number of students in the subsample for whom teacher information is available is not the same as the number of teachers who completed questionnaires in a given school.

Stage 4c: The principal, school, and computer questionnaires. A principal questionnaire, distributed to each sampled school by Westat prior to the assessment, was used by Westat to obtain both an up-to-date estimate of grade/age-eligible students and information on minority enrollment.

The school characteristics and policies questionnaire was distributed in every sampled school. The school characteristics and policies questionnaire was mailed to the school by Westat prior to the assessment, collected by the Westat supervisor, and returned to ETS.

In every school selected for the spiral sample, the school's computer coordinator, if there was one, was asked to fill out a computer coordinator questionnaire. This questionnaire was administered at all grade/age levels.

1.4 DEVELOPMENT OF NAEP ASSESSMENT ITEMS

The 1986 NAEP assessed the performance of students in reading, mathematics, science, and computer competence. NAEP also assessed U.S. history and literature at grade ll/age 17. In addition, a large number of background and attitude questions were asked of the students and information was collected from principals and teachers.

The development of items was supervised by Learning Area Committees, one of which was appointed by the Assessment Policy Committee for each curriculum area. Each Learning Area Committee developed a set of objectives for its area; these objectives represented a consensus of what students at each grade/age level should know and be able to do. Besides items developed to assess academic achievement (cognitive items), the Learning Area Committees also developed items to investigate student attitudes, experiences, and interests (noncognitive items). In addition, a commor core of items was developed to collect data about a student's personal and family background.

All items underwent extensive reviews by subject-matter and measurement specialists, as well as careful scrutiny to eliminate any potential bias or lack of sensitivity to particular groups. The items used in each assessment have been made available to anyone interested in studying or using them provided that they agree not to make the items public. The items have traditionally been kept secure for use in future assessments for the examination of trends over time.

All assessment areas except U.S. history and literature contained multiple-choice, short open-ended, and long open-ended items. The open-ended items were professionally scored. The professional scoring process is described in Chapter 6.2.

Details on item development are given in Chapter 2.

1.5 THE NAEP ASSESSMENT BOOKLETS

Booklets containing the items were assigned to the student samples that were selected. The BIB spiralling design of NAEP determined the way in which the assessment booklets were organized and constructed. The type of booklet assigned depended on whether the student was in the spiral or bridge samples. A detailed discussion of this topic can be found in Chapter 5.

1.5.1 Spiral Sample Booklets

The main NAEP sample was assessed using BIB spiralling (see Messick, Beaton, \& Lord, 1983; Beaton, 1987a).

The targeted sample size was for 2,000 students to respond to each item at each age or grade level in the spiral sample; this target implied a sample of 2,600 at each grade/age.

The BIB-spiral sample was created to meet the design goal of facilitating the estimation of intercorrelations or other statistics among the assessment items. Using a BIB-spiral design, a large number of booklets was created in such a way that each pair of items was administered tu a randomly equivalent subsample of students while maintaining the goal of 2,000 students for each item at both age and grade levels.

Briefly, BIB spiralling was implemented in 1986 as follows:
The items from the different subject areas (e.g., reading, mathematics) were sorted into units called blocks, which were designed to take sixteen minutes for the older students to complete. For the grade 3/age 9 students, the subject area items were expected to take thirtec. minutes. Altogether, there were 23 blocks of items used at grade 3/age 9, 30 blocks at grade 7/age 13 , and 42 blocks at grade ll/age lilevel. Some blocks were administered at more than one age and grade.

Thase blocks were then assembled into booklets. Each booklet contained a commor. block and three blocks containing subject area items. The common block cortained only background and attitude questions. In a completely balanced incomplete design, the subject area blocks would have been placed in booklets in such a way that each pair of blocks appeared together in one and only one booklet. However, as the number of blocks increases, the number of booklets required becomes large and thus the booklet design called for complete BIB spiralling within each subject area, which is easily manageable, and an incomplete block design between subject areas. (The history and literature books at grade 1l/age 17 were for a special probe and were spiralled, but not in such a way that each pair of blocks were assigned to some student.) For the main NAEP sample, 46 booklets were printed for the grade $3 / a g e 9$ sample, 62 for the grade $7 /$ age 13 sample, and 90 for the grade 11/age 17 sample.

The booklets for the main NAEP sample were then spiralled and placed into bundes. The spiralling involved interleaving the booklets in a random sequence so that each booklet would occur the appropriate number of times for each item to be administered to approximately 2,600 student in a grade/age sample. The bundle size was 29 booklets, which was intended to be large enough for most assessment sessions with a few books left over. The bundles were designed so that each booklet was at the top of a bundle, in each position in the middle of a bundle, and at the end of a bundle an equal number of times.

With BIB spiralling, the assessment booklets are assigned to students in the same order as the booklets are bundled so that different students in the same assessment session are asked to respond to different items. With spiralling, the instructions to the students and the items themselves must be read by the student from his or her booklet since administration using a tape recorder would be unmanageable with more than one type of booklet in an assessment session. One of the advantages of spiralling is an increase in sampling efficiency.

1.5.2 Bridge A and Bridge B Sample Booklets

The Bridge A and Bridge B booklets could not be BIB spiralled since they were intended for administration by tape recorder as in the past assessments, with the exception of the reading block in each Bridge A broklet. Several special booklets were created for these bridge samples.

Three booklets were printed for Bridge A at grade 3 /age 9 and three more for grade 7/age 13. There was no separate Bridge A sample at grade 11 /age 17. Each booklet contained one block of reading, one of mathematics, and one of science. A different reading, mathematics, and science block was used in each booklet, thus three blocks from each of these subject areas were administered. The order in which the subject area blocks were presented was changed in the three booklets. See Chapter 4 for details.

In each Bridge A session, all students were administered the same one of the three available booklets. The mathematics and science blocks were administered using a tape recorder, which gave instructions and presented the questions and optional answers aurally. The tape recorder was turned off when the reading block was presented because reading had been bridged in 1984.

Two booklets were printed for the Bridge B sample at each of the three grade/age levels. Only mathematics and science were assessed, since the effect of changing from a tape recorded to printed administration had already been examined for reading. Each booklet contained either two mathematics and one science block or one mathematics and two science blocks. Three mathematics and three science blocks were used altogether. In each Bridge B session, all students were administered the same one of the two appropriate booklets. Both booklets were administered using a tape recorder.

1.5.3 Other Assessment Instruments

The excluded student questionnaire was developed and used for the first time in the 1984 assessment. It was designed to gather more information about particular reasons for which a student was excluded and some basic characteristics of the student, such as race, age, etc.

The teacher questionnaire was also developed and used for the first time in 1984. It was designed to gather information about the attributes of the teachers of the students in the sample and to gather some information about the curricula and teaching methods in the classroom. The questionnaires for the teachers at all grade/age levels had different sections for reading, matnematics, and science curricula and teachers of grade $11 / a g e 17$ students had questions about U. S. history and litezature curricula.

The school characteristics and policies questionnaire was distributed to each participating school to be completed by either the school's principal or another person familiar with data concerning enrollment, facilities, curricula and staff development.

A questionnaire was also administered to each school's computer coordinator, if the school had se. This questionnaire included questions about subjects in which computer-aided instruction was used, computer courses and subjects taught, and computer resources.

More information about the items and instruments can be found in Chapter 4.

1.6 NAEP FIELD ADMINISTRATION

Wcstat was responsib.e for field administration. The process began with the development of necessary materials and a field organization. Materials were developed for training, contacting the schools, sampling, and process control. The field organization consisted of district supervisors and exercise administrators. Westat trained the district supervisors, who in turn trained the exercise administrators.

Gaining school cooperation was primarily the responsibility of Westat, with considerable support from NAEP staff. ETS first contacted the Chief State School Officers, informing them that schools within their states had been selected for NAEP. Later, mailings and materials were sent to the Chief State School Officers, school district superintendents, and private school officials. Meeting arrangements were then established by telephone and contact forms were filed with Westat. Westat district supervisors then scheduled and conducted introductory meetings.

Westat administered the assessment in the field primarily through the work of district supervisors. District supervisors had many responsibilities, including drawing the sample of students, completing assessment reporting forms, making final arrangements for the assessments, supervising exercise administrators, distributing and collecting other data forms and questionnaires, and editing, boxing and shipping assessment materials.

The spiral and Bridge B samples were assessed between February 17 and May 2, 1986 at all grade/age levels. The grade $3 /$ age 9 students in the Bridge B sample were assessed between January 6 and January 31, 1986. For Bridge A samples, the grade $7 /$ age 13 students were assessed between November 4 and December 4, 1985.

An assessment session was expected to last approximately one hour. At the older grade/age levels, the students were allowed six minutes for the common block of questions and 16 minutes for each block of subject matter items and background and attitude questions. The grade $3 /$ age 9 sample was read the common block questions aloud and given 15 minutes to complete that section. Then, they were given 13 minutes to respond to the items in each of the three subsequent blocks.

Both westat and ETS participated in the quality control and evaluation of the field administration. There were two specifically designed quality control and evaluation studies of the field effort. The first, and most
intensive, primarily focussed on quality control and involved on-site visits by Westat and ETS staff to verify the sampling and to observe the supervisors and exercise administrators as they conducted assessments. The second study, an evaluation, was a telephone survey of a lo-percent sample of schools. This survey took place after the field period had ended and all assessment activities had been completed in the schools.

Field administration is discussed in detail in Chapter 5.

1.7 DATABASE CONSTRUCTION

Westat shipped the assessment booklets from the field to ETS for entry into computer files, checking, and forming the database. Careful checking assured that all data from the field were received. The data then went through extensive processing, outlined in Chapters 6 and 6.1.

Since both machine readable (scannable) and nonscannable instruments were used, the "intelligent" data entry system developed for the 1984 assessment was used as well as standard document reading technology. These computer programs not only received the input data but also checked them for consistency among the many different booklets, blocks, and formats. The program assured that all entered values of each variable were within the range of possible values. The entry and editing of materials is ciscussed in Chapters 6.3 and 6.4.

Many items in each subject area (reading, mathematics, sci $\geq n c e$, and computer competence) required open-ended responses and had to tee professionally scored. Professional scoring is discussed in Chapter 6.2.

Extensive quality control checks, described in Chapter 6.5, were instituted to assure correspondence between what had been written in the booklet and what appeared in the database. A random sample of each assessment booklet and questionnaire was selected from the computer file and checked against the original document. The database was determined to be extraordinarily error-free.

The construction of the database and public-use data tapes are described in more detail in Chapters 6.6 and 6.7 .
a

CHAPTER 2

Developing the 1986 National Assessment Objectives, Items, and Background Questions

DEVELOPING THE 1986 NATIONAL ASSESSMENT OBJECTIVES, ITEMS,

 AND BACKGROUND QUESTIONSIna V. S. Mullis, Walter MacDonald, and Nancy A. Mead

Educational Testing Service

2.1 INTRODUCTION

The 1986 assessment was the most ambitious ever conducted by NAEP, including an extremely complex design, modifications in sampling and administration procedures, substantial numbers of cognitive items for six subject areas, and questionnaires for students, teachers, and school administrators. The development process began in the fall of 1983 when the Assessment Policy Committee determined the subjects to be assessed. In accordance with the newly granted ETS proposal for NAEP, the Assessment Policy Committee identified four curriculum areas to be assessed in 1986:

Reading. This area was highlighted in the ETS proposal for inclusion in each biennial NAEP assessment. Because reading is central to proficiency in other subject areas, levels of reading achievement are likely to serve as an overall barometer of educational progress in our country. Also, with the BIB-spiral design, assessment of one subject in common across various years can be used to link results from year to year, as well as to compare the achievement levels of sets of birth-year cohorts followed in the NAEP assessments.

Mathematics. The NAEP legislation in place through 1988 required that NAEP collect and report at least once every five years data assessing the performance of students at various age or grade levels in each of the areas of reading, writing, and mathematics. This requirement was satisfied for reading and writing in the 1984 assessment; however, because mi.thematics had not been assessed since 1981-82, it had to be assessed in 1986. Additionally, the decision to assess mathematics made excellent sense because it is an important subject area and, especially considering the timing of previous mathematics assessments, a 1986 assessment would provide valuable information about the performance of birth-year cohorts of students.

Science. Science is another important curriculum area that is currently of much interest and concern to the economic well-being of our country. Although a special science assessment using NAEP materials and data collection procedures had been funded by the National Science Foundation in 1981-82, this subject had not been assessed by NAEP per se since 1976-77.

Computer Competence. It was noted that the BIB-spiral design used in 1986 was especially well suited to supporting thematic assessments, and that with a computer component, the 1986 assessment would provide a great deal of information about students' understanding of technology. Thus, in keeping with the desire to provide baseline information about achievement in this new and burgeoning school subject and to develop an assessment with a unified theme, the Assessment Policy Commitiee selected assessment of computer competence as the fourth subject area.

In concluding their deliberations about the focus of the 1986 assessment, the Assessment Policy Committee also directed staff to concentrate on the development of materials measuring higher-order thinking skills.

2.2 ASSESSMENT POLICY COMMITTEE APPROVAL OF ASSESSMENT DEVELOPMENT PROCEDURES

In addition to selecting the subject areas to be assessed in 1986 and directing the staff to focus on higher-order thinking skills, the Assessment Policy Committee asked staff to document the procedures that would be used in developing the 1986 assessment materials and to present these to the committee for their approval. This occurred at the February 24-25, 1984 meeting of the Assessment Policy Committee, and the procedures follow, as approved.

2.3 SETTING OBJECTIVES

The procedures followed for determining the objectives to be measured in each curriculum area in 1986 were essentially those followed by NAEP in the past:

1) The objectives used in the previous assessment were mailed to about 25 specialists for their review, comments; and suggestions. No constraints were placed on this activity and we asked for candid, critical reactions. The individuals involved in this process tended to be educators and specialists in the field and were selected to represent differing points of view, geographical locations, backgrounds, and constituencies. We sought advice from a wide range of sources for recommendations for this activity.
2) Learning Area Committees were established to help guide assessment development procedures within subject areas. As with reviewers, the members of each committee were selected witn great care to represent differing perspectives and backgrounds. These 21 committee members
(5-6 per subject area) worked closely with NAEP staff in developing the 1986 assessment.
3) Comments from the initial objectives review were synthesized and used as input for the first Learning Area Committee meeting, a combined meeting of all four committees held January 27-29, 1984 (see section 2.6).
4) The first assignment of the respective Learning Area Committees was to review and revise the broad educational objectives for each subject area based on their personal feelings and the comments of the previous reviewers.
5) The new edition of the objectives was, in turn, mailed to practitioners from around the country. These individuals are school administrators and teachers, as well as teacher trainers who live and work in the practical educational environments. Their task was to review these objectives from the pcint of view of what seems reasonable and practical. Depending upon the results of that review, the objective were redrafted with the participation of the Lear ing Area Committee members and others, as necessary.
6) The revised objectives were mailed to a number of members of the lay public for their reactions and opinions. As with earlier steps in the objectives development process, care was taken to be certain that appropriate minority group representatives were included to assure proper attention to these sensitivities.
7) Further modifications of the objectives were made as necessary.
8) The Learning Area Committees completed the final review of the product.
9) The objectives were published, printed, and made available for national distribution.

While the process described above may seem tedious and detailed, it seems an appropriate series of steps to ensure interested parties the opportunity to participate in the objectives development process and to express opinions. (The 400 consultants involved in developing the 1986 objectives are listed at the end of this chapter.)
5.

2.4 PROCEDURES FOR DEVELOPING THE ITEMS

A carefully developed and tested series of steps, essentially those followed in the past by NAEP, were used to create test items that reflect the objectives and that measure achievements related to them:

1) Each Learning Area Committee and the staff of NAEP determined what specific aspects of the objectives could be measured. Each respective committee made recommendations about priorities for the assessment and types of items to be developed. A group discussion regarding measuring higher-order reasoning skills across subject areas was also conducted.
2) The staff then drafted a development and analysis plan delineating the steps to take to create items that would produce or generate the data essential to answer questions the assessment was designed to address.
3) The plan was reviewed by the staff, the Learning Area Committees, and other outside reviewers to provide an opportunity to critique and to assure that no important points were missed.
4) The existing pool of items to be used to measure change from previous assessments (trend items) was reviewed in detail.
5) Item specifications were then developed and prototype items were created to reflect the type of questions that had been suggested. Trend items were selected.
6) Item writers with skills and experience in creating items according to specifications were identified both from inside and beyond ETS and scheduled for item development tasks.
7) Newly created items were reviewed and revised by staff and external reviewers.
8) Further language editing and sensitivity reviews were conducted according to ETS quality control procedures.
9) Field test materials were prepared, including the materials necessary to secure clearance by the Office of Management and Budget (OMB).
10) The field test was conducted with a representative group of students.
11) Field test booklets were scored and the results analyzed.
12) Based on these analyses and the results of the pilot testing, items were revised or modified and re-edited. They once again went througii an ETS sensitivity review.
13) With the help of staff and outside reviewers, the Learning Area Committee selected the items to include in the assessment.
14) Items were assembled into "blocks" (14-minute minitests) according to statistical guidelines established at the beginning of the process.
15) After a final review and check to assure that each assessment booklet and each block therein met the overall guidelines for the assessment, the booklets were typeset and printed.

2. 5 THE FOUNDATIONS OF LITERACY PROJECT

The assessments of basic knowledge in U.S. history and literature were conducted by the Educational Excellence Network in conjunction with NAEP, with support from the National Endowment for the Humanities. Because students cannot build the conceptual understandings necessary for reasoned thought and communication without knowing basic facts within these curriculum areas, the Educational Excellence Network obtained funding from the National Endowment for the Humanities to collect baseline data for educators, policymakers, curriculum builders, scholars, and parents to appraise the extent to which the next generation of Americans possessed the rudimentary knowledge that forms the foundations of literacy.

Although pleased to receive secondary funding to conduct additional assessments, the Assessment Policy Committee (APC) gave serious consideration to the advantages and disadvantages of using NAEP as the vehicle for such a knowledge probe. Previous NAEP assessments of social studies, literature, and reading had included knowledge questions, but this was the first time that assessments would focus exclusively on students' basic knowledge of American history and their familiarity with the major authors, themes, and characters of Western literature. However, the APC acknowledged a growing national concern that a number of young Americans lacked rudimentary knowledge of U.S. history and literature and that systematic information about the acquisition of this knowledge would be quite beneficial. Therefore, they approved NAEP involvement in the Foundations of Literacy project, provided that the assessments be developed and reported using the in-place procedures already approved by the committee and outlined above. Thus, NAEP also developed materials to conduct special probes assessing the basic knowledge of students in U.S. history and literature. Administered in the spring of 1986, these assessments were given only to nationally representative probability samples of 17 -year-olds and 11 th-grade students, rather than to all three grade/age levels included for the other four subject areas.

2.6 the initial meeting of the learning area committees

Although detailed previously, it should be noted that the 1986 NAEP development process was governed by several major considerations:

1) As outlined in the ETS proposal for the administration of the NAEP grant, the development of objectives and items for each curriculum area would be guided by a Learning Area Committee.
2) As specified in the legislation, the objectives would be developed through a consensus process involving subject matter experts, school administrators, teachers, and parents, and the items would be carefully reviewed for potential bias.
3) The ETS Standards for Quality and Fairness (ETS, 1983) describe particular procedures and reviews for all materials developed at ETS.
4) All NAEP items must be submitted to a complex OMB clearance process and all publications, including objectives booklets, submitted for OERI review.

Because of NAEP's goal to unify the four subject area assessments designated by the Assessment Policy Committee through the themes of technology and higher-order thinking skills, the development of the assessment frameworks for all four areas-reading, mathematics, science, and computer competence--was initiated at a combined meeting of the four Learning Area Committees. Held in January of 1984, this combined meeting gave NAEP staff the opportunity to welcome these important committees, explain their general task, present some thoughts about threads of higher-order thinking that could run across assessments, and describe the 1986 design. After the plenary sessions, each committee retired to develop the general framework for the assessment in their subject area. The meeting concluded with a final general session where each group presented its framework and answered questions.

2.7 DEVELOPING THE READING ASSESSMENT

2.7.1 Objectives

The objectives for the 1986 reading assessment (see NAEP, 1987a) were formulated to reflect an interactive view of reading encompassing the type of material being read, the reader's purpose, and the background knowledge that the reader brings to the reading experience. The objectives as such were not limited to particular grade/age levels, since all readers past the earliest period of learning to read engage in all of the activities included.

Four objectives were drafted by the committee, with these and their descriptions review 1 by outside constituencies and revised as necessary. The members of the Learning Area Committee remained involved throughout the review and revision process. While objectives defined from such a consensual process cannot specifically advance either a single theoretical framework or the views of any one individual, they do represent the thinking of a broad cross-section of individuals who are deeply concerned with reading in our schools.

NAEP's 1984 reading objectives reflected the view that the processes of comprehension and the extension of comprehension through interpretation and analysis have a place in reading all kinds of text. Building on this view, the first objective underlying the 1986 assessment was Comprehends What is Read. This objective included comprehension of a wide variety of materials as well as materials read for particular purposes. The second objective, Extends Comprehension, included deliberate kinds of analysis, interpretation, and evaluation that a student might use when participating in a class discussion or that a reader might develop for a talk or paper. The third objective, Manages the Reading Experience, addressed the ability of readers to adopt different strategies depending on the characteristics of different passages, the reader's knowledge and experience with particular kinds of materials, and the reader's purpose for reading. The fourth objective, Values Reading, addressed how readers acquire a growing appreciation of the ways reading can affect their lives.

2.7.2 Reading Materials

The Learning Area Committee suggested that a variety of materials were appropriate for use in the assessment and that they be "authentic", i.e., reflect the realities of reading passages, charts, and instructions found in texts, newspapers, and source documents. To this end, the committee suggested that material appearing in the reading assessment be drawn from many sources, including stories, science and social studies textbooks, directions.

2.7.3 Item Development

The reading stems newly developed for the 1986 assessment were designed by ETS staff and by outside writers trained at a two-day workshop in Princeton. The new items were reviewed by subject-matter specialists and editors at ETS and then submitted to the Learning Area Committee, which conducted a final review and selected materials for field testing. These materials were prepared by staff and submitted to OMB clearance prior to field testing. After field testing (described in section 2.13), the Learning Area Committee met for a third time to review the results and express their preference concerning the use of both trend and newly developed items in the 1986 assessment.

Because reading is not generally taught, per se, after the elementary grade levels, the decision was made to administer the same assessment at grade 7 /age 13 and grade $11 / a g e 17$ to monitor developmental progress. (However, subsequent analyses indicate that this puts an undue ceiling on the proficiency levels of one group or the other; in 1986, a more challenging assessment at grade $11 / a g e 17$ would have been preferable.) The items selected by the Learning Area Committee for inclusion in the 1986 assessment underwent final review by subject-matter specialists, measurement experts, and editors, as well as a review to detect any bias according to the ETS Standards for Cuality and Fairness (ETS, 1983).

2.7.4 Reading Background and Attitude Questions

In developing the student background and attitude questions particular to reading, the Learning Area Committee was very interested in addressing not only reading instructional techniques but also some aspects of the reading objectives, including the strategies that students used when reading and the types of reading they were likely to engage in both during and outside of school. They also expressed the view that purpose is an important component of reading, but might be difficult to tap in an assessment situation. Along with selecting the cognitive materials for field testing, discussing background and attitude questions was given high priority at the second meeting of the reading Learning Area Committee in June of 1984. The background and attitude items were field tested with the cognitive items and submitted to a paral" $\imath 1$ review process. Both cognitive and noncognitive items were prepared as part of the clearance package submitted to the government for review and $O M B$ clearance for the 1986 assessment.

2.8 DEVELOPING THE MATHEMATICS ASSESSMENT

2.8.1 Objectives

In keeping with NAEP procedures, the objectives for the 1986 mathematics assessment (NAEP, 1986a) were derived through a process of review and revision. First, 25 mathematics educators and classroom teachers reviewed the objectives used for the previous assessment in 1981-82. Their responses were collated by staff and given to the Learning Area Committee at its first meeting for use in updating the objectives for the 1986 assessment. The subsequent draft prepared by the committee was reviewed by another panel of 25 reviewers, which submitted additional comments and suggestions. These responses, collated by staff members, were used by the mathematics Learning Area Committee to prepare the final set of mathematics objectives.

The final description of what was to be assessed in 1986 was organized according to a matrix of five broad process areas by seven content areas. Although all objectives were intended to involve elements of problem solving, the five process areas included: problem solvingireasoning, routine application, understanding/comprehension, skill, and knowledge. The content categories, drawn primarily from elementary and secondary school mathematics up to but not including calculus, included the following: fundamental
methods of mathematics; discrete mathematics; data organization and interpretation; measurement; geometry; relations, functions, and algebraic expressions; and numbers and operations.

2.8.2 Item Development

Mathematics items were newly developed for the 1986 assessment by external item writers, staff, and the Learning Area Committee according to detailed specifications set forth in the process by content matrix. Because of the increasing availability and popularity of calculators, NAEP has gathered information about their use by students beginning with the 1977-78 assessment and this practice continued in 1986. A minimal amount of instruction on the use of the calculator is given prior to such items. Also, the items are repeated without the use of calculators in other parts of the assessment to permit comparisons of performance with and without the calculator.

The process and schedule for developing the mathematics items were very similar to those used for reading. At the January 1984 meeting, the Learning Area Committee issued guidelines for designing items, which were carried out by staff and external item writers. The newly developed materials were then subjected to the stringent and multiphased ETS internal review process; the results were reviewed by the connittee at its second meeting in the summer of 1984. The committee made revisions and wrote new items, which were subsequently reviewed and prepared for OMB clearance prior to field testing. After field testing, the results were reviewed and the Learning Area Committee recommended trend and newly develop d items to be included in the 1986 assessment. These materials were again subjected to the ETS and NAEP review process and eventually submitted for OERI review and OMB clearance prior to being included in the 1986 assessment.

2.8.3 Background and Attitude Questions

In developing materials for the student questions specific to its curriculum area, the Learning Area Committee considered a number of important contexts for learning mathematics. Five categories of attitudinal and background measures were developed: mathematics in school, mathematics and oneself, mathematics and society, mathematics as a discipline, and attitudes toward computers. Additional questions ware included to gather information on each student's experience with calculators. These questions covered how often the student had used a calculator, whether the student's family owned one, in what courses the student had used a calculator, and what experiences with calculators the student had had outside of school.

2.9 DEVELOPING THE SCIENSE ASSESCMENT

2.9.1 Objectives

The framework for the 1986 science assessment was developed as a threedimensional matrix--content by context by cognition. The content dimension
included the traditional disciplines of science (life sciences, physics, chemistry, and earth and space sciences) as well as the nature/processes of science and its history. The context dimension defined four types of situations for presenting assessment items: scientific, personal, societal, and technological. The cognitive dimension identified three generic categories required to deal with science at different levels of complexity: knows, uses, and integrates.

The process for developing the science objectives followed the established NAEP pattern. Before the first meeting of the Learning Area Committee, the framework used for the $1976-77$ assessment was reviewed by 25 science educators, including teachers, administrators, and scientists. At its January 1984 meeting, the committee discussed these reviews, developed the three-dimensional matrix, identified the major categories within each dimension for assessment, and established categories for student selfreporting of attitude and background information.

The first draft of the objectives was reviewed by 15 practitioners, revised, and reviewed again by about 25 individuals representing a combination of science educators and interested public parties. These reviews were collated for the Learning Area Committee and used to create the final draft of the objectives booklet (see NAEP, 1986b).

2.9.2 Item Development

More than 400 new science items were written by about 35 external item writers according to specifications prepared by NAEP staff. At its second meeting in June 1984, the Learning Area Committee reviewed all items, designating each as acceptable, acceptable with revision, or rejected, and checked the classification of each item according to the matrix. The remainder of the process used to develop items for the 1986 science assessment followed that described earlier for reading and mathematics, consisting of reviews for content, measuremrnt, and sensitivity issues; OMB clearance for field testing; field testing, and analysis of those results; a third Learning Area Committee meeting for Einal selection of trend and newly developed items; ETS and NAEP reviews of final materials; and preparation of materials for $O M B$ clearance prior to their inclusion in the 1986 assessment.

2.9.3 Background and Attitude Questions

In addition to drafting the three-dimensional matrix underlying item development for the 1986 science assessment, the Learning Area Committee spent considerable effort formulating areas that should be covered in coilecting information descriptive of students' attitudes, values, and experiences in the area of science. Seven categories of questions for selfreporting by students were defined: attitudes toward science classes, career and education intentions, socioscientific responsibility, science as a personal tool, value of science, societal issues, and experiences in science.

2.9.4 Developing the "Hands-on" Pilot in Mathematics and Science

In conjunction with the discussion on developing materials for the 1986 mathematics and science assessments, it is important to reference NAEP's pilot project to assess higher-order thinking skills in science and mathematics. Well documented in Learning by Doing: A Manual for Teaching and Assessing Higher-Order Thinking in Science and Mathematics (NAEP, 1987b), as well as in the final project report entitled A Pilot Study of Higher-Order Thinking Skills Assessment Techniques in Science and Mathematics (NAEP, 1987c), the purpose of this project was to enhance the development efforts of the mathematics and science assessments. As stressed in the introduction to this section on developing the 1986 assessment materials, the Assessment Policy Committee was very eager, as was the NAEP staff, to measure higherorder thinking skills. However, all of the Learning Area Committees felt the frustration of trying to do so within the constraints of self-administered paper-and-pencil tests.

Thus, the staff solicited and obtained additional funding from the National Science Foundation to prepare and conduct a pilot of assessment administrations involving "hands-on" and computer-administered tasks in science and mathematics. A very exciting and well-received project, this work will be continued in the 1990 science and mathematics assessments.

2.10 DEVELOPING THE COMPUTER COMPETENGE ASSESSMENT

2.10.1 Objectives

Developing the framework for the 1986 computer competence assessment presented a particular challenge to NAEP and the Learning Area Committee. Becanse this was the first NAEP assessment in this subject area, the committee had to develop the objectives from "scratch." This in and of itself made the task difficult; however, the problem was exacerbated by the nature of instruction and learning in this subject area. Because of the mixture of learning about computers that occurs in and out of school, students at any given grade level can have a wide range of different experiences, and students at higher grade levels do not necessarily have more competence than students at lower grade levels. Finally, the nature of the underlying technology makes the entire field "a moving target."

Due to these anticipated difficulties, the computer competence Learning Area Committee was composed of eight members as compared to five for the other subject areas. In addition, the committee had many more meetings.eight in all--to accomplish its complex tasks of monitoring development of the objectives booklet (NAEP, 1986c) and designing as well as reviewing items. As NAEP procedures dictate, the objectives booklet was also subjected to a wide-ranging review by computer specialists, educators, school administrators, legislators, members of the business community, and parents.

The final objectives were arranged in a framework that included content and cognitive subdivisions. The content domain included computer knowledge (e.g., the history of computing and uses for computer technology), computer
applications (e.g., familiarity with the operation and design of applications including word processing, databases, graphics, spreadsheet, and lab instrumentation), and computer science/programming (e.g., knowledge of programming language elements and structure as well as the ability to plan and design programs). The cognitive domain included knowledge, applications, and programming categories, and certain cognitive skills associated with operation, knowledge, and design.

2.10.2 Item Development

For the computer competence assessment, item development was a particularly challenging and frustrating experience. The issue of "the moving target" described above was everpresent. No sooner were prototype items developed than advances in technology made them obsolete. However, to be clear about the items forming the basis of the assessment, the Learning Area Committee included examples in the objectives booklet. A second and primary concern of the committee centered on the limitations imposed by trying to assess students' actual ability using a computer with only paper-and-pencil measures. As with the science and mathematics assessments, additional funds for a "hands-on" assessment were sought from the National Science Foundation. However, in this case--and in retrospect, probably appropriately so--a pilot assessment of this nature was deemed to be premature.

Eventually, with concerted effort by staff, the Learning Area Committee, and external item writers, items were developed for all aspects of the computer competence objectives. After lengthy debate, the programming items developed for grade 3/age 9 and grade 7/age 13 used BASIC and LOGO programming languages, whereas those developed for grade 11/age 17 used BASIC and Pascal programming languages.

2.10.3 Background and Attitude Questions

The student background questions developed for the computer competence assessment focused on two very important issues--attitudes toward computers and access to learning about and using computers. The attitude questions included those ol students' confidence in their computing ability; their feelings on the value of knowing about computers later on in school or the workplace; their desire for more challenging computer experiences; and their attitudes toward copyright restrictions, software piracy, and computer ethics. Access questions included those on the availability of computers at home and at school; the various opportunities students may have had to learn about computers; the computer courses taken by students; the programming languages students know; and other general computer-related information.

2.11 DEVELOPING THE U.S. HISTORY AND LITERATURE ASSESSMENTS

2.11.1 Objecrives

The NAEP consultants, reviewers, and staff involved with the Foundations of Literacy project (see NAEP, 1986d) agreed that a full assessment of U.S. history not only would include recognition of the facts of our history--the documents, events, and personages that have molded the nation--but also would explore the extent to which students can and do use their knowledge to formulate ideas and concepts, to recognize patterns, and to establish for themselves a connectedness of things. However, having knowledge about the variety of topics that form the basis of dialogue and information-sharing is central to literacy, and the U.S. history Learning Area Co mittee began the process of describing some fundamentals. Although care was taken to address topics relevant to political history, women's history, Black history, labor history, technology, geographies, immigration, and foreign policy, the assessment topics were arranged chronologically for the convenience of ordering the material. Seven relatively arbitrary periods of history were outlined: Exploration and Colonization: Up to 1763 ; the Revolutionary War and the New Republic: 1763-1815; Nationhood, Sectionalism, and the Civil War: 1815-1877; Territorial Expansion, the Rise of Modern America, and World War I: 1877-1920; the Great Depression, the New Deal, and World War II: 1920-1945; and Post-World War II: 1945 to Present.

In outlining the topics for the literature assessment, the Learning Area Committee felt that students should be familiar with characters who have become symbols of our humanity; with authors and works that are representative of major genres, themes, and movements; and with familiar quotations from poems, plays, speeches, and documents. These characters, authors, works, themes, and quotations were drawn from a wide variety of literature, including classical as well as modern works, world literature in addition to American and English literature, and children's classics. The genres included: novels, short stories, and plays; myths, epics, and biblical stories; poetry; and nonfiction.

Developing the materials for the Foundations of Literacy project started nearly one year later than the efforts for the other four subject areas comprising the 1986 assessment. However, given that the assessment topics were confined to the knowledge area by the nature of the grant and the assessments were only given to one grade/age level (17-year-olds and 11th graders), it was not infeasible to work within such a compressed schedule.

2.11.2 Item Develon ant

A 10 -member Learning Area Committee was selected by NAEP staff and by the Foundations of Literacy project directors from the Education Excellence Network, Chester Finn and Diane Ravitch. Comprising five specialists in U.S. history and five in literature, the committee met three times during the period from November 1984 through June 1985. Although items were written by NAEP and ETS staff, the committee reviewed all items carefully and wrote many new ones. They reviewed the items and prepared them for field testing at
their second meeting, and reviewed the results of the field test at their third meeting.

2.11.3 Background and Attitude Questions

The U.S. history and literature Learning Area Committees were primarily concerned with gathering information about students' instructional experiences. In addition, for U.S. history, there was particular concern that high-school history courses are generally taught chronologically and that students rarely study the 20 th century. Thus, questions were designed to see if students had studied the time periods assessed. For literature, there was particular concern that students are not assigned much reading in school and that what literature is assigned is quite diverse in scope. Thus, in designing the background questions for 1 iterature, a particular attempt was made to collect information about students' experience with basic literary works and their reading habits.

2.12 DEVELOPING THE COMMON CORE STUDENT QUESTIONS AND QUESTIONNAIRES

Five additional instruments were developed for the 1986 assessment: a common core of student background questions, a teacher questionnaire, a computer coordinator questionnaire, a school characteristics and policies questionnaire, and an excluded student questionnaire.

The student, teacher, and school instruments were designed to collect information about home, classroom, and school factors related to eight policy issues that were the focus of the 1986 assessment: teacher quality; principal as instructional leader; school standards and policies; school environment conducive for education; meeting special needs; effective classroom practices; student's school experiences and attitudes; and home environment supportive of education.

The development of policy issues and items was an iterative process that involved staff work, field testing, periodic review by an external advisory group, and review by the Assessment Policy Committee. An initial, longer list of policy issues was developed by NAEP staff based on a review of current policy research and related literature. Of particular interest were the school effectiveness research, the push for raising educational standards, and parents' involvement in their children's education. Items were developed to assess the policy issues and field tested with students, teachers, and principals. The policy issues, items, and field test results were reviewed by a group of policy researchers, which recommended a consolidated list of policy issues and identified specific items to be included in the final questionnaires. The field test results and the recommendations of the consultants were also reviewed by the Assessment Policy Committee. The items were then assembled into questionnaires and submitted to internal ETS procedures to ensure fairness and quality.

Every student booklet began with a common core of background questions. In many cases the questions used in 1986 were taken from prior assessments.

Some of the newly developed questions focused on mathematics, science, and computer instruction and others on parental involvement in the child's education. Although many of the questions were common to the three grade/age levels assessed, some were specifically targeted to elementary or high-school students. At grade 3/age 9, the background questions were read aloud to the students and took approximately 15 minutes to complete. At the other two grade/age levels, students read and answered the questions on tirir own during a six-minute time period. At these grade/age levels, the questions asked about demographics, home environment, and instruction experiences.

The teacher questionnaire was given to a sample of the students, teachers, and took approximately 20 minutes to complete. The major part of the questionnaire included general questions about demographics, training, experience and classroom management strategies, while the remaining part included questions specific to reading/language arts and English, mathematics, science, and, at grade $11 /$ age 17 , U.S. history. At grade $3 /$ age 9, the questionnaire was given to a sample of the students' reading/language arts teachers. However, it was assumed that in most cases these teachers also taught other subject areas, so the questionnaire included general questions plus questions about reading, mathematics and science instruction. At the other grade/age levels, participating schools were randomly designated as reading, mathematics, science, or (at grade $11 /$ age 17 only) U.S. history schools, and questionnaires were given to a sample of the students' teachers in that subject area. The questionnaire included a general section and several subject-specific sections, and teachers were directed to fill out the appropriate sections.

The computer coordinator questionnaire was administered to the person in each participating school who coordinated computer instruction in the school. The questionnaire include questions about the coordinator's background, training, and experience and about the types of computer instruction that were present in the school. If a school did not have anyone who acted in this role, the questionnaire was not administered.

The school characteristics and policies ouestionnaire was given to the principal in each participating school, and took about 15 minutes to complete. The questions asked about the principal's background and experience and about school policies, programs, facilities, as well as the composition and background of the student body.

The excluded student questionnaire was given to the teachers of students who were identified in the NAED sample but were excluded froni the assessment for sonie reason, usually because the student was handicapped or had limited English proficiency. This questionnaire took approximately three minutes per student to complete and asked about the nature of the student's exclusion and special programs in which the student participated.

2.13 FIELD TESTS FOR THE 1986 ASSESSMENT

In February 1985, field testing commenced for the 1986 assessments of reading, mathematics, science, computer competence, U.S. history, and
literature, and for the teacher and school administrator questionnaires described previously.

The first part of the field test covered reading, misthematics, science, and computer competence. A total of nine booklets was developed for grade 3/age 9, each containing three blocks of items. In all, five reading blocks, eight mathematics blocks, eight science blocks, and six computer competence blocks were field tested for this grade/age. The analysis of results from the grade 3 /age 9 field test revealed that some of the item formats were problematic for these students; therefore, a second field test was later conducted at this grade/age level to evaluate revised item formats.

For grade 7 /age 13 , 12 booklets were developed for the field test, containing three blocks each. A total of five reading blocks, nine mathematics blocks, 10 science blocks, and 12 computer competence blocks was field tested for this grade/age. Thirteen booklets, each containing three blocks, were created for the grade $11 / a g e 17$ field test; these booklets contained a total of five reading blocks, 10 mathematics blocks, 12 science blocks, and 12 computer competence blocks.

Each block of mathematics, science, reading, and computer competence items contained two minutes of subject-specific background/attitude items and 14 minutes of cognitive items, as well as two minutes of general background items. Thus, each booklet contained a total of approximately 48 minutes of assessment material.

The second part of the field test covered U.S. history and literature items for grade 11 /age 17 only. Three booklets were created for each of these subjects, each containing three blocks. Each booklet contained approximately six minutes of background items and 48 minutes of cognitive items.

From February through May 1985, trained NAEP and ETS staff conducted field tests for the reading, mathematics, science, computer competence, U.S. history, and literature items in 285 classrooms, representing an estimated 7,550 students from 61 school districts. In addition, 94 school officials and 272 classroom teachers were asked to complete the school and teacher questionnaires. The set of schools represents a purposive national sample, consisting of medium-sized cities, small places, and disadvantaged urban areas of large cities in the country's four geographical regions. Field test sites were selected and solicited for participation by NAEP staff. Within each selected site, school personnel identified the $3 \mathrm{rd}-, 7$ th-, and llthgrade students to be surveyed.

The field test data were scored and analyzed from March to May 1985. Using interleaved item analysis, which provides the mean percentage of correct responses for each item in the field test, NAEP staff and consultents reviewed the materials according to five purposes: to determine which items were most related to achievement in the four subject areas; to evaluate the effectiveness of items designed specifically to assess higher-order thinking skills; to determine necessary revisions to items that lacked clarity, or to
ineffective item formats; to prioritize items to be included in the full assessment; and to determine appropriate timing for assessment items.

Reviews of field test items were conducted by NAEP and ETS staff, the Learning Area Committee, and external consultants; through this process, items were selected for the 1986 assessment. A final clearance package containing these items was submitted to OMB in July 1985.

2.14 FINAL PREPARATION OF tHE 1986 ASSESSMENT MATERIALS

2.14.1 Objectives Booklets

After consensus review and approval by each Learning Area Committee, the objective booklets were sent to OERI for the internal government and peer review process. Subsequent to that 30 -day review and incorporation of suggested revisions, the booklets were submitted to ETS internal editing and finally to the composition and printing process. The four objectives booklets (reading, mathematics, science, and computer competence) as well as the description booklet for the Foundations of Literacy project--the U.S. history and literature assessments--were published and released in 1986.

2.14.2 Student Assessment Booklets and Questionnaires

The items earmarked by each Learning Area Committee and submitted to OMB clearance for inclusion in the 1986 assessment were assembled into blocks in accordance with the assessment design. These blocks were assembled to meet committee content, context, and cognition specifications and to conform to the assessment time and administration restrictions. Approximately two minutes of subject-matter relevant background questions appeared at the start of most blocks, followed by the cognitive items. Specifically, for reading, six item blocks were prepared for assessment at each grade/age level; for mathematics and science, seven item blocks were prepared for grade 3 /age 9 , nine for grade 7/age 13, and 11 for grade 11/age 17; and for computer competence, three item blocks were prepared at grade $3 /$ age 9 and six item blocks were prepared for each of the two older grade/age levels. Similarly, the questions for school administrators, teachers, and about excluded students were assembled into questionnaires.

The assessment blocks and questionnaires were subjected to the review process established by ETS and NAEP, including scrutiny by subject-matter specialists, measurement specialists, test editors, and persons specially trained to review questions for any potential sensitivity concerning women or minority groups. As part of the $O M B$ clearance process, all items were also reviewed by OERI staff, by the Office for Quality Assurance and by the Office for Management and Budget. Subsequent to the complete review process, the blocks and questionnaires were submitted for composition, printiag, bundling, and distribution to the Westat, Inc., field staff responsible for administering the 1986 assesment.

2.151986 ASSESSMENT DEVELOPMENT CONSULTANTS

Reading Learning Area Committee

Naomi Gordon, Public Schools of Brookline, Lexington, MA Judith Langer, University of California, Berkeley, CA Dorothy Strickland, Columbia University, New York, NY Robert Tierney, University of Illinois, Champagne-Urbana, IL Richard Venezky, University of Delaware, Newark, DE

Reading Item Development Consultants

Jo Beth Allen, Kansas State University, Manhattan, KS
Arthur Applebee, National Council of Teachers of English, Urbana, IL
Michael Axline, University of Oregon, Eugene, OR
Fernie Baca, University of Colorado, Denver, CO
Richard Beach, University of Minnesota, Minneapolis, MN
Barbara Bianchi, Paideia School, Atlanta, GA
Susan Blank, Manpower Demonstration Research Corporation, Brooklyn, NY
Robin Butterfield, Northwest Regional Educational Laboratory, Portland, OR
Robert Calfee, Stanford University, Stanford, CA
Jeanne Chall, Harvard Graduate School of Education, Cambridge, MA
Carita Chapman, Chicago Public Schools, Chicago, IL
Ruth Coleman, North Side High School Mothers Alumni Club, Fort Wayne, IN
Christopher Connell, Associated Press, Washington, DC
Larry Coon, McDonald's Restaurants, Henderson, TX
Bernice Cullinan, New York University, New York, NY
Mary E. Curtis, Harvard Graduate School of Education, Cambridge, MA
Jacqueline Danzberger, Youthwork Inc., Arlington, VA
Martha Darling, Washington Roundtable Education Study, Bellevue, WA Philip DiStefano, University of Colorado, Boulder, CO
Terry Dozier, South Carolina State Department of Education, Columbia, SC
Priscilla Drum, University of California at Santa Barbara, Santa Barbara, CA
William Eller, State University of New York at Buffalo, Amherst, NY
Leo Estrada, University of California, Los Angeles, CA
Claryce Evans, Boston Public Schools, Boston, MA
Marjorie Farmer, School District of Philadelphia, Philadelphia, PA
Roger Farr, University of Indiana, Bloomington, IN
Edmund Farrell, University of Texas, Austin, TX
Edward Fry, Rutgers University, New Brunswick, NJ
Carol Gibson, National Urban League, New York, NY
Kenneth Goodman, University of Arizona, Tucson, A.Z
Donald Graves, University of New Hampshire, Durham, NH
Jean Greenlaw, North Texas State University, Denton, TX
Doris Hankins, Germantown High School, Germantown, TN
Jerome Harste, University of Indiana, Bloomington, IN
David Hayes, University of Georgia, Athens, GA
Paul Heffernan, Star Market, Newtonville, MA
Harold Herber, Syracuse University, Syracuse, NY
Jane Holt, Champlain Valley Union High School, Hinesburg, VT

Shu－in Huang，City of Thornton，Thornton，CO
Evaline Khayat Kruse，Audubon Junior High School，Los Angeles，CA
Diane Lapp，Boston University，Boston，MA
Herbert J．Lapp，Jr．，GPU Nuclear Corporation，Parsippany，NJ
Ron Lessnau，Hamburger University，Oakbrook，IL
Ray Marshall，University of Texas，Austin TX
Phyllis A．Miller，Reading Development Seminars，Minneapolis，MN
Charles Moody，University of Michigan，National Alliance of Black School
Educators，Ann Arbor，MI
Peter Mosenthal，Syracuse University，Syracuse，NY
Edwin Newman，NBC News，New York，NY
Pedro Pedraza J：゙．，Hunter College，New York，NY
Anthony Petrosky，University of Pittsburgh，Pittsburgh，PA
Carolyn N．Pinckney，Bunker Hill Elementary School，Washington，DC
Carolyn Pollan，State of Arkansas，Fort Smith，AR
Walter L．Powers，School District $⿰ ⿰ 三 丨 ⿰ 丨 三$ 271，Coeur d＇Alene，ID
John Readance，Louisiana State University，Baton Rouge，LA
Beverly Roller，Jefferson County Publi．c Schools，Littleton，CO
Glenn E．Rotz，Highland Elementary School，Clarkson，WA
Sarah Saint－Onge，Godine Publishing Co．，Boston，MA
Adan C．Salgado，Johnston High School，Austin，TX
S．Jay Samuels，University of Minnesota，Minneapolis，MN
Robert Schreiner，University of Minnesota，Minneapolis，MN
John Stewig，University of Wisconsin，Milwaukee，WI
Jaap Tuinman，Simon Fraser University，Burnaby，B．C．，Canada
Janet Tully，Marriott Corporation，Washington，DC
Richard Vacca，Kent State University，Kent，OH
Rod Vahl，Central High School，Davenport，IA
Sheila Valencia，University of Colorado，Boulder CO
Thomas Vallejos，University of Colorado，Boulder，CO
Maria Watkins，University of Pennsylvania，Graduate School of Education， Philadelphia，PA
Rick Wetherell，North Bend High School，West Bend，OR
Susan M．Wolf，The Hastings Center，Hastings－on－Hudson，NY
Kathy Yen，San Francisco Public Schools，San Franciso，CA
Seymour Yesner，Brookline High School，Brookline，MA

Mathematics Learning Area Committee

James Bruni，Herbert H．Lehman College，Bronx，NY
Iris M．Carl，Houston Independent School District，Houston，TX
Clyde L．Corcoran，California High School，Whittier，CA
F．Joe Crosswhite，The Ohio State University，Columbus， OH
Shirley Hill，University of Missouri－Kansas City，Kansas City，MO

Mathematics Consultants

Joan L．Akers，San Diego County Office of Education，San Diego，CA
Rudy B．Beede，Forrest City Middle School，Forrest City，AR
Elaine Bologna，Summit School，Winston－Salem，NC

Olympia E. Boucree, New Orleans Public Schools, New Orleans, LA Donna Kay Buck, Washington-Hoyt Schools, Tacoma, WA Ernestine Capehart, West Virginia Department of Education, Charleston, WV Thomas P. Carpenter, University of Wisconsin, Madison, WI Mary Kay Corbitt, Louisiana State University, Baton Rouge, LA Gilbert J. Cuevas, University of Miami, Miami, FL
Edgar L. Edwards, Jr., Virginia State Department of Education, Richmond, VA
Carolyn K. Ehr, Fort Hays State University, Hays, KS
James Fey, University of Maryland, College Park, MD
Carole Greenes, Boston University, Boston, MA
Marilyn L. Hala, South Dakota Department of Education, Pierre, SD
Jerry Jean Hale, Southmoor Elementary School, Denver, CO
Norma G. Hernandez, University ${ }^{〔}$ Texas, E1 Paso, Tx
patricia M. Hess, Albuquerque Public Schools, Albuquerque, NM
Vernon R. Hood, Portland Community College, Portland, OR
Larry Johnson, Clarke County Schools, Athens, GA
Mary Grace Kantowski, University of Florida, Gainesville, FL
Robert Kenney, Vermont Department of Education, Montpelier, VT
Genevieve M. Knight, Coppin State College, Baltimore, MD
Katherine P. Layton, Beverly Hills High School, Beverly Hills, CA
John LeBlanc, University of Indiana, Bloomington, IN
Gordon Lewis, District of Columbia Public Schools, Washíngton, DC
Betty K. Lichtenberg, University of South Florida, Tampa, FL
Mary M. Lindquist, Columbus College, Columbus, GA
Mary Martin, Lawrence School, Brookline, MA
William D. McKillip, University of Georgia, Athens, GA
James A. Nelson, Simmons Junior High School, Aberdeen, SD
Phares G. O'Daffer, Illinois State University, Normal, IL
Joseph N. Payne, University of Michigan, Ann Arbor, MI
Norma J. Reed, Douglas Smith Elementary School, Alief, TX
Robert Reys, University of Missouri, Columbia, MO
Joyce Scalzitti, Summit Junior High School, Paterson, NJ
Bernie Richard Schnorenberg, Sundance Junior-Senior High School, Sundance, WV
Helene Silverman, Herbert H. Lehman College, Bronx, NY
Louise M. Smith, Charleston County Schools, Charleston, SC
William A. Stannard, Eastern Montana College, Billings, MT
Jacquelyn M. Stonebraker, Evergreen Junior High School, Salt Lake City, UT
Marilyn N. Suydam, The Ohio State University, Columbus, OH
Jane Swafford, Northern Michigan University, Marquette, MI
B. Ross Taylor, Minneapolis Public Schools, Minneapolis, MN

Alexander Tobin, The School District of Philadelphia, Philadelphia, PA
Kenneth J. Travers, University of Illinois, Champaign, IL
Gloria H. Tuggle, Memphis City Schools, Memphis, TN
Charlene E. West, Cajon Valley School District, El Cajon, CA
Elizabeth M. Whitaker, Lee Resource Center, Tucson, AZ
Steven S. Willoughby, New York University, New York, NY
James W. Wilson, University of Georgia, Athens, GA
Marcelline Richard Zambuco, John F. Deerirıg Junior High School, Warwick, RI Marilyn Zweng, University of Iowa, Iowa City, IA

Science Learning Area Committee

Audrey Champagne, American Association for the Advancement of Science, Washington, DC
George Kieffer, University of Illinois, Urbana, IL
Nuria Rodriguez, Beverly Hills High School, Beverly Hills, CA Calvin VanderWerf, University of Florida, Gainesville, FL
Wayne Welch, University of İinnesota, Minneapolis, MN

Science Consultants

Don Ahshapanek, Haskell Indian Junior College, Lawrence, KS Dale R. Baker, University of Utah, Salt Lake City, UT
Paul Bamberg, Harvard University, Cambridge, MA
Gail Barcelo, Board of Education, South Brunswick, NJ
Ron Barnes, Office of Science, Baltimore County School District, Baltimore, MD
William E. Barstow, University of Georgia, Athens, GA Linda Behrens, Perry Hall Middle School, Baltimore, MD
Jack Bouma, Pikesville Middle School, Baltimore, MD
Marilyn Braveman, American Jewish Committee, New York, NY
Linda Broach, Mountainbrook Jr. High School, Birmingham, AL
John R. Brown, Jr., Trustee, Kean College of NJ, Short Hills, NJ
William S. Dougall, Lakeside School, Seattle, WA
Kenneth W. Dowling, Wisoensin Department of Public Instruction, Madison, WI Beulah Durr, Nottingham High School, Syracuse, NY
Vera King Farris, Richard Stockton State College, Pomona, NJ
Louis Finsand, Malcolm Price Laboratory School, University of Northern Iowa Cedar Falls, IA
Joseph M. Flynn, Citizen's Council for Ohio Schools, Cleveland, OH
Anthony Galitsis, N.Y.C. Board of Education, Brooklyn, NY
Roy A. Gallant, University of Southern Maine, Portland, ME
Beverly German, Shady Spring Elementary School, Baltimore, MD
Reen Gibb, Brookline High School, Brookline, MA
Dennis Gray, Council for Basic Education, Washington, DC
Martha Green, Florida Department of Education, Tallahassee, FL
Laura Hallowell, Wellesley High School, Wellesley, MA
Iohn Harkness, Wausau West High School, Wausau, WI
Charles J. Hemenway, St. Paul's Episcopal School, New Orleans, LA
Dale T. Hesser, North Syracuse School District, North Syracuse, NY
Vincent Hollis, Howard University, Washington, DC
Ann C. Howe, North Carolina State University, Raleigh, NC
Cindy Hrebar, Jefferson County School District, Lakewood, CO
Ken Indek, University of Illinois, Champaign, IL
Bernard H. Johnson, Central State University, Wilberforce, OH
Russ Jones, Sussex Elementary School, Balt' \quad ore, MD
Maryanne Kalin, Francis W. Parker School, Chicago, IL
James Kelly, Malcolm Price Laboratory School, University of Northern Iowa, Cedar Falls, IA
Leopold E. Klopfer, University of Pittsburgh, Pittsburgh, PA Sylvia Kramer, Women's Action Alliance, New York, NY

Karl Kranz, National Zoo, Washington, DC
Charles Kuzminski, Hopewell Valley Regional School District, Pennington, NJ
Terry Kwan, Houghton-Mifflin Reference Division, Boston, MA
Jeanne Liu, South Carolina Department of Education, Columbia, SC
Steven Maltese, Charlesmont Elementary School, Baltimore, MD
Phyllis Marcuccio, National Science Teachers Association, Washington, DC
George F. Matchias, Croton-Harmon Senior High School, Croton-on-Hudson, NY
Alan J. McCormick, Laramie, WY
John McGeehee, Rolling Hills High School, Rolling Hills Estates, CA
Thomas McGuire, Briarcliff High School, Briarcliff Manor, NY
Robert McNeesh, Baltimore County Public Schools, Towson, MD
Kenneth Mechling, Clarion University, Clarion, PA
James Mecklenburger, National School Boards Association, Alexandria, VA
Ida M. Medlem, Bellaire High School, Bellaire, TX
Suzanne Mittenthal, University of Illinois, Urbana, IL
Pat Morris, University of Illinois, Champaign, IL
Patsy Mueller, Highland Park High School, Highland Park, IL
John Murphy, Board of Education, Howard County Public Schools System, MD
Joseph Novak, Corneli University, Ithaca, NY
Linda Parker, Department of Education, Tallahassee, FL
George Patrinicola, Loch Raven Senior High School, Baltimore, MD
Nadine Peterson, Oak Park and River Forest High School, Oak Park, IL
Michael D. Piburn, Salt Lake City, UT
Frank Quagliano, Macintosh Middle School, Sarasota, FL
Senta Raizen, National Academy of Science, Washington, DC
Thomas R. Richardson, University School of Milwaukee, Milwaukee, WI
Joseph Riley, Michigan Department of Education, Lansing, MI
David Robinson, Albany State College, Albany, GA
James T. Robinson, Boulder Valley Schools, Boulder, CO
Eloy Rodriguez, University of California, Irvine, CA
Mary Budd Rowe, University of Florida, Gainesville, FL
Loren E. Sanchez, Upland School District, Upland, GA
Walter Scheider, Huron High School, Ann Arbor, MI
Byron M. Shinn, McClure Jr. High School, Wester: Springs, IL
Robert Sigda, National Science Teachers Association, Dix Hills, NY
Mary Lou Simon, South Brusnwick Schools, Monmouth Junction, NJ
Marilyn Smith, Beverly Vista School, Beverly Hills, CA
Nancy Spaulding, Elmira Free Academy, Elmira, NY
Frances Stivers, Terry Park High School, Jacksonville, FL
Anita Stockton, Perry Hall Senior High School, Baltimore, MD
Zack Taylor, Consultant, Science Education Unit, Sacramento, CA
Leigh VenEtten, Charles Wright Academy, Tacoma, WA
Muriel Vaughn, National Black Child Development Institute, Washington, DC
Henry Walberg, University of Illinois at Chicago, Chicago, IL
Henry Walbesser, University of Maryland, Catonsville, MD
Millie Waterman, Ohio Education Commission, Mentor, OH
Gerald F. Wheeler, Montana State University, Bozeman, MT
Cheryl Williams, American Association of Univer ity Women, Washington, DC
Robert E. Yager, University of Iowa, Iowa City, IA
Judith Yero, University of Illinois, Champagne, IL
Lawrence J. Zambrowski, Churchill Jr. High School, East Brunswick, NJ
Veronica Zepeda, Arizona State Department of Education, Phoenix, AZ

Computer Competence Learning Area Committee

Marc S. Tucker (Chairman), Carnegie Forum on Education and the Economy, Washington, DC
Harold Abelson, Massachusetts Institute of Technology, Cambridge, MA
Sharon Burrowes, Wooster Public Schools, Wooster, OH
Eugene Galanter, Columbia University, New York, NY
Vinetta Jones, University of North Carolina, Chapel Hill, NC
Arthur Luehrmann, Computer Literacy, Berkeley, CA Michelle Rohr, Houston Public Schools, Houston, TX Joyce Tobias, Brookline Public Schools, I.exington, MA

Computer Competence Analysis Committee

Marcia Linn, University of California at Berkeley, Berkeley, CA Art Luernman, Computer Literacy, Berkeley, CA
Nicholas Petreley, Counterpoint, Trenton, NJ
Michelle Rohr, Houston Public Schools, Houston, TX
Bob Vivens, Princeton High School, Princeton, NJ

Computer Competence Reviewers

Leon Adkison, Taylor University, Upland, IN
John Aiken, The Evergreen State College, Olympia, WA
Judy Anderson E., Consolidated School, St. Paul, MN
Edward Asmus, State University of New York at Buffalo, Buffalo, NY
Margaret Asprey, David Systems, Inc., Sunnyvale, CA
Richard Austing, University of Maryland, College Park, MD
George Bass, Jr., College of William and Mary, Williamsburg, VA
Henry Jay Becker, Johns Hopkins University, Baltimore, MD
Frank Besag, University of Wisconsin, Milwaukee, WI
Karen Billings, Houghton Mifflin, Boston, MA
Gary Bitter, Arizona State University, Tempe, AZ
Susan Brinkman, National PTA, Chicago, IL
Hugh Cobb, Consultant, Denver, CO
William W. Crandall, Princeton University, Princeton, NJ
Enrique Cubillos, Washington, D.C. Public Schools, Washington, DC
John DeGilio, Vassar College, Poughkeepsie, NY
Tim Ellard, Opinion Research Corporation, San Francisco, CA
Gail Feldman, Parent, Braintree, MA
Robert Feldman, Parent, Braintree, MA
Mark Fetler, California State Dept. of Education, Sacramento, CA
LeRoy Finkel, San Mateo County Office of Education, Redwood City, Ca
Glen Fisher, Computer Using Educators, San Jose, CA
Steven M. Frankel, Montgomery County Public Schools, Rockville, MD
Susan Friel, Lesley College, Cambridge, MA
Beverly Hagy, Trenton J.H.S. \#5, Trenton, NJ
Sally Hansen, Mercer County Community College, Trenton, NJ

Dennis Hartzler, Oak Street Elementary School, Orville, OH
Marge Hohly, Downey High School, Long Beach, CA
Beverly Hunter, Targeted Learning Corporation, Amissville, VA
Elois Irvin, J.F. Kennedy High Schoc ${ }^{\top}$, Richmond, CA
Robert B. Jensen, Farmbank, Inc. Aurora, CO
Scott Iohnson, High School for the Engineering Professions, Houston, TX
Dan Kauffman, Florida Atlantic University, Boca Raton, FL
Bette Kindman-Koffler, Mathematica, Inc., Princeton Junction, NJ
Charlotte Kuh, AT\&T, Short Hills, NJ
Rafael Ledesma, St. Joseph of the Palisades High School, West New York, NJ
Peter Lenkway, Department of Education, Tallahassee, FL
Thomas Lough, Piedmont Community College, Charlottesville, VA
Michael S. Mahoney, Princeton University, Princeton, NJ
David Martin, Jericho High School, Jericho, Long Island, NY
Mara Mayor, Annenberg - CPB Project, Washington, DC
Diane McEntyre, Mills College, Berkeley, CA
John McManus, Pepperdine University, Manhattan Beach, CA
Patty Mitchell, National Assoc. of State Boards of Education, Alexandria, VA
Michael Moshell, University of Tennessee, Knoxville, TN
David Moursund, University of Oregon, Eugene, OR
Adeline Naiman, HRM Software, Cambridge, MA
Robert Peebles, Superintendent of Schools, Alexandria, VA
Robert Perry, Santa Monica High School, Santa Monica, CA
Stan Pogrow, University of Arizona, Tucson, AZ
James Poirot, North Texas State University, Denton, TX
Ruth Randall, Minnesota Department of Education, Apple Valley, MN
Jean Rice, Computer Education Consultant, Minneapolis, MN
Ellen Richman, Chagrin Falls Public Schools, Morland Hills, OH
Dick Ricketts, University of Oregon, Eugene, OR
Boots Riebling, St.Thomas Aquinas High School, Wilton Manor, FL
David C. Rine, Western Illinois University, Macomb, IL
Linda Roberts, Congress of the U.S., Washington, DC
Jean Rogers, University of Texas, Austin, TX
Randolph Ross, Newtown High School, Elmhurst, NY
Nola Theffer, Hanscom Primary School, Hanscom, AFB, MA
Joy Silver, Congressional Aide, Washington, DC
Twila Slesnick, Classroom Computer Learning, Belmont, CA
Sally Sloan, Minneapolis Public Schools, North Oaks, MN
Elliot Soloway, Yale University, New Haven, CT
Joan Targ, Interactive Sciences, Palo Alto, CA
Robert Taylor, Teacher's College, New York, NY
Robert F. Tinker, Technical Education Research Centers, Inc., West Concord, MA
Decker Walker, Stanford University, Stanford, CA
Linda Weinert, Versatech Inc., Santa Clara, CA
Judy Weisenberger, The Ohrenberger School, West Roxbury, MA
Leslie Wolfe, National Organization for Women LDEF, Washington, DC

History Learning Area Committee

Diane Brooks, California State Department of Education, Sacramento, CA Henry N. Drewry, Princeton University, Princeton, NJ Dana Kurfman, Prince Georges County Public Schools, Landover, MD Donald V. Rogan, New Trier High School, Evanston, IL Stephan Thernstrom, Harvard University, Cambridge, MA

History Reviewers

Ron Adams, Kingswood Regional High School, Wolfeboro, NH William J. Alexander, Hillsboro High School, Hillsboro, OH Donald Bragaw, New York Bureau of Social Studies Education, Albany, NY Francis L. Broderick, University of Massachusetts, Boston, MA
Nancy I. Brown, Mississippi State Department of Education, Jackson, MS
David Burner, SUNY at Stony Brook, Stony Brook, NY
R. Freeman Butts, Hoover Institution, Stanford, CA Mary Butz, Edward R. Murrow High School, Brooklyn, NY Catherine Cannon, Eau Claire High School, Columbia, SC William B. Catton, Historian, Lancaster, PA Carole Chaet, Cambridge Rindge and Latin School, Cambridge, MA John M. Chapman, Michigan Department of Education, Lansing, MI Paul K. Conkin, Vanderbilt University, Nashville, TN Ann L. Cotton, Fort Worth Public Schools, Fort Worth, TX Henry F. Cotton, Cherry Creek High School, Englewood, CO Jean Craven, Albuquerque Public Schools, Albuquerque, NM Neil Cross, Social Studies Consultant, Lincoln, NE Gerald Danzer, University of Illinois, Itasca, IL Deborah Drucker, National Council for the Social Studies, Washington, DC Catherine W. Edwards, Boulder Valley Public Schools, Boulder, CO
Hugh D. Graham, University of Maryland, Catonsville, MD
Kermit I. Hall, University of Florida, Gainesville, FL $^{\text {, }}$ Patricia Harris, Gary Public Schools, Gary, IN
Richard Huntington, Columbia High School, Maplewood, NJ
Jean Hutt, Saline Area Schools, Saline, MI
Thomas Kay, Wheaton College, Wheaton, IL
Clair W. Keller, Lowa State University, Ames, IA
Ralph Ketcham, Syracuse University, Syracuse, NY
Everett Kline, Columbia High School, Maplewood, NJ
David Laudenschlager, Rapid City Central High School, Rapid City, SD
Glenn Linden, Southern Methodist University, Dallas, TX
Herbert I. London, New York University, New York, NY
William Longton, University of Toledo, Toledo, OH
David L. Manning, Conard High School, Meriden, CT
Myron Marty, Drake University, Des Moines, IA
John McCardell, Middlebury College, Middlebury, VT
Fay Metcalf, Boulder Valley Public Schools, Boulder, CO
S. Rex Morrow, Eastern Kentucky University, Richmond, KY

Leo Padalino, Long Beach High School, Lido Beach, NY
Arthur Pease, Lebanon High School, Lebanon, NH
Doug Phillips, Anchorage School District, Anchorage, AK

Helen W. Richardson, Fulton County Board of Education, Atlanta, GA
C. Frederick Risinger, Indiana University, Bloomington, IN

Francisco A. Rosales, Arizona State University, Tempe, AZ
Geraldine H. Rosenthal, Tulsa Public Schools, Tulsa, OK
John Rossi, California State Social Studies Council, Berkeley, CA
Valerie Seaberg, Department of Maine Education, Damariscotta, ME
Gloria Sesso, Half Hollow Hills CSD, Port Jefferson, NY
Theodore Sharp, Falmouth Public Schools, Falmouth, ME
Denny Shillings, Homewood Flossmore Community High School Flossmore, IL
Ted Sizer, Brown University, Providence, RI
Victor A. Smith, Indianapolis Public Schools, Indianapolis, IN
Arthur E. Soderlind, Connecticut State Department of Education, Weatogue, CT
Joyce L. Stevos, Providence Public Schools, Providence, RI
Larry Strickland, Olympia School District, Olympia, WA
Betty Waugh, West Mesa High School, Albuquerque, NM
Walter Weare, University of Wisconsin-Milwaukee, Milwaukee, WI
Richard H. Wilson, Montgomery County Public Schools, Rockville, MD
Judith S. Wooster, New York State Education Department, Albany, NY

Literature Learning Area Committee

E. D. Hirsch, University of Virginia, Charlottesville, VA

Anna K. Johnston, Colchester High School, Colchester, VT
Helen Lojek, Boise State University, Boise, ID
Richard Rodriguez, Author, San Francisco, CA
Patrick Welch, T.C. Williams High School, Arlington, VA

Literature Reviewers

Elizabeth Ackley, Indian Hill High School, Gincinnati, OH
Mark S. Auburn, University of Arkansas, Fayetteville, AR Richard Barksdale, University of Illinois, Urbana, IL
Kathleen Bell, University of Miami, Miami, FL
Rexford Brown, Education Commission of the States, Denver, CO
Helen Browne, Cold Spring Harbor School, Syosset, NY
Gay Cannavo, Benjamin Cardozo High School, Queens, NY
Carlota Cardenas de Dwyer, Clark High School, San Antonio, TX
Jane Christensen, National Council of Teachers of English, Urbana, IL
Louise A. Cobb, Louisiana Department of Education, Baton Rouge, LA
Scott Colley, Vanderbilt University, Nashville, TN
Bernice Cullinan, New York University, New York, NY
Edmund Farrell, University of Texas, Austin, TX
William Gifford, Vassar College, Poughkeepsie, NY
Roseann Gonzalez, University of Arizona, Tucson, AZ
Judith Greenwald, New Jersey Department of Education, Trenton, NJ
Jan Guffin, North Central High School, Indianapolis, IN
Mary Alice Gunter, University of Virginia, Charlottesville, VA
Eric E. Hoem, Mount Hood Community College, Gresham, OR
Susan Holt, State Department of Education, Cheyenne, WY
James F. Kilroy, Tulane University, New Orleans, LA

Ben Ladner, National Humanities Faculty, Atlanta, GA
Henry Maloney, Seaholm High School, Birmingham, MI
Donald Offerman, River Forest High School, Oak Park, IL
Lee Galda Pellegrini, University of Georgia, Athens, GA
Claire Pelton, Los Altos High School, Los Altos, CA
Jesse Perry, San Diego Public Schools, San Diego, CA
John K. Pickering, Germantown Academy, Fort Washington, PA
Alan Purves, University of Illinois, Urbana, IL
Margaret Reed, Minneapolis Public Schools, Minneapolis, MN
Paul J. F. Regnier, New York State Education Depariment, Albany, NY
Doris Rocitger, Hear乞land Education Agency, Ankeny, IA
Robert Squires, Oneonta High School, Onsonta, NY
Glays Veidemanis, North High School, Oshkosh, WI
Patricia Wasley, Educational Service District \#112, Vancouver, WA
Natalie White, Lincoln High School, Dallas, TX
Marjorie Willis, Midlothian High School, Midlothian, VA
Brooke Workman, West High School, Iowa City, IA
Seymour Yesrier, Brookline High School, Brookline, MA

Common Core Student Background Questions and Questionnaires

Valeria Ford, D.C. Public Schools, Washington, DC
Susan Fuhrman, Rutgers University, New Brunswick, NJ
Barbara Heyns, New York University, New York, NY
Nancy Karweit, Johns Hopkins University, Baltimore, MD
Herbert Walberg, University of Illinois at Chicago, Chicago, IL

CHAPTER 3

Sample Design

SAMPLE DESIGN

Morris H. Hansen, Keith Rust, and John Burke

Westat, Inc.

The sample of students for the 1986 NAEP was selected using a complex multistage sample design involving the sampling of students from selected schools within 94 selected geographic areas, called primary sampling units (PSUs), from across the United States. The sample design is described in detail in National Assessment of Educational Progress--17th Year Sampling and Weighting Procedures. Final Report (Burke, Braden, ilansen, Lago, \& Tepping, 1987). This chapter provides an overview of the design.

Although generally similar in nature to the sampling procedures used in the 1984 assessment, a number of new features were introduced in the 1986 design. The most important of these are listed below.

1) The definition of primary sampling units and their stratification was changed. In particular, whole metropolitan statistical areas were generally defined as PSUs. The 34 largest of these were sampled with certainty.
2) The number of PSUs sampled was increased from 64 to 94.
3) "Bridge" samples were defined for the assessment of 13-year-olds in fall and 9-year-olds in winter, using a subsample of 64 of the 94 selected PSUs. The bridge samples were used for certain of the bridging studies, needed for comparisons with earlier NAEP assessments, which took place in fall for 13 -year-olds and winter for 9 -year-olds.
4) In schools with enrollment of small to moderate size, all eligible students were selected for assessment in sampled schools. In larger schools, a sample of eligible students was assessed. Overall there was a moderate increase in the numbers of students assessed per school, compared with 1984.
5) Efforts were made, through varying the probabilities of selection of PSUs and schools, to increase the proportion of the overall sample comprising Black and Hispanic students for each age class.

3.1 SAMPLE OF FIRST-STAGE UNITS

In the first stage of sampling, the United States (the 50 states and the District of Columbia) was divided into geographic primary sampling units (PSUs), each comprised of either a metropolitan statistical area (MSA), a single county, or a group of contiguous counties. Each PSU met a minimum size requirement, based on 1980 Census population data. The use of whole MSAs as PSUs was a departure from the procedure used in the 1984 and previous years. This change was designed to reduce sampling variance, particularly for estimates relating to minority groups. With the use of whole MSAs as PSUs, the large PSUs are considerably larger and more heterogeneous than with the use of counties as first-stage units. One consequence is a smaller variance between PSUs within noncertainty strata. Another consequence is that the PSUs that come into the sample with certainty account for a high proportion of the fopulation (roughly one third of the total population and approximately one half of the Hispanic and the Black populations are included in PSUs selected with certainty), whereas with the larger PSUs defined in terms of whole counties, as in the past, certainty selections accounted for roughly 5 percent of the population. These two factors combined greatly reduce the between-PSU contribution to variance, with little or no added cost for travel within PSUs.

Twelve subuniverses of PSUs were defined. The PSUs were classified into four regions, each containing about one quarter of the U.S. population. In each region, PSUs were classified as MSA or non-MSA. In the Southeast and West regions, the PSUs were further classified as high minority (20 percent of the population in the 1980 Census was either Black or Hispanic) or not. The resulting subuniverses are shown in Table 3.1. Among the larger PSUs, 34 were large enough to be designated as certainty units and were selected with probability one. Within each major stratum (the subuniverses), further stratification was achieved by ordering the noncertainty PSUs according to several additional socioeconomir characteristics, yielding 60 strata. One PSU was selected with probability proportional to size from each of the 60 noncertainty strata. PSUs within the high-minority subuniverses were sampled at twice the rate of PSUs in the other subuniverses.

The increase in sample size from 64 to 94 PSUs was also aimed at decreasing the component of variance contributed by sampling at the first stage, and thus reducing the variances of sample estimates. This gain was rendered cost-effective in part by the fact that all of the main NAEP assessments were conducted simultaneously in the spring, rather than at a separate time for each grade/age, so that there was sufficient work within each PSU to keep one or more teams, consisting of a supervisor and exercise administrators, fully occupied throughout the assessment period. Increasing the number of PSUs also gave rise to somewhat of an increase in the precision of sampling error estimates obtained using the jackknife approach, discussed in Chapter 14. As noted below, a subsample of 64 of the 94 PSUs was used for the smaller bridge samples, conducted in the fall and winter, to maintain their cost efficiency.

Table 3.1
The Sampling Subuniverses and the Number of Noncertainty Strata in Each

Region	MSA PSUs		Non-MSA PSUs	
	Regular Strata	High minority Strata	Regular Strata	High minority Strata
Northeast	8	--	2	
Southeast	4	6	4	6
Central	8	--	6	6
West	4	6	4	2
Total	24	12	16	8

These PSUs were used for both the spiral assessments and the bridge assessments conducted in the spring. The bridge assessments conducted in the fall and winter used a subsample of 64 PSUs which were selected from the complete set of 94 PSUs. The reduced number of PSUs used in the fall and winter arose because the sample sizes of students at each age were much smaller than for the spring assessment, so that cost considerations dictated that the number of PSUs selected should be reduced for these samples. In subsampling the PSUs, the 18 largest certainty PSUs were retained, while 46 of the 76 remaining PSUs were retained with probability proportional to a measure of size of the stratum from which they were drawn.

Further details of the stratification and sampling of PSUs are given in Burke et al. (1987), sections 2.1-2.3.

3.2 SAMPLING OF SCHOOLS

In the second stage of sampling, the public, Catholic, other private, Bureau of Indian Affairs, and Department of Defense schools within each of the 94 PSUs were listed according to the three grade/age groups. An independent sample of schools was selected separately for each of the grade/age groups. Thus, some schools were selected for assessment of two grade/age groups, and a few for all three groups.

The list of schools was derived from the fall 1984 list of U.S. elementary and secondary schools provided by Quality Education Data, Inc. This frame included information on school enrollment and grade span, as well as unique identification and address information.

Five subframes of schools were formed from the complete list of schools within the 94 PSUs. One frame was created for each grade/age group for the main NAEP assessment, with an additional frame each for both the age 9 and age 13 Bridge A samples. Each subframe was designed to include schools that in the aggregate were estimated to contain all but a trivial number of students in the eligibie age range for the sample in question. In each case the frame coverage of the relevant age was estimated to be in excess of 99
percent. Table 3.2 below shows the grade span definitions used for the different frames. Any school having any one or more of the relevant grades was included in the appropriate frame. Thus, for example, a school with grades 1 through 6 was included in both of the age 9 frames, and both of the age 13 frames, but not the age 17 frame. In total, the five frames from the 94 PSUs included about 38,000 unique schools, and each school with a grade in the range 1 through 12 was included on at least one frame.

Table 3.2
Grade Definition of School Eligibility for Frame Inclusion
Age 9
Age 13
Age 17

Fall/Winter (Bridge A)
2-5
6-9 Spring

1-4
5-8
9-12

The schools sampled for a grade/age group within each PSU were selected via a systematic sample, with probabilities proportional to assigned measures of size. For the spring samples, roughly equal measures of size were assigned to schools containing an estimated number of grade/age-eligible students ranging from 20 to 150 (for grade 3/age 9), or 20 to 200 (for grade 7 /age 13 and grade 11/age 17). Schools above the indicated maximum size were selected with probabilities proportional to the estimated number of grade/age-eligible students. Schools with fewer than 20 estimated grade/age eligibles were assigned considerably lower measures of size, and thus reduced probabilities of selection, since they had considerably higher per-student administrative costs. Overall probabilities of selection for high-minority schools (those where more than 10 percent of students were Black, Hispanic, or Asian) were twice those for other schools to enlarge the sample for such students, thereby enhancing the reliability of estimates for these minority groups. In selecting the samples, the frames were sorted within PSU by minority status and the measure of size.

For ages 9 and 13, a sample of schools was drawn for the Bridge A assessment conducted in the fall and winter. These were then excluded from the frame when the sample of schools was drawn for the spring assessments. Within each PSU for each age class, clusters of schools were formed, with each cluster large enough to provide the required sample size of students. One cluster was then selected per PSU (except in the Chicago and Los Angeles MSAs, where three clusters were chosen).

After the initial sampling of schools was completed: information was obtained to update the sample for new eligible schools. Public school districts and dioceses of initially selected ;chools were asked to give information about new schools and schools with greatly increased enrollment or with changes in grade structure within their district/diocese. Similar information was sought for new and enlarged private schools in the same districts/dioceses. New and enlarged schools so identified were given an appropriate chance of inclusion in each of the samples for which they were
eligible. Four new schools were sampled this way in total, but all were found ultimately to be out-of-scope.

In PSUs where school refusals were relatively heavy for a particular sample, substitute school selections were made, replacing the refusals (to the extent feasible), with schools from within the same PSU and similar in size, affiliation, grade span, and minority composition. This procedure maintained the student sample sizes needed, keeping variance and nonresponse bias at acceptable levels. Table 3.3 shows the number of schools selected (and in-scope), cooperating, and substituted in each of the school samples. The cooperation rates given are based on the initially selected sample of schools, and schools selected only for the Language Minority Probe are excluded. Note that since the response rates quoted do not include the substitute selections, the potential for nonresponse bias is likely to be somewhat less than these rates would indicate. This is because the substitute selections were chosen based on their similarity to the initially refusing selections.

Further details on the sampling of schools are given in section 2.4 of Burke et al. (1987).

Table 3.3
School Sample Sizes, Refusals, and Substitutes

	Grade 3/Age 9		Grade	7/Age 13	Grade 11/Age	
	Winter	Spring	Fall	Spring	Spring	Total
Selected, in-scope	186	494	153	560	521	1917
No eligible students enrolled	4	5	27	62	521	1917
Refusals	25	52	24	62	22	120
Substitutes	18	20	11	18	24	91
Final assessed sample	175	457	113	455	433	91 1633
School cooperation rate	87\%	89\%	84\%	89\%	81\%	1633 87%

The considerable numbers of schools sampled with no eligible students enrolled resulted primarily from the fact that, for example, for grade 7/age 13, schools with grades 5, 6, or 8 but no grade 7 were sampled. Such schools had a reasonable chance of containing some age 13 students. Often they did have a number of eligible students, but sometimes they had none. Such schools account for the sampled schools with no eligible students enrolled. Because of the grade structure of schools, this occurred most often for age 13. These response rates are comparable with those of previous assessments. In both 1982 and 1984 the overail cooperation rate of schools was 88 percent.

3.3 ASSIGNMENT OF SESSIONS TO SCHOOLS, BY TYPE

The assignment of sessions to schools served as the third stage of sampling. This assignment was done separately by the three tyr s of sessions, designated spiral, Bridge A (fall and winter). and Bridge B (spring), which represent separate samples of the student population.

The Bridge A assessments involved three distinct booklets each for ages 9 (winter) and 13 (fall). Schools to participate in these assessments were selected from the subsample of 64 PSUs which had been designated as the Bridge A PSUs. Each of the three distinct booklets for an age group was to be administered within each of the PSUs. To avoid the possibility that, for a given PSU, a particular bridge session might be assigned only to a school with one or very few eligibles, small schools were clustered with other schools in the same PSU to form clusters of a specified minimum number of eligibles. At each age bridge sessions were then assigned to schools with probability proportional to the estimated number of age eligibles within the school (or school cluster).

A subsample of the spring-selected schools were allocated Bridge B sessions. Bridge B consisted of two tape-administered sessions (booklets 4 and 5). Bridge B was conducted in all 94 sample PSUs. Most schools allocated to a Bridge B assessment also participated in the spiral assessment.

In many schools selected for spring assessment a number of students were assessed as part of the Language Minority Probe, rather than for spiral or bridge assessment. Details of the sample design for the Language Minority Probe are given in Appendix A of Burke et al. (1987).

Chapter 3 of Burke et al. (1987) contains fuller details on the assignment of sessions to schools.

3.4 THE SAMPLES OF STUDENTS

In the fourth stage of sampling, a consolidated list of all grade-eligible and age-eligible students was established for each spring-selected school. Only age eligibles were listed for Bridge A, since there was no assessment of students eligible by grade alone.

For spring-select \geqq d schools with fewer than 233 eligibles for grade 11 /age 17, 244 eligibles for grade 7 /age 13, and 166 eligibles for grade 3/age 9), all eligible students were invited for assessment (some of them for the Language Minority Probe in some schools). Otherwise, a systematic sample of eligible students was drawn (about 210 for grade 11 /age 17,220 for grade $7 /$ age 13 , and 150 for grade 3 /age 9). In all cases, the list of cligible students was prepared by the school, and sampling (if any) was undertaken by Westat district supervisors using prescribed computer-prepared instructions, tailored to each individual school, and based on the estimated number of eligibles in the school. For the spring assessment, students were assigned
by Westat district supervisors to spiral or Bridge B sessions, using a prescribed probability sampling procedure.

For Bridge A assessments, many of the selected schools had their age eligibles sampled at a rate of one. Age-eligible students in large schools in selected bridge school clusters were sampled at a rate calculated to provide the target sample size.

3.5 THE SAMPLE OF EXCLUDED STUDENTS

Some students selected for the sample were deemed unassessable by the school authorities because they had limited English language proficiency, were judged as being educable mentally retarded, or were functionally disabled. In these cases, an excluded student questionnaire was filled out by the school staff, listing the reason for excluding the student and providing some background information.

3.6 STUDENT PARTICIPATION RATES

Table 3.4 below summarizes the rates of exclusion and participation of invited students for the different age classes in 1986. Rates were very similar to those experienced in 1984. Make-up sessions were called for when, for various reasons, more than a tolerable number of invited students did not appear for the originally scheduled assessment sessions in a school. The participation rate gives the number of students assessed as a percentage of the number invited. Note that although the participation rate for grade 11 /age 17 declined somewhat from that of the 1984 assessment, it is in excess of the rate the rate of 74.2 percent attained in the 1981-82 assessment.

Table 3.4
Participation and Exclusion Rates by Age Class (Unweighted, Excluding Language Minority Probe)

$$
\text { Excluded (\%) Number Invited } \begin{gathered}
\text { Participation } \\
\text { Rate (\%) Participation }
\end{gathered} \quad \begin{gathered}
\text { Rate (\%)-1984 }
\end{gathered}
$$

Grade 3/Age 9
3.9*

34,741
Grade 7/Age 13
3.7*

42,641
Grade 11/Age 17
3.4

55,309
92.9
91.3
-
89.2
87.3
*Exclusion rates given are for spring assessment only. Participation rates include both spring and fall/winter samples.

3.7 THE ASSOGIATED TEACHER-STUDENT SAMFLE

The teacher questionnaire was administered to the teachers of a subgroup of students sampled for spiral sessions. The purpose of this sample was to
estimate the number (proportion) of students whose teachers had various attributes, not to estimate the attributes of the teacher population.

It was assumed that at grade 3 /age 9 most teachers who taught reading also taught mathematics and science, and so questions covering instruction in all three subject areas were included in the questionnaire for this grade/age. For the other grade/ages it was assumed that different teachers would be teaching each of the subject areas covered by the assessment. Since the budget did not permit the collection of information from teachers from all subject areas within each school, a sampling scheme was devised. One subject area was designated at random for each spiral-allocated school. As noted, for grade 3/age 9 the subject was always reading. For grade 7/age 13 the subject area selected was one of three: reading, mathematics, and science. For grade 11 /age 17 the subject area was one of four: reading, mathematics, science, and U.S. history.

A sample of teachers of the selected subject area was drawn in each school in the following manner. For each spiral session, a subsample of students was selected and the school coordinator was asked to identify, for each such student, the teacher in the designated subject area who was teaching the student. (For reading, English or language arts teachers were selected.) Up to five teachers per school were selected in this manner. These instructors completed a teacher questionnaire.

Chapter 4 of Burke et al. (1987) describes in detail the steps used to obtain the various student and teacher samples.

CHAPTER 4

Instrument and Item Information

85

Chapter 4

INSTRUMENT AND ITEM INFORKATION ${ }^{1}$

Janet R. Johnson
Educational Testing Service

The 1986 assessment incorporated five distinct instruments: student assessment booklets, a questionnaire for excluded students, a teacher questionnaire, a computer coordinator questionnaire, and a school characteristics and policies questionnaire. The data collected from these instruments are available on the 1986 NAEP public-use data tapes. This chapter, which describes the assessment instruments, begins with a discussion of how items were organized into blocks to create the student assessment booklets.

4.1 STUDENT ASSESSMENT INSTRUMENTS

Student assessment booklets contained both cognitive and noncognitive items. Cognitive items were used to assess student achievement in the subject areas of reading, mathematics, science, computer competence, U.S. history, and literature. These items were arranged into subject-specific blocks. Noncognitive items asked questions related to students' backgrounds and attitudes. Some noncognitive items were presented to every student; these were placed together in a block called the common block or common core. Other noncognitive items were attitude items specific to one of the subject areas; these items appeared at the beginning of blocks containing cognitive items related to the same subject area.

Each student at all three grade/ages was administered a single booklet containing the common background block followed by three subject-area blocks. The composition of the booklets varied. For example, the balanced incomplete block (BIB) spiralled booklets contained either 0, 1,2 , or 3 reading blocks; the remaining blocks, if any, were in mathematics, science, computer competence, or, in the crise of 4 of the 93 booklets used at grade 1l/age 17 , U.S. history and literature. Note: The reading blocks used for grade 7 /age 13 were identical in every respect to those used for grade $11 /$ age 17 .

Table 4.1 shows the total number of blocks created for each subject area.
${ }^{1}$ Some of the tables for this chapter were generated by David Freund and Alfred Rogers.

Table 4.1
Number of Subject Area Blocks Administered

Subject Area	Grade 3/Age 9	Grade 7/Age 13	Grade 11/Age 17
Reading	6	6	6
Mathematics	7	9	11
Science	7	9	11
Computer Competence	3	6	6
U.S. History	-	-	4
Literature	-	-	4
Total	23	30	42

The incomplete BIB design of these blocks generated a total of 52 booklets for grade 3/age 9, 68 booklets for grade 7/age 13, and 93 booklets for grade 1l/age 17. (Of these, one booklet at each age was specially constructed for use in the Language Minority Probe. The booklet contained a special block of background questions tailored to Language Minority students, followed by the standard common background block, one block of reading cognitive items, and one block of mathematics cognitive items.)

Tables A.1, A.2, and A. 3 in Appendix A show which subject area blocks were contained in each booklet for each grade/age. Tables A.4, A.5, and A. 6 in Appendix A are matrices showing, for each grade/age, the number of times each block is paired with every other block in the BIB spiral sample.

The 1986 assessment included two bridge studies. For 9-year-olds and 13 -year-olds, Bridge A measured the effect of changing the student age definition (from calendar year to school year) and the time of year the assessment was conducted (from fall and winter to spring). Since neither age definition nor time of testing was changed for 17 -year-olds, those students were not included in the Bridge A study. Each Bridge A student took a single booklet containing a mathematics block, a reading block, and a science block. (Booklet configuration is shown in Table 4.2.) The same booklet was administered to an entire assessment session. The mathematics and science blocks were paced (presented aurally using a tape recorder). The tape recorder was turned off for the reading block in each session.

Table 4.2
Bridge A Booklet Configuration

Booklet 非

1	9R1	9M1	9 S 1	13 R 1	13 M 1	13 S 1
2	9 S 2	9R2	9 M 3	13 S 2	13 R 2	13 M 3
3	9 M 2	9 S 3	9 R 3	13 M 2	13 S 3	13 R 3

The second bridge study, Bridge B, measured the effect of changing from tape-recorded administration to print administration. Each student in this bridge sample also took a single booklet containing three blocks: either two science blocks and one mathematics block, or two mathematics blocks and one science block. Booklet configuration is shown in Table 4.3.

Table 4.3
Bridge B Booklet Configuration

	Blocks								
Booklet 非	Age 9			Age 13			Age 17		
4	9M1	9M2	9S3	13M1	13M2	1353	17M1	17M2	17S3
5	9S1	953	9M3	13S1	13 S 2	13M3	$17 \mathrm{S1}$	17S2	17M3

4.1.1 Timing

The length of time allotted for each block changed slightly from 1984 to 1986. In 1984, each age was given a 6 -minute common core of background and attitude questions followed by three subject area blocks of 14 minutes each. At the end of each 14 -minute interval, the students were told to move to the next block. Approximately the first 2 minutes of these subject area blocks were devoted to answering background questions related to the subject area. In 1986, 13 - and 17 -year-olds again had 6 minutes to respond to the common core background and attitude questions; however, for 9 -year-olds, the common core questions at the beginning of each booklet were read aloud to them and took 15 minutes to complete. The 9 -year-olds were given 13 minutes to read and respond to the exercises in each subsequent block; the 13- and 17-yearolds were given 16 minutes. The number of exercises per block was increased to allow for the amount of time allotted for each block. With the exception of one mathematics block and two science blocks at age 9, all subject area blocks at all ages contained some background and attitude questions.

For an overview of the composition of the 1986 assessment blocks see Tables A.7, A.8, and A. 9 in Appendix A. Tables A. 10 , A. 11 , and A. 12 in Appendix A show, by grade/age, the booklets in which each item block appears.

Many items in each subject area were used at more than one grade/age. Tables A. 13 through A. 18 in Appendix A list each 1986 cognitive item in NAEP ID order, with a short descriptor, the block in which the item appears for each grade/age, and the location of the item within the block. Tables A. 19 through A. 25 provide the same information for each noncognitive item. Complete item text is available on the microfiche accompanying the public-use data tapes.

4.2 EXCLUDED STUDENT QUESTIONNAIRE

The excluded student questionnaire was developed and used for the first time in the 1984 assessment. It was designed to gather more information about particular conditions for exclusion and characteristics of the learning experience of excluded students.

The questionnaire was completed by school personnel for every student who was selected for inclusion in the NAEP sample but was unable to respond to items because he or she was judged by school personnel to be non-English speaking, educable mentally retarded, or functionally disabled. The threepage questionnaire was used to gather information concerning special education, language, and other student programs. A copy of the excluded student questionnaire is available on the microfiche accompanying the publicuse data tapes.

Of the 119,137 students sampled for the 1986 assessment, 5, 209 were excluded by the school due to classifisstion as educable mentally retarded, non-English speaking, or functionally disabled. There were 1,476 (4.4 percent) excluded students in grade 3 /age 9 , 1,768 (4.4 percent) in grade 7 /age 13, and 1,965 (4.3 percent) in grade 11 /age 17.

4.3 TEAGHER QUESTIONNAIRE

The teacher questionnaire, developed and used for the first time in the 1984 assessment, was used in 1986 to gather information on teachers of various subjects. One subject from the list in Table 4.4 was designated for each grade/age assessment in each school.

Table 4.4
Subjects Taught by 1986 Teacher Sample

Grade $3 /$ Age 9
English/Language Arts

Grade 7/Age 13
English/Language Arts English/Language Arts Mathematics Science

Grade 11/Age 17 Mathematics Science U.S. History

At grade $3 / a g e 9$ the English/language arts teacher questionnaire also contained several questions about mathematics and science instruction because it was assumed that these younger students were taught all subjects in a self-contained classroom situation.

At grade 7 /age 13 and grade 11 /age 17 , the multistep sampling process for the selection of teachers to answer the questionnaire resulted in students being introduced to as many as five teachers' names before the assessment began.

For each spiral session, a subsample of students was selected and the school coordinator was asked to identify, for each selected student, the teacher in the designated subject area who was teaching the student. These instructors completed the teacher questionnaire.

Responses were received from a total of 774 3rd grade teachers, 7847 th grade teachers, and 1,243 llth grade teachers. A copy of the teacher questionnaires is available on the microfiche accompanying the public-use data tapes.

4.4 COMPUTER COORDINATOR QUESTIONNAIRE

This instrument was used to gather information about subjects aided by computer instruction, computer topics and courses taught, and computer resources. The computer coordinator questionnaire was not linked to students. The questionnaire was completed by the computer coordinator, if there was one, for each school included in the spiral assessment. If the school did not have a full- or part-time staff member who coordinated the use of computers for instruction and/or taught about computers, then no questionnaire was completed by that school.

Computer coordinator questionnaire responses were received from 232 of 632 3rd grade schools, 373 of 5687 th grade schools, and 328 of 433 llth grade schools.

A copy of the conputer coordinator questionnaire is available on the microfiche accompanying the public-use data tapes.

4.5 SCHOOL CHARACTERISTICS AND POLICIES QUESTIONNAIRE

A school characteristics and policies questionnaire was distributed to each participating school to be completed by either the school's principal or another person familiar with data concerning enrollment, facilities, curricula, and staff development.

Responses were received from 583 of 632 cooperating 3 rd grade schools, 521 of 568 cooperating 7 th grade schools, and 392 of 433 cooperating 11 th grade schools. Cooperation rates were $88.7,88.1$, and 82.7 respectively for 3rd, 7th, and llth grade schools; the overall cooperation rate was 86.8 percent.

A copy of the school characteristics and policies questionnaire is available on the microfiche accompanying the public-use data tapes.

CHAPTER 5

Field Administration

FIELD ADMINISTRATION

Nancy Caldwell and Renee Slobasky
Westat, Inc.

5.1 ORGANIZATION

The field work for the 1986 National Assessment was directed by the field director and assistant field director(s) in Westat's home office. Reporting to them were district supervisors, each responsible for contacting districts and schools and conducting the assessments in their geographic region. Each district supervisor hired, trained, and supervised the work of local exercise administrators, who conducted the assessment sessions. ETS home office and regional staff supported the district supervisors, responding to requests for technical information about the assessment and working to convert schools and districts that refused to participate in the assessment.

Because the spring assessment in 1986 differed in so many ways from the fall and wintef, the field organization, staffing and materials were also very different ${ }^{\text {. }}$. During the fall and winter, 16 district supervisors were responsible for all assessment activities in 64 PSUs. During the spring, the number of PSUs increased to 94. The workload within each spring PSU also increased substantially because all three grade/age groups were assessed at the same time. Recognizing this increased workload, Westat expanded the district supervisory staff substantially from 16 ($p l u s$ two backup supervisors) to 54.

The district supervisors were responsible for the following tasks ial each of the areas assigned to them:

- contacts with districts and schools;
- hiring and training local exercise administrators;
- selecting the sample of students to be assessed in each school following the detailed sampling specifications provided by Westat;
- making all arrangements with the schools;
- supervising the conduct of the assessment;
$1_{\text {See section }} 1.2 .1$ for a discussion of the fall, winter, and spring assessment schedules and the grade/age groups assessed during these periods.
- distributing and collecting assessment questionnaires; completing all administrative records and forms; and preparing and shipping completed assessment materials to ETS and Westat.

The district supervisors were trained by home office staff before they began their work in the field. Each supervisor then trained his or her own exercise administrators to work in the local areas.

5.2 OBTAINING DISTRICT- AND SCHOOL-LEVEL COOPERATION

During the summer of 1985 , ETS made preliminary contacts with the states and districts that had schools in the NAEP sample. These initial letters were followed by telephone and in-person contacts by the district supervisors and ETS staff in the early fall. Introductory meetings were held with school and district staff to describe assessment procedures and make preliminary arrangements for the assessment in each school.

The results of the school contacting phase of the project are discussed in detail in the final report on sampling and weighting procedures (Burke, Braden, Hansen, Lago, \& Tepping, 1987, pp. 2-15). To summarize, there was a total of 2,309 schools originally selected to participate in the fall, winter, and spring assessments, including the Language Minority Probe. Of these, 78 were closed or out of scope, leaving 2,231 eligible schools. Cooperating schools (including 133 schools with no eligible students enrolled) numbered 1,927 (86.4 percent). There were 304 refusals. Cooperation was slightly higher among schools selected for the regular NAEP sample than for those selected for the Language Minority Probe (86.8 percent versus 83.6 percent). Further details on cooperation among schools excluding those selected solely for the Language Minority Probe are given in Table 3.3 of Chapter 3 .

Assessments were conducted in a total of 1,887 schools. Of these, 1,794 were cooperating schools in the original sample that had eligible students enrolled. The remaining 93 schools were replacements for refusals.

5.3 SElecting the sakple of Students to be assessed

The schools were given instructions for preparing lists of age and grade eligible students. Because of the Language Minority Probe, schools in the spring assessment were asked to prepare three lists: one of eligible Hispanic students, one of eligible Asian American and American Indian students, and one of all other eligible students. Prior to the assessment date, the district supervisor visited the schools to select the sample and to make final arrangements for the assessment. Supervisors received schoolspecific sampling instructions from Westat's home office, which they followed to select the sample of students to be invited to the assessmeat. If the number of eligible students in a particular school was very different from
what was anticipated, the district supervisor called the home office for revised instructions.

Orce the sample of students was selected, final arrangements could be made with the school for the assessment of those students. Arrangements varied depending on factors that included the number of students to be assessed, the availability of space in the school, and the school's schedule, as well as other considerations. Since the BIB-spiral booklets are selfadministered, there was considerable flexibility in setting up the assessment sessions.

5.4 CONDUCT OF THE ASSESSMENT

Each assessment session took a little over one hour to conduct, although there was some variation depending on how quickly the students arrived for the session and how many bocklets had to be distributed. An introduction and directions were read by the NAEP staff following a prescribed script. The supervisor and exercise administrators monitored the sessions to make sure that students were working on the appropriate sections of the booklets. Quality control visits were conducted by ETS and Westat home office staff to ensure that the assessment sessions were being administered correctly and uniformly by field staff.

As in previous cycles of the assessment, the number of students assessed varied by age group. From among the students invited within participating schools, the percent assessed was highest for grade 3/age 9 (92 s percent), next highest fqr grade 7 /age 13 (89.2 percent) and lowest for grade 11 /age 17 (78.9 percent) . The 1986 and 1984 experiences are compared in Chapter 3 and shown in Table 5.1.

Table 5.1
Comparison of 1986 and 1984 Student Participation Rates by Grade/Age

Grade/Age	Participation Rate	
	$\underline{1986}$	$\underline{1984}$
Grade 3/Age 9		
Grade 7/Age 13	92.9	91.3
Grade 11/Age 17	89.2	87.3
	$i 8.9$	82.8

5.5 REPORT ON THE FIELD ADMINISTRATION

A thorough discussion of the field organization and operations is presented in the Westat Report on Field Operations and Data Collection Activities, NAEP-Year 17 (1985-86) (Caldwe11 \& Slobasky, 1988).
${ }^{2}$ Includes Bridge A for 13 -year-olds and 9 -year-olds.

CHAPTER 6

Materials Processing and Database Creation

$$
85
$$

Ghapter 6

MATERIALS PROGESSING AND DATABASE CREATION

Joinn L. Barone
Educational Testing Service

The following chapters detail the receipt, processing, and final disposition of the assessment materials at ETS as they were transcribed to computer-readable form and placed in an integrated NAEP database to be used for data analysis and reporting. This database is now available to external users via the public-use data tapes (see Rogers, Kline, Norris, Johnson, Mislevy, Zwick, Barone, \& Kaplan, 1988).

The scope of the effort required to perform this aspect of the 1986 assessment is evidenced by the following numbers. For the 1986 assessment,

- more than 150,000 assessment booklets were received and processed.

This processing included:

- optically scanning more than 3 million double-sided pages;
- professionally scoring more than 700,000 student responses on 240 open-ended items;
- manually key-entering and verifying more than 16,000 assessment booklets;
- using the NAEP minicomputer-based transcription system to track, audit, edic, and resolve more than 28 million characters of information;
- for quality control, selecting and comparing more than 160,000 characters of transcribed data to the actual responses in assessment booklets;
- cataloging more than 2 million characters of information on a total of 4,800 assessment items and derived variables, as part of a comprehensive item information database;
- developing a public-use data tape package containing more than 150 million characters of useful information.

These numbers alone indicate the staggering size of 1986 NAEP materials processing and database operations. However, the full extent of this effort
becomes clearer when one considers that over 90 percent of the data transcription activities described in this chapter were started and completed within a six-month period, with a conservatively estimated accuracy rate of fewer than 2.5 errors for every 10,000 characters of information transcribed.

Materials processing and database creation for the 1986 assessment closely paralleled the processes used in the 1984 assessment. This allowed the use of in-place, proven operational procedures and computer systems, which will be highlighted throughout the following chapters.

A major improvement in the 1986 assessment was the introduction of scannable booklets and the concomitant shift of most data transcription from manual key entry to computerized scanning. The NAEF systems were adapted to accommodate scanning technologies and procedures and were expanded to perform remote computer processing via network technologies.

In past NAEP assessments, each of the three grade/age groups were assessed at different times during the school year. This allowed the data transcription to occur over a nine-month period. In the main 1986 assessment, NAEP assessed all three grade/age groups in the spring. The high volume of input combined with a much shorter time period for processing precluded manual entry and verification of student booklets. For this reason, the 1986 assessment booklets were designed to be read by computer scanning devices, and the NAEP data transcription systems were modified to accept the output of the scanning devices.

The flow of materials, creation of data files, and creation of the NAEP database are depicted as an ordered set of processes that are applied either to the assessment materials or to the transcribed data. The following chapters describe each of these processes in detail.

The large volume of collected data and the complexity of the NAEP design, with its spiralled distribution of many booklets, required the development and use of NAEP-specific data entry and management systems, including carefully planned and well-defined editing, quality control, and auditing procedures. This chapter discusses the original 1984 design and implementation of these systems, and the adaptation and use of these systems and processes as applied to the 1986 assessment. The results were effective, resporaive lata management procedures that ensured the quality and integrity of NAEP data, and a NAEP database that met the original objectives of integrity and usefulness, exceeding stringent standards for "correctness" and quality.

Figure 6.1 is a flow diagram that shows the conceptual framework of ordered processes that were applied to the NAEP materials and data files. The dashed line through the center of the figure divides the outline into two sels of processes, processing assessment materials and database creation, described below.

The processes represented by solid-line boxes in the flow diagram were performed at ETS on the paper materials or computer files. The three processes enclosed in dashed-line boxes (sample of schools, field

Figure 6.1

Data Flow Overview

Processing Assessment Materials

$[-]=$ Work Performed by WESTAT \square - Work Performed by ETS
administration, and derive sampling weights) were performed by Westat and are discussed respectively in Chapters 3, 5, and 14. Two Westat reports, the Report on Field Operations and Data Collection Activities, NAEP--Year 17 (1985-86) (Caldwell \& Slobasky, 1988) and National Assessment of Educational Progress--17th Year Sampling and Weighting Procedures. Final Report (Burke, Braden, Hansen, Lago, \& Tepping, 1987), discuss these processes in detail.

6.0.1 PROCESSING ASSESSMENT MATERIALS

The left side of Figure 6.1 depicts the flow of NAEP "paper" materials. Chapter 6.1 describes this flow in detail and discusses how information contained on the field rosters, schedules, and worksheets were used as controlling mechanisms for processing of materials. The figrre follows the path of each assessment instrument (student assessment booklets, school characteristics and policy questionnaires, computer coordinator questionnaires, teacher questionnaires, and excluded student questionnaires), absentee rosters, school worksheets, and administration schedules as they are tracked through the appropriate processes that result in the final integrated NAEP database.

The following is a brief description of the materials processing activities as shown on the left side of Figure 6.1. Each description refers the reader to the section(s) or chapter(s) in which the process is discussed in detail.

Field Administration is the conduct and monitoring of the NAEP assessment in the schools. Chapter 5 summarizes this process.

Materials Receipt refers to receipt and processing of assessment materials at ETS. Section 6.1.1 describes the procedures and forms that were used to check and verify the receipt of documents from the field. It also discusses the follow-up procedures that were initiated when discrepancies were identified and the subsequent batching of NAEP materials for further processing and data transcription.

Professional Scoring is the process that resulted in the scoring of the open-ended NAEP reading, mathematics, science, and computer competence items. Chapter 6.2 describes the items, types of scoring used, scoring operation, reliability checks, and resolution of scoring discrepancies. Entry and editing of this data are discussed in sections 6.1.4 and 6.4.2.

Data Tra scription Systems refeis to the methodology used to transcribe NAEP materials nto computer-readable form. The transcription method used for each type of NAEP instrument is discussed in Chapter 6.1. Chapter 6.3 describes the design, structure, and development of the NAEP-specific data entry system used to transcribe most of the NAEP materials to computer files; it also discusses the tracking and audit mechanisms that were built intc the system to ensure that all data was properly processed and accounted for.

Originally implemented for the 1984 assessment, NAEP's data transcription system has proven to be accurate, efficient, and flexible. It began in 1984 by using manual key entry and verification as the prime vehicle for data entry. In the 1986 assessment it was modified to accept scannable booklets as the main source of input, while retaining the manual entry and verification component for materials that were not designed as scannable documents as well as for scannable documents that for some reason (e.g., torn) could not be read by the scanner.

Editing refers to the ETS procedures that ensured the correctness and integrity of the NAEP data files by (1) validating every field of NAEP data that was entered into computer-readable form, (2) identifying any invalid or inconsistent values, and (3) correcting or flagging as unresolvable those values identified as invalid or inconsistent. Chapter 6.4 describes these procedures.

Quality Control refers to the ETS procedures that assessed the accuracy of the data transcription and editing operations. Chapter 6.5 discusses the quality control procedures used in NAEP data processing and provides a summary of the likely error rates.

Materials Storage refers to the final disposition of NAEP paper materials after processing had been completed. Chapter 6.1 discusses materials storage.

6.0.2 Database Creation

The right side of Figure 6.1 depicts the evolution of the integrated NAEP database from the transcribed data to the final database, available to external users via the public-use data tapes. Chapter 6.6 describes the processes through which the database evolved.

The remainder of this section contains a brief description of each process involved in database creation as shown on the figure. Each description also refers the reader to the section(s) or chapter(s) in which the process is discussed in detail.

Sample of Schools refers to the process performed by Westat to select the schools to be included in the assessment. This process is discussed in Chapter 3.

Data Files refers to (1) the data files created by the ETS/NAEP data transcription, editing and resolution systems and (2) the labeling files (discussed in Chapter 6.6) that contain descriptive information on every item used in NAEP.

Extract is the process discussed in section 6.6.1 that created data files containing specific demographic data fields from the ETS/NAEP data files. These data files were required by Westat to derive sampling weights.

Sample Weights Derivation was performed by Westat and is discussed in Chapter 14. This process produced computer tape files containing sampling weights for every student and school assessed by NAEP.

Merge refers to the final integration of NAEP data files into the NAEP database. This process, discussed in section 6.6.2, merged the NAEP data files, labeling files, and the NAEP sampling weights into one inclusive database.

NAEP Database is the final, integrated NAEP database that contains all 1986 NAEP data. This is the database that is ultimately made available to external users via the public-use data tapes. The structure of the internal NAEP database is discussed in Chapter 6.6; the public-use data tapes, which contain all of the nonconfidential data fields from the internal database, are discussed in Chapter 6.7.

CHAPTER 6.1

Processing Assessument Materials

PROCESSING ASSESSMENT MATERIALS

Alfred M. Rogers and Norma A. Norris
Educational Testing Service

This chapter describes the procedures through which NAEP instruments, schedules, and worksheets were received at ETS, and the methods used in the subsequent scoring, scanning, loading, editing, and resolution of NAEP data.

6.1.1 REGEIPT OF MATERIALS

It was the responsibility of the district supervisor to complete and mail a postcard to ETS at the completion of assessment administration in each school. This card contained the assessed school identification, the number of boxes shipped, and the mode of shipment. The receipt of this card at ETS alerted staff to expect arrival of the shipment within seven working days. If after seven days the shipment had not arrived, ETS notified Westat, who in turn initiated a trace of the shipment. This tracing process was successful in all cases except one, in which the full set of assessment materials from one school was never recovered. Some other shipments broke open in transit. In all, 56 booklets were lost or damaged.

The shipment from each school contained the school worksheet; administration schedule; quescionnaire roster; school, teacher, and excluded student questionnaires; and assessment booklets, bundled by session. The format and content of these instruments are documented in the Westat Report on Field Operations and Data Collection Activities, NAEP--Year 17 (1985-86) (Caldwell \& Slobasky, 1988). The following discussion of check-in procedures presumes an understanding of information contained in and interrelationships among these instruments.

The school worksheet contained summa::y counts of the booklets used in all assessment sessions in each school. The booklets used within each session were c'junted and checked against the count written on the school worksheet. All discrepancies in the counts were referred to the administration schedules for resolution. The booklet numbers from the bundle in question were compared against the listing of booklet numbers on the schedule. If the discrepancy could not be resolved by this process, Westat was notified, who in turn contacted the appropriate district supervisor for resolution.

Two codes, the session code and the batch code, were then assigned to each column on the worksheet and to the corresponding bundle of booklets. The two-digit session code distinguished spiral from bridge sessions and regular from makeup sessions. Codes 1 through 10 identified regular spiral sessions;
code 11 was used for makeup spiral sessions; codes 21 through 25 uniquely identified regular bridge sessions, with the second digit corresponding to the booklet number; and codes 31 through 35 similarly identified the makeup bridge sessions.

The use of a batch identification code was necessitated by the introduction of machine-scannable documents in this assessment. A preprinted, scannable header sheet was attached to each bundle of student booklets to be used to identify it through all subsequent scoring, scanning, entry, and resolution processing. This batch header sheet was pregridded with a unique four-digit sequence code. As each header sheet was drawn from the pile, it was gridded with the age group code, the school and session codes, the current batching date, and the number of booklets to be processed. The age group code was either " N ", " T ", or "S" corresponding to the 9-, 13-, or 17-year-old cohorts. The batch identification code, which consisted of this age group code and the sequence number from the header sheet, was then written at the bottom of the session information on the school worksheet.

The teacher and excluded student questionnaires were then counted and compared against the questionnaire roster. All discrepancies in the teacher and excluded student questionnaire counts were referred to Westat and again, in turn, to the district supervisor for resolution. Field administration procedures permitted a separate shipment of teacher, excluded student, and school questionnaires. The questionnaire roster listed questionnaires not included in the shipment, alerting the receiving staff to expect a later shipment.

If the supervisor was unable to collect the questionnaires on the day of the assessment, a pre-addressed envelope was left at the school so that the school coordinator could mail the questionnaires directly to ETS. There was no other follow-up activity to obtain uncollected questionnaires from school personnel; efforts to encourage school cooperation were focused primarily on student assessment activities.

When all of the student-related materials for a school had been received and checked in, the assessment schedules, school worksheet, assessment booklets, and questionnaires were forwarded to the data operations coordinator for transcription processing. The operations coordinator separated these materials according to the appropriate data entry procedures: the administration schedules were accumulated and shipped in batches to key entry; the school worksheet and excluded student, teacher, and school questionnaires were sent directly to data entry systems. School worksheets were entered into the data entry system on a daily basis. Questionnaires were batched and held for data entry until scheduling permitted. Assessment session bundles were forwarded to the professional scoring area where openended items were scored. When scoring of the open-ended items was completed, the assessment session bundles were shipped to the optical scanning department.

6.1.2 ADMINISTRATION SCHEDULES

The administration schedules contain the demographic characteristics of the students selected for the assessment. This information, which included the sex, ethnic origin, grade, and birthdate of the sampled students, was used by Westat in the derivation of sampling weights. The booklet numbers of the students who participated were transferred to the schedule at the time of the assessment, and the demographic information was in turn transferred to the front covers of the booklets after the assessment.

The demographics of the students who were sampled but did not participate in the assessment (exclusions and absentees) were used to adjust the sampling weights of those who did. The excluded student information could be obtained from the excluded student questionnaire data, but the information on absentees could only be found on the administration schedules. It was therefore necessary to transcribe this information to computerreadable media and combine it with the assessed aud excluded student data.

The administration schedule data was transcribed to computer tape by the key entry systems at ETS. One record was generated for each absent student (line) on the form. The PSU, school, and session codes from the top of the form were repeated for each student on the form. The information transcribed for each absent student included sex, grade, and birthdate. These data were ultimately used by Westat to adjust the sample weights.

At the completion of entry processing, the keyed data tape was copied to a disk file for editing and quality control processing. The editing process consisted of a validation program and an interactive text editor for zorrecting erroneous data. The validation program checked that the demographic information was present and within the appropriate ranges. The schedules were referred to during this process for the resolution of any errors or discrepancies uncovered by the program and to "spot-check" records for quality control.

The assessment schedules were retained by the operations coordinator in anticipation of future questions about and references to the sample. This proved to be the most efficient and compact means of retaining the relevant raw data since the schedules for all three grade/age assessments could be contained in three storage boxes.

6.1.3 SCHOOL WORKSHEETS

Each column of the school worksheet contained information pertaining to the administration activity of each session within a school. This information included the date, time, and location of the administration, the exercise administrator code, and the counts of the students sampled, absent, and assessed. Additionally, each column contained a session code and batch identification code that were written in by receipt processing strff. This information was entered into the system by selecting the first option on the data entry menu (Figure 6.1.1).

The worksheet entry program received its input through two entry screens. The first entry screen (Figure 6.1.2) requested school-level information: the PSU and school codes and the total number of sessions to be entered for that school. This count was further broken down into the four types of sessions: regular spiral, makeup spiral, regular bridge, and makeup bridge. The program would then display the second entry screen (Figure 6.1.3) once for each session, requesting the session-level information. When all sessions for a school had been entered, the program would redisplay the first entry screen, ready to process the next worksheet. The operator could either enter new information or press ENTER to return to the main menu.

Figure 6.1.1
Data Entry System Main Menu

```
NAEP/COD SYSTEM MENU
OPTION:
``` \(\qquad\)
```

1 School Worksheet Entry
2 Load Scanning Tape
3 Student Data Entry/Verification/Resolution
4 Questionnaire Data Entry/Verification/Resolution
X Quit

```

Enter Option Code:

Figure 6．1．2
School Worksheet Entry Screen 非1

SCHOOL WORKSHEET

PSU 非： \(\qquad\)
SCHOOL \＃： \(\qquad\)

TOTAL NUMBER OF SESSIONS： \(\qquad\)
NUMBER OF SPIRAL SESSIONS（0－10）：
NUMBER OF MAKEUP SPIRAL SESSIONS（0－10）：
NUMBER OF ORIGINAL TAPE SESSIONS \((0,1,2)\) ： NUMBER OF MAKEUP TAPE SESSIONS（ \(0,1,2\) ）：

Figure 6．1．3
School Worksheet Entry Screen \＃2

SCHOOL WORKSHEET

PSU \＃：
SCHOOL \＃：——
TAPE／SESSION 非：＿
DATE：\(\quad\) TIME：
EA＇S INITIALS：
EA＇S ID：
\＃TO BE ASSESSED：
\＃ASSESSED：
\＃ABSENT：
\(\qquad\)
\(\qquad\)

BATCH NUMBER：

The entry system controlled the procassing of student data and maintained statistics on the entry activity at the session level. This was accomplished by means of a tracking file, each record of which contained all control and reporting information for one session. The entry of the school worksheet information thus generated a new record on the tracking file for each session, initializing the control parameters.

The operations coordinator was provided with procedures for periodically monitoring and reporting data entry activity. These procedures compared the counts of booklets processed at each stage with the initial counts from the worksheet, and flagged discrepancies. This, in turn, alerted the coordinator to possible missing or extra booklets. If the school worksheet information was determined to be in error, the operations coordinator had the facility to correct the tracking file data to prevent reappearance of the discrepancies in the activity report.

The school worksheets were retained by the operations coordinator in anticipation of later queries, since they could be conveniently stored and easily referenced.

\subsection*{6.1.4 STUDENT ASSESSMENT INSTRUMENTS}

The student assessment booklets were forwarded directly to the scoring area as the complete set of materials was received from each school. The booklets were batched by session, with a batch header sheet attached to the top of each bundle. This preprinted, swannable sheet contained the PSU, school, and session codes, and a unique batch identification code serving to identify each batch. The header sheets were retained with the batches throughout entry processing.

\subsection*{6.1.4.1 Professional Scoring}

The batches of student booklets were sent from the receipt processing area to the scoring area where the open-ended reading, science, and mathematics items were read and scored. The procedures anc guidelines followed in scoring these items are more fully described in Chapter 6.2.

Each open-ended item was provided with a set of scannable bubbles to be filled in by the reader. The bubbles were generally at the bottom of the page on which the item was printed to avoid distracting or confusing the student. When several open-ended mathematics were printed on the same page, the bubbles were printed adjacent to each item to facilitate their scoring. All open-ended reading and science items were provided with an extra set of bubbles to permit secondary scoring of the primary trait scores for interrater reliability analysis. Several of the reading items that were to be evaluated for secondary traits had an additional set of bubbles for each secondary trait score.

All of the spiral batches and some of the bridge batches were processed by four readers: the primary and secondary reading and science reader, and
the primary and secondary mathematics reader. The mathematics readers were located in a separate area from the reading and science readers. Each area had three sets of shelves for controlling the processing of the booklets. The first shelf held the batches to be scored by the primary reader, the second had the batches for the secondary reader, and the third for the completed batches to be forwarded to the next area.

The primary reading and science reader would examine each booklet in a batch and determine if it contained any reading or science open-ended items. If so, the reader's identification code was written in and gridded in the second column of bubbles in the reader identification area on the inside front page. The reader would then locate and read each of the open-ended items for that booklet and grid the first primary trait score and all secondary trait scores into the appropriate bubbles. For every fifth bcoklet read, the reader would place a piece of tape over the primary trait score bubbles in order not to influence the secondary reader. The completed booklets were stacked in the same order in which they were received and the completed batch was placed on the second shelf.

The secondary reading and science reader swoted every fifth eligible booklet from the batch in order to achieve a 20 percent rate of reliability scoring. This reader's identification code was entered into the third column of the reader identification area. The reader then located the items with concealed primary trait scores, read and scored them, and removed the pieces of tape. The completed batch was placed on the third shelf, to be forwarded to the mathematics scoring area.

The primary mathematics reader examined each booklet for the presence of open-ended mathematics items. These booklets were then gridded with the reader's identification code in the first column of bubbles. The responses were then evaluated for correctness and the scores gridded into the appropriate bubbles. The completed batch was placed on the second shelf for processing by the secondary reader. This reader performed a correctness check on every tenth booklet read by the primary reader. If this reader disagreed with the core given by the primary reader, the score was changed in the booklet and recorded on a separate roster. The completed batch was placed on the third shelf, to be forwarded to scanning processing.

\subsection*{6.1.4.2 Scanning}

Before the batches of scored booklets could be sent to scanning, they had to be grouped by age cohort and placed into "capsules" that were then arranged sequentially on "carts." The capsules were cardboard boxes with one open aide to facilitate access by scanning and resolution staff, and hangers on the other side to permit removal from the carts. The carts were transportable, two-sided hansing shelves with sloping sides to permit the capsules to hang with the open sides out while keeping the documents in. The carts were shipped to the scanning area.

The first step in the scanning process was to separate each booklet into its component pages for single-sheet processing by the scanner. Each booklet
was secured by three staples along the left edge. The timing marks for the scanner were also printed along this edge. Two special machines were used to cut off the stapled edge without damaging the timing marks. The guillotine could cut three or four booklets at a time but required a slower, manual setup process. The slitting machine was more automatic, processing one booklet at a time, but was less precise than the guillotine. Careful handling of these booklets was imperative once they were cut, as the scanning program depended on the correct sequencing of pages within each booklet. The guillotined booklets were placed back in their capsules and the corrleted cart sent to the scanning machine.

The scanning machine operator identificu "he age cohort of the booklets to be scanned and started up the appropriate program on the computer. A magnetic tape was pulled from the scratch pile and mounted on the tape drive. Scanning was initiated by placing the sheets from the first capsule into the input hopper of the scanni.cg device. The scanner then read both sides of each sheet and placed it into one of two hoppers. If no errors in readability or sequencing were detected, the sheet went into the output hopper and the next sheet was read from the input hopper. If an error was indicated, the sheet was diverted into the shunt hopper, the program wrote an informational message to the operator's console, and the scanner stopped processing while the operator took appropriate action.

Each page of every booklet was printed with a set of identification marks next to the timing marks. The front cover of each booklet number had a unique set of these marks, and the pages within each block type were similarly identified by block code and sequence number. As the scanner read a booklet cover, the program identified the booklet number and referred to an internal table to determine which blocks were to follow and which page formats were within each :llock.

If a page sequence error was indicated, the operator instructed the program to treat the page as missing and placed the shunted page into the input hopper to be read again. If a page within a block was unreadable, che operator again instructed the program to treat it as missing and placed the sheet perfendicularly on top of the output stack. If a block sequence error or unreadable booklet covel was indicated, the operator instructed the program to insert a dummy record and removed the remaining pages of that booklet and placed them perpendicularly on top of the output stack.

As each batch completed scanning processing, it was removed from the output hopper and placed back in its capsule. The next batch was taken from its capsule and placed into the input hopper and the machine started again. When the last batch was completed, the operator terminated the program, dismounted the tape, and removed the listings from the printer.

The output data tapes were forwarded to the VAX computer area for loading processing. The scarned documents were returned in their original cartons to the resolution processing area.

\subsection*{6.1.4.3 Loading}

The scanning tapes were received and checked in by an operator at the VAX computer area. The operator initiated the loading program by selecting the second option on the data entry menu.

The progran's first input request was the tape number, a six-digit code printed on an external label on the tape and coded internally by the scanning program. The operator then mounted that tape on the tape drive and put the drive online. The program checked that the right tape had been mounted and proceeded with the loading process. As it processed the tape, the program printed the batch code and record count for each batch to the operator's terminal, to assure the operator that the program was running properly. When the program reached the end of the tape file, it printed out three listings, rewound and dismounted the tape, and returned to the main menu. The three listings consisted of an error log, a batch listing, and an audit listing.

The error log was a running commentary and summary of the processing of the tape. Each log was identified with the tape number, file name, and date of the loading run. The start of each batch was recorded with the batch nunber and its corresponding school and session codes. Any disagreement between these codes and those entered from the school worksheet was recorded at this point. Any booklets that did not belong to the session type (e.g., bridge booklets in a spiral session) were also listed here as well as all unscannable booklets. At the end of each batch, the number of scannable and unscannable booklets weie printed.

The batch listing reported the information from the front cover fields of each booklet within each batch. This listing could be checked against the administration schedules for discrepant or missing information.

The audit listing identified the data problems found within each batch. Each data anomaly was identified by the batch sequence number, booklet number, section, and item number to facilitate location of the data in the raw instruments by resolution staff.

The printed output was forwarded to the resolution area to be joined with the scanned materials. The tape was retained in the VAX computer area.

\subsection*{6.1.4.4 Resolution Processing}

The error \(\log\) and batch listing were retained by the operations coordinator. The audit listings were separated by batch number and matched with the appropriate scanned materials. If the error \(\log\) indicated any unscannable booklets within a batch, they were pulled and manually entered and verified through the data entry system. Upon completion of verification processing, the system produced an updated audit listing that replaced the one output from the load process.

Staff assigned to resolution processing reviewed the audit listing, checked the actual responses in the booklets wherever asterisks or question marks were indicated, determined the appropriate value(s) to be coded in the
data file, and wrote these new codes on the audit listing. The asterisks indicated multiple gridding of a single-response item; question marks flagged critical fields from the front cover, such as sex or birthdate, that were incorrectly gridded or out-of-range and fields from unscannable pages.

Access to the student data for entry, verification, or resolution processing was gained through the third option on the data entry menu. The first screen (Figure 6.1.4) requested the identification number of the batch to be processed; the PSU, school, and session codes as a secondary check on the batch; and a code for the processing mode. The second entry screen (Figure 6.1.5) prompted for input of the batch serial number and the student ID number as a secondary check.

If the program was in the entry mode and no data record for the booklet could be found, the program would set up to create a new record and request entry of the booklet cover data. If in verification mode and the data record had not been already verified, the program would request re-entry of the cover data and compare against the data record. If in resolution mode and the data record had been through verification or loading processing, all data fields were displayed and the operator could either modify these fields or advance to the rest of the entry screens for that booklet.

Figure 6.1 .4
Student Session Data Entry Screen

NAEP YEAR 17 STUDENT DATA

BATCH:
PSU:
SCHOOL: \(\qquad\)
SESSION:

MODE:

Figure 6.1 .5
Student Booklet Cover Data Entry Screen

\section*{STUDENT ASSESSMENT BOOK}

BATCH SERIAL 非: \(\qquad\) - EA: \(\qquad\) G: \(\qquad\) SEX:

B: \(\qquad\) R: - P/S: \(\qquad\)
STUDENT ID: \(\qquad\)
BOOK NO. \(\qquad\)

YEAR 17
AGE CLASS
BLOCKS \(\qquad\)

The resolution mode of the entry system permitted the operator to access data records, display the field values, and make corrections to individual fields. A change in any data field under resolution mode also generated a record for the audit file, find the program produced an updated audit listing at the completion of resolution processing for each batch. There was no limit to the number of times a session or data record could be processed under resolution.

On completicn of resolution processing, each bundle was stored in a labeled box and held for final editing and quality control processing.

A final validation was performed when the data entry work files were spooled onto a master student data file. This spooling program checked every data field of every student record for out-of-range values and question marks. A listing similar to the audit listings for each session was produced, which resolution staff then used to identify and correct the remaining data anomalies.

The quality control process selected a random sample of each booklet type from the master student file, identifying those booklets for extraction from the raw data. The designated booklets were located, pulled from their
boxes, and forwarded to quality control staff. The responses in each booklet were then compared with their coded data values in the data file. The full details and results of the quality control process are presented in Chapter 6.5. On completion of quality control processing, the booklets were returned to their boxes.

When open-ended items in an assessment also have been used and professionally scored in a previous assessment, a reliability check of the current scorers versus the previous scorers is required. To accomplish this task it was necessary to identify booklets that contained a block of items within the given subject area, extract the booklets from the spiral batches, and store them for future use. A computer program was developed to generate listings by age level of the booklets to be extracted. The listings contained the batch number, sequence number of the booklet within a barch, and the student booklet number. Operations staff went through each batch extracting the appropriate icoklets and boxing them by subject area booklet type. These booklets were then shipped to the ETS data retention area for future use. At the completion of the operational process all remaining assessment booklets were shipped to the ETS data retention area for long-term storage.

\subsection*{6.1.5 QUESTIONNAIRES}

The questionnaire instruments were separated by type and accumulated by the operations coordinator as they were received from mail processing. These data were also transcribed through the NAEP data entry system but on a lower priority basis than the student booklets. The excluded student questionnaires received higher priority than the teacher and school questionnaires, since the demographics of the excluded students were used in deriving the sampling weights of the assessed students. Every effort was made to keep the processing rate of these instruments in pace with the student data entry, in order to have the two files completed at the same time.

Processing of the questionnaire data was initiated by selecting the fourth option on the Data Entry menu. The first entry screen (Figure 6.1.6) prompted for input of the questionnaire type, age group, and processing mode. The questionnaire entry programs followed the same model as the student entry program with the absence of a tracking file and session batching. Entry, verification, and resolution modes were available; audit reports were initiated by the operations coordinator.

Figure 6.1.6

\section*{Questionnaire Data Entry Screen}

NAEP YEAR 17 QUESTIONNAIRE MENU

TYPE:

\section*{AGE:}

1 AGE 9
2 AGE 13

3 AGE 17
4 COMPUTER COORDINATOR

MODE:
1 ENTRY
2 VERIFICATION
3 RESOLUTION

The excluded student questionnaire entry program first displayed a screen for entry of the front cover data. The operator was prompted for the serial numver of the booklet to be processed. An error condition occurred if either a record with that serial number was found under entry mode or no record was found under verification or resolution mode. In either case the operator was asked to verify that the correct number had been entered. If the problem persisted, it was referred to the operations coordinator for resolution. The remaining cover information, including PSU and school code, student sex, ethnicity, grade, and birthdate, were processed as for the student booklet covers. The program then displayed a single screen for processing the responses within the questionnaire. When the operator pressed ENTER to terminate processing for that booklet, the program redisplayed the cover entry screen, ready to process another booklet. A blank field entered in the serial number field returned the program to the primary menu.

The teacher questionnaire entry program first displayed a screen for ertry of the cover information. It processed the serial number in the same fa.shion as did the excluded student questionnaire entry program. The cover information only included the PSU, school, and teacher codes. As the longest q'estionnaire instrument, the teacher questionnaire required three screens for entry processing due to software limitations as well as general appearance and ease of reading. Completion of processing for each booklet returned the program to che cover entry screen, where the entry of a blank serial number returned the program to the primary menu.

The school questionnaire entry program also started with a display of the cover entry screen. The only information requested for this instrument, however, was the PSU and school code, which also served as the booklet identification number. Due to the large number of questions in this
questionnaire, entry processing required two screens. Completion of processing for each booklet returned the program to the cover entry screen, where the entry of a blank PSU and school code returned the program to the primary menu.

After all questionnaires had been received and processed through the entry system, a validation program was run against all data values in all records. All remaining data errors or discrepancies were then corrected using the resolution mode of the entry system. A final audit listing was generated, recording all entry activities for each questionnaire.

The questionnaires were subjected to the same quality control procedures that the student data received. The details of the sampling rates and results are discussed in sections 6.5.2 through 6.5.4.

At the completion of quality control processing, the questionnaires were packed into boxes and shipped to the ETS data retention area for long-term storage.

\section*{CHAPTER 6.2}

\section*{Professional Scoring}

\title{
PROFESSIONAL SCORING
}

\author{
Anne Campbell
}

Educational Testing Service

The professional scoring of the 1986 NAEP assessment was conducted for open-ended reading, mathematics, science, and computer competence items from all three grade/ages. Three different groups of scorers were assigned to do the scoring: one group for mathematics, another group for reading and science, and a third group for computer competence. The two groups for mathematics and reading/science worked concurrently; a separate scoring operation was conducted later to score the open-ended computer competence items.

The 1986 NAEP assessment included 213 open-ended mathematics items: 37 at grade 3 /age 9,86 at grade 7 /age 13 , and 90 at grade 11 /age 17 . Of those items, 13 were used at both grade 3/age 9 and grade 7 /age \(13 ; 69\) were used at both grade 7/age 13 and grade 11/age 17; and 6 were used at all three grade/ages. Also included in the assessment were 27 open-ended reading, science, and computer competence items as listed in Table 6.2.1. This table provides an overview of the items, including NAEP number, grade/age level, and score ranges.

The rest of this chapter will include a description of the scoring schemes and will discuss the scoring operation, including training, work
flow, and reliability. flow, and reliability.

\subsection*{6.2.1 DESCRIPTION OF SCORING}

\subsection*{6.2.1.1 Mathematics}

All open-ended mathematics items were scored on a right-wrong basis: l-correct; 2-incorrect (omitted responses were scored as 0). Answers written on the answer lines were the basis for the scores; however, if the student left the answer line blank, consideration was given to answers written under the problem or answers written where the student had figured out the problem. Scores were indicated by gridding in scoring ovals at the bottom of the page where each item appeared.

\subsection*{6.2.1.2 Reading}

All oper!-ended cognitive reading items were scored according to criteria developed for each item. These criteria were defined to evaluate how well students responded to a reading passage when asked to perform such tasks as

Table 6.2.1
Distribution of Open-Ended Reading, Science
and Computer Competence Items
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item Name} & NAEP Item & \multirow[t]{2}{*}{\begin{tabular}{l}
Reading (R) \\
Science (S) \\
Computer (C)
\end{tabular}} & \multirow[b]{2}{*}{3/9} & \multicolumn{2}{|l|}{Grade/Age} & Primary & Secondary \\
\hline & Number & & & 7/13 & 11/17 & Ranges & Score \\
\hline Inside My Head & S007001 & R & X & X & X & 0-9 & \\
\hline Eggplant I & N021801-2 & R & & X & X & 0-5,9 & Yes \\
\hline Eggplant II & N021805 & R & & X & X & 0-4,9 & \\
\hline Goods to Market & N003100 & R & X & X & X & 0-5, 7, 8, 9 & \\
\hline Jacob & N021301-2 & R & X & X & X & 0-4,9 & Yes \\
\hline Battery/Bulb & N/413601 & S & X & X & & 0-3,9 & \\
\hline Candle & N416701 & 5 & X & & & 0-2,9 & \\
\hline Circuit & N424802 & S & & & X & 0-3,9 & \\
\hline Hours of Daylight & N420\%01 & S & & X & & 0-3,9 & \\
\hline Liquids Freeze & N425701 & S & & & X & 0-4,9 & \\
\hline Pendulum & N430801 & S & & & X & 0-3,9 & \\
\hline Plant Cell & N431301 & S & & & X & 0-4,9 & \\
\hline Salt/Sand & N423201 & S & & X & & 0-4,9 & \\
\hline Snake/Mouse & N428201 & S & & & X & 0-4,9 & \\
\hline Sun/Moon & N434401 & S & X & & & 0-3, 9 & \\
\hline 2 Batteries/Bulb & N437001 & S & & & X & 0-4,9 & \\
\hline Cats and Dogs & N605301 & C & X & X & X & 0-3,9 & \\
\hline Computer 5 Times & N605701 & C & X & X & & 0-3,9 & \\
\hline Logo Pictures & N609201 & c & X & X & & 0-4,9 & \\
\hline Castle/Raccoon & N609602 & C & X & & & 0-3,9 & \\
\hline Jobs 1 & S603401-2 & C & & X & & 0-9,99 & Yes \\
\hline Jobs 2 & S603501-2 & C & & X & & 0-9,99 & Yes \\
\hline Quiz 1 & N606101 & C & & & X & 0-3, 9 & \\
\hline Quiz 2 & N606102 & C & & & X & 0,1,3,9 & \\
\hline Quiz 3 & N606103 & C & & & X & 0-3,9 & \\
\hline Basic Program & N608401 & C & & & X & 0-3,9 & \\
\hline Ace Computer & S604501 & C & & & X & 0-3,9 & \\
\hline
\end{tabular}
-116-
identifying the author's message and substantiating their interpretation, predicting on the basis of the reading passage, supporting an interpretation, and comparing and contrasting. Criteria for each item were associated with specific score points in a scoring guide. The guides included score points of 0 to 4 or 0 to 5 and 9 (and in one case score points of 7 and 8). Readers assigned scores of 0 and 9 (and for the one exception, scores of 7 and 8) to responses that were blank, undecipherable, off-task, or contained a statement to the effect that the student did not know how to do the task. The remaining scores defined a continuum of success in completing the task, with a score of 1 indicating an unsatisfactory response and a score of 4 or 5 indicating a response that went beyond the essentials by providing more detail and being more coherent. (Note that because of changes in the way that scoring stardards were applied, the 1986 results on item NOO3100, "Goods to Market," are not strictly comparable to the 1984 results.) Some items also required secondary scores, which generally involved categorizing the kind of evidence or details the student used as support for an interpretation. Primary and secondary scores were gridded in scoring ovals at the bottom of the page where each item occurred. One reading background item was scored accozding to a guide in which the score points categorized the type of response the student gave.

\subsection*{6.2.1.3 Science}

The open-ended science items were also scored according to a rubric developed for each item. The criteria for each score point focused on how correctly the student answered the questions. With the exception of one item that was scored on a correct-incorrect basis, the scores for the items ranged from 0 to 3 or 0 to 4 and 9 :

0,9: These scores were given to responses that were blank, undecipherable, off task or contained a statement to the effect that the student did not know how to do the task.

1: This score indicated an incorrect response to the question.

2: This score indicated an answer that was correct to a point but contained some misinformation or was too generalized.

3: This score indicated a correct answer.
4: This score, when present, indicated a correct, detailed answer.

Item scores were gridded in scoring ovals at the bottom of the page where each item occurred.

\subsection*{6.2.1.4 Computer Competence}

The scoring of the open-ended computer competence items was a separate operation from the scoring of the other items. Most open-ended items were scored on a standard scale:
\(0=\) No response
1 = An attempt was made, but incorrect
\(2=\) A response indicating students had some idea of what they were doing
3 = Correct response
\(4=\) Best possible response
\(9=A n\) "I don't know," off-task, or irrelevant response

Some (especially noncognitive items) were scored by grouping responses into various categories.

\subsection*{6.2.2 THE SCORING OPERATION}

\subsection*{6.2.2.1 Scorers}

Eigint persons and one assistant scoring supervisor who also scored reading and science items were assigned to the scoring of the mathematics items at all three levels. These people had at least a high school education, and the assistant supervisor was an experienced mathematics teacher.

Seven persons and the scoring supervisor from the NAEP staff scored the open-ended reading and science items. Generally the readers had at least BA degrees in science, education, or English. The group included men and women of various ages who had lived in various parts of the country. One of the readers with a strong science background was designated as the science assistant responsible for reviewing discrepancies with science items.

Six persons and a NAEP staff member scored the open-ended computer competence items. A majority of the people were college students who were majoring in technical fields.

\subsection*{6.2.2.2 Training: Mathematics}

Because the scoring for the mathematics items was on a right-wrong-omit basis, lengthy training was not necessary. The orientation to the scoring involved familiarizing the scorers with the procedures for scoring mathematics and with the mathematics guides, which consisted of a listing of the right answers for the items in each of the blocks.

\subsection*{6.2.2.3 Training: Reading and Science}

Before training, the NAEP scoring supervisor, the assistant scoring supervisor, and the science assistant worked with NAEP test development staff to prepare training sets and to refine the scoring guides.

Training was done \(c n\) all the reading and science items at all three grade/age levels. Training involved explaining the item and its scoring guide, discussing resporses that were representative of the various score points in the guide, and then scoring and discussing approximately 65 to 100 randomly selected responses for the reading items and 25 to 50 responses for the science items. The purpose of the training was to familiarize the group with the scoring guides and to reach a high level of agreement among the scorers. After the group training was completed, each scorer scored the items in each of nine bundles of booklets. Their scores were recorded and a follow-up session was held to discuss those responses for which there was a wide range of scores. Once the follow-up session was completed, the scoring began. Initial training was completed in approximately one week.

As a follow-up to training, notes on various items were compiled and distributed to the readers for their reference. In addition, short training sessions were conducted when the scoring supervisor ascertained in reviewing discrepancies that particular items were presenting difficulties. The scoring supervisor also consulted with individual readers as the scoring progressed. When a reader was judged to be causing a discrepancy, the supervisor would discuss the response and its score with that reader.

\subsection*{6.2.2.4 Training: Computer Competence}

Training for the computer competence items followed the same procedures as for reading and science. Short training sessions were also held whenever peculiar responses occurred that had not been covered in the initial training. The initial training lasted for one and one-half days.

\subsection*{6.2.2.5 Assignment of Work: Mathematics, Reading, and Science}

Two separate groups of scorers were scoring simultaneously, one group scoring the mathematics items and the other group scoring the reading and science items. Batches of booklets were first scored by the reading/science readers and then sent on to the mathematics scorers. Both the mathematics scorers and the reading/science readers received the booklets in batches as they were received from the schools. A particular scorer scored either all the booklets in a bundle that had mathematics items or all the booklets that had reading and science items. Because of the spiral design, a scorer would encounter many, if not all, of the items at a grade/age level as he or she scored a batch of booklets. Furthermore, the scorers cycled themselves through the three grade/age levels so that the scorers had continual exposure to all items at all ages throughout the scoring.

The 1986 assessment included one open-ended reading item that had also been administered in 1984. To ensure consistent scoring across assessments, the 1986 readers were trained on sample responses from both the 1984 and the 1986 assessments. Then, to check for reliability, a 20 percent subsample of the 1984 responses was retrieved, the scores were masked, and the responses were distributed to and rescored by the readers. This rescoring was performed concurrently with the scoring of the 1.986 responses.

\subsection*{6.2.2.6 Assignment of Work: Computer Competence}

For the scoring of the computer competence items, the booklets with those items were sorted by booklet number and then batched in bundles of 25 . A scorer then scored all the items in all the booklets in a particular bundle. Scorers also cycled themselves through the booklets at the various grade/age levels to ensure consistency in scoring overlap items. Those scorers with minimal computer programming background, however, did not score the programming items at grade 7 /age 13 and grade 11 /age 17 .

\subsection*{6.2.2.7 Reliability and Resolution}

Ten percent of the mathematics items were subject to a correctness check, in which a second scorer checked to see that the first scorer had correctly scored the items. If the second scorer found a mistake in scoring, he or she corrected it. To keep track of the reliability of each scorer, the second scorer kept a tally of how many items he or she checked each of the other scorers and a tally of how many times he or she had to correct a score. This procedure was followed because the mathematics scoring was done on a right-wrong-omit basis and because the scoring guides were exact as to the correct answers. Results of this correctness check showed that the first scorer was correct 99 perce \(t\) of the time.

Twenty percent of the reading and science items were subject to a reliability check, which entailed a second reading by a different reader. To preyent a second reader from being influenced by the first reader's scores, the first reader masked all the scores in every fifth booklet in a batch. Th.ese booklets were passed along to a second reader. All discrepancies were then reviewed by the scoring supervisor or science assistant.

The same general procedures were followed for the computer competence scoring: twenty percent of the responses were rescored; second scorers did not see the first scores; discrepancies were checked by the scoring supervisor.

In analyzing reader reliability, two statistics were chosen: the percent of exact agreement and the reliability coefficient. The percent of exact agreement is the percentage of times that the two readers agreed exactly in their ratings. The reliability coefficient is the intra-class correlation among readers. The results for each grade/age are shown in Table 6.2.2. The number of responses analyzed is indicated first; the second
Table 6.2.2
Percentages of Exact Score Point Agreement and Intraclass Correlation Coefficients

column is the percent of exact agreement; and the third column is the reliability crefficient.

These results show a very high degree of agreement between readers. Table 6.2.3 summarizes the statistics by grade. For all three grades no exercise had less than 91 percent exact agreement; several items had agreemen+ as high as 99 percent. The reliability coefficients are also high, ranging from . 92 to 1.00 .

Table 6.2.3
Reliability Statistics for Scoring of Open-Ended Items
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Grade} & Number of & Low & High & & \\
\hline & Exercises & Percent & Percent & \(\underline{\text { Low r }}\) & High \(r\) \\
\hline 3 & 9 & 93.1 & 99.6 & . 94 & 1.00 \\
\hline 7 & 14 & 93.3 & 99.5 & . 92 & 1.00 \\
\hline 11 & 16 & 91.0 & 99.4 & . 95 & 1.00 \\
\hline
\end{tabular}

\subsection*{6.2.2.8 Data Entry}

When the professional scoring was completed, the batches of booklets were sent to scanning. (See Chapter 6.3 for details concerning the scanning process and Chapter 6.4 for information concerning editing data.)

\section*{CHAPTER 6.3}

\section*{Data Transcription Systems}
\[
127
\]

Chapter 6.3
DATA TRANSCRIPTION SYSTEMS

\author{
Alfred M. Rogers \\ Educational Testing Service
}

The transcription of the student response data into machine-readable form was achieved through the use of three separate systems: scanning, loading, and resolution.

The student instruments were printed in scannable format to allow the transcription of marked responses in the booklets to computer-readable form on a magnetic tape by a programmable optical scanning machine. The first part of this chapter will describe the scanning equipment, the programs and data used by the machinery, and the ETS quality control standards and procedures.

The data contained on the scanning tapes were edited and loaded into an online data entry and resolution system similar to that used in the 1984 assessment. This loading procedure validated each scanned data field, reformatted the data records to be compatible with the resolution system, and reported all problems for subsequent resolution. The second part of this chapter details the loading procedure.

A modified form of the data entry system developed for the 1984 assessment was used for isisolution of the scanned data, entry of the documents rejected by the scanning machine, and entry of the questionnaire instruments. The third part of this chapter will provide an overview of this system, which is fully described by Rogers (1987).

Figure 6.3.1 is a schematic diagram that represents the flow of student assessment materials through the data transcription system. The reader may refer to this diagram for clarification of the relationships among the components of this system.

\subsection*{6.3.1 SGANNING}

The student booklets were scanned on a National Computer System W201 scanning system. The scanner was controlled by a Hewlett Packard 1000 minicomputer. This system also included a disk drive for storage of the scanning programs, a tape drive for the output of scanned data records, and a printer for the periodic dumping of records for quality control checking. The scanning programs used were specifically written for NAEP using the assembler language of the Hewlett Packard.

Figure 6.3.1

\section*{Intelligent Data Entry System}

123

An optical scanner operates by sweeping a horizontally oscillating light beam across a vertically moving sheet and detecting reflections of the beam from pencil marks. The hardware logic of the scanner treats the page as a rectangular array of scannable areas, each of which is assigned a reflectance value from 0 to 15 . This array of values is passed to the seanning program software, to be translated into response data.

After the first side of a sheet has been scanned, it is pushed through a loop that brings the other side of the sheet tu face the scanning beam. A similar array of reflectance values is passed to the program that must then not only translate it into data, but decide whether to route this page to the output hopper and read in the next sheet or route it to the shunt hopper and stop processing.

The paper and inks used in producing scannable documents are required to have very low reflectances. A special set of marks were printed down one side of each page at equally spaced intervals to enable the scanning hardware to align each sheet and adjust the scanning rate to the movement of the sheet. These timing marks were printed using a highly reflective ink.

Each page of each item block had its own unique format in terms of the arrangement of the response and scoring bubbles. The scanning program had to be able to identify a given page, determine which parts of the returned array to process, interpret the reflectance values, and transcribe them to data codes on the output record. Each page was printed with a set of marks next to the timing marks that were used by the program to uniquely identify it by block code and page number. The booklet covers were similarly identified according to booklet number.

The scanning program logic used two sets of tables to control scanning processing. When a booklet cover was scanned, the program used the booklet number and the first table to determine which blocks were to be processed. Each block code, in turn, was referred to the second table to determine the number, formats and sequence of its constituent pages. By reading the booklet cover, the program "knew" which pages would follow and in what order.

The scanning program rejected pages for one of two reasons: unreadable or out of sequence. A page was unreadable if the timing or identification marks had been corrupted by either tearing, improper trimming, or confusing stray pencil marks. If the unreadable page happened to be a booklet cover, the operator would instruct the scanner to pass the remaining pages up to the next booklet cover into the shunt hopper, place the pages perpendicularly on top of the output stack, and resume processing with the next booklet. For any other page type, the operator instructed the program to substitute question marks for the data values for that page and proceed with the next page.

Pages out of sequence were generally attributable to collating errors in printing. When the program encountered this type of error, the operator would direct the scanner to shunt the remaining pages of the booklet and then place them perpendicularly on the output stack.

The scanning program wrote three types of data records onto the magnetic tape. The first was a batch header record, containing information gridded onto the batch header sheet by receipt processing staff. The second was a data record containing all of the translated marked bubbles from all pages within a booklet. The third type was a dummy data record, serving as a place holder in the file for a booklet with an unreadable cover sheet. The origin code was a data field written in the same location on all records to distinguish them by type.

The batch header record preceded all data records for a given batch. As the scanning program processed the header sheet, it retained the batch identification code and initialized a batch sequence number to one. The batch identification code and sequence number were written to each record; the batch header record always received a sequence number of one, the first data record was assigned number two, and so forth. The scanning machine was directed to stamp the batch identification code and sequence number on each page of a booklet. This greatly facilitated the location of individual pages within batches by resolution staff.

Each data record was formed by collecting the transcribed marked bubbles from each page of a booklet, placing them into a buffer area within the program, and writing the buffer to tape when the last page of the booklet had been processed. Several options were considered in designing the format of the output data records. One which required a fixed column position for each item response value would have been very large due to the number of items in the assessment, and very sparse, due to the BIB spiral design. Another which had the response data strung out in contiguous fields across items and blocks was more consistent with the format of the data records in the NAEP data entry system, but would have been difficult to check in listings for quality control. The format adopted for this assessment had fixed column positions for the booklet cover data fields and scorer identification codes. The response data started at fixed positions for each positional block, with the item responses in contiguous fields.

The data values from the booklet covers and scorer identification fields were coded as numeric data. Unmarked fields were coded as hyphens (-) except for the race, sex, grade, and birthdate fields, which were returned as question marks (?) to alert processing staff of missing or uncoded critical data. Fields that had multiple marks were coded as asterisks (*). The data values for the item responses and scores were returned as alphabetic codes. The multiple-choice, single-response format items were assigned codes depending on the position of the response alternative; that is, the first choice was assigned the code "A", the second "B", and so forth. The circle-all-that-apply items were given as many data fields as response alternatives; the marked choices were coded as "A" and the unmarked choices as hyphens. The open-ended items had 10 bubbles labeled from zero to nine; a marked zero was coded as "A", a marked one as "B", and so on up to "J". As with the cover data fields, unmarked responses were coded as hyphens and multiple marks as asterisks. The fields from unreadable pages were coded as question marks again as a flag for resolution staff to correct.

\subsection*{6.3.2 DATA LOADING SUBSYSTEM}

Each magnetic tape produced by the scanning system contained data for one or more assessment sessions for one of the age groups. The data records on these tapes conformed to a fixed format. This data now had to be edited for type and range of response, transformed to a compressed format compatible with the data entry system files, and loaded into the database for resolution processing. A procedure for accomplishing all of these tasks was designed and developed for this assessment.

The data records on the scanning output tape were ordered in the same sequence as the paper materials were processed by the scanner. A record for the batch header preceded all data records belonging to that batch; each set of records belonging to one batch were separated from the others by its batch header record. The origin code field on each record served to distinguish the header records from the data records.

The processing of each batch began with the identification of the header record. The batch idenifification number on this header record provided the link between the subsequent data records on the tape and the tracking file generated by the school worksheet entry program in the data entry system. The load program used the batch identification number to locate and retrieve the processing information for that batch from the tracking file. The program then verified that it had the correct batch by comparing the PSU, school, and session codes gridded on the header record with the same codes in the tracking record.

If a batch code could not be located in the tracking file, the program would generate a new tracking record, using only the information contained on the header record, and record this condition on an error log file. If a batch code could be located but the school or session codes did not agree, the program would record this conflict in the error log and continue processing.

The batch header record also contained the date that the session materials were batched together, and the number of booklets batched by the receipt processor. This information was transferred to the tracking record for later processing and reporting.

The reading of a batch header record also initiated the generation of two new files in the entry system database: the data file and the audit file. As the program processed each record within a batch from the tape file, it would write the edited and reformatted data records to the data file and record all errors and special codes in the audit file. The data fields on an audit file record identified each data problem by the batch sequence number, booklet serial number, section or block code, field name or item number, and data value. The program would generate a listing of the data problems after each batch had been processed, to be printed at the termination of the program.

As the program processed each data record it would first read the booklet number and check it against the batch session code for appropriate session type (bridge or spiral). A mis-match was recorded in the error log and processing continued. The booklet number was then compared against the first two digits of the student identification number. If they disagreed, due to improper gridding, a message was written to the error \(\log\) and the booklet number was substituted into the student number. The remaining bocklet cover fields were then read in and validated for range. The PSU and school codes were compared against those from the tracking record; the range of grade codes was dependent on the age cohort being processed; and the range of birth dates was dependent upon the session type as well as the age cohort. All data values that were out of range were replaced with question marks and recorded on the audit file. All data fields that were read in as question marks or asterisks were also recorded in the audit file. The booklet cover data fields were written to a batch listing file that would be printed at the end of load processing. This listing could be compared against the administration schedule to assist in resolving booklet cover data r oblems.

The processing of the scorer identification code fields was not as straightforward. If a booklet contained any open-ended mathematics items, the first scorer field should have been filled. If it contained any openended reading or science items, the second field should have been filled and the third may have had data if it had been part of the reliability sample. The program had to determine from the booklet number whether the booklet contained any open-ended items and of what type. It would then flag as erroneous any incomplete field that should have been filled, or any nonblank field that should have been empty and record the error in the audit file. Further, it would remember how many scorer fields of each type were marked for later processing of the open-ended item scores.

The edited booklet cover and scorer identification fields were appended to the batch sequence number and transferred to an output buffer area within the program. As the program would process each block of data from the tape record, it would append the edited data fields to the data already in this buffer. The output data record, in this "compressed" format, was compatible with the NAEP data entry system.

The program was now prepared to cycle through the data areas corresponding to the item blocks. The task of translating, validating, and reporting errors for each data field in each block was performed by a subroutine that required only the block identification code, the string of input data, and the number of scorers who gridded the appropriate identification fields for that block. This routine had access to an internal table that had, for each block, the number of fields to be processed, and, for each field, the field type (alphabetic or numeric), the field width in the data record, and the valid range of values. The routine would then process each field in sequence order, performing the necessary translation, validation, and reporting tasks.

The first of these tasks was checking for the presence of hyphens, asterisks or question marks. Fields containing asterisks and question marks were recorded in the audit file and processing continued with the next field.

No action was taken on hyphen-filled fields as that code indicated nonresporse. The field type code dictated whether numeric or alphabetic codes were to be output for a data field. The next step examined the type code and translated the input data from alphabetic to numeric if so indicated. The field was then validated for range of response, recording anything outside of that range to the audit file. The field type code made a further distinction among open-ended item scores and other numeric data fields. If the data field was an open-ended item the routine used the passed value of the number of scorers to determine if a score should have been marked. If no scorer codes were indicated and the item was marked, or a scorer code was gridded and the item was not marked, the discrepancy was noted in the audit file. If the current block was either a reading or science block, the routine would look ahead to the next field for a secondary scoring and compare its presence against the absence of a second scorer code and vice versa and again record a discrepancy in the audit file. Moving the translated and edited data field into the output buffer was the last task performed in the processing loop.

The routine passed the edited data string back to the program, which then appended it to the current output buffer and set up to process the next block within the booklet. The completed string of data was written to the data file, using the batch sequence number as the key for direct access by the entry system programs.

When the next batch header record or end of file was encountered, the data and audit fíles were closed, an audit listing was generated, and a count of the number of records processed written to the message log. The tracking record for that batch was updated with the current date and time and the record count, then rewritten to the tracking file.

When the erid of file was reached, the program closed and rewound the tape file, closed the tracking file, and spooled the message log, the audit listing, and the batch listing to the printer.

\subsection*{6.3.3 DATA ENTRY AND RESOLUTION SYSTEM}

The resolution program was essentially the same program used in the 1984 assessment (see Rogers, 1987) for data entry, modified to accommodate changes in the assessment design and data entry operations.

The 1984 entry system was set up to process each age group separately, as the administration periods for each were nonoverlapping. There were three sets of programs, three tracking files, and three areas for the data and control files. The main part of the 1986 assessment, however, was administered to all three age groups at the same time. The new system now had to be able to process the materials from these groups simultaneously: one set of programs using a single tracking file to control processing for three data areas.

The program structure of the system itself was broken down into separate programs for each main function (school worksheet entry, student data
entry/resolution, and questionnaire entry/resolution), to permit the modification or enhancement of one component while allowing the others to operate. Access to these programs was controlled through a menu-type procedure written in the VAX command language and using screen control directives.

The tracking files in the 1984 entry system used the session identification code as the index key for direct access to session information. This proved to be an unfortunate choice for the few times that the session code was entered incorrectly from the worksheet entry program. If a session code had to be changed, both the tracking record and the file names of the associated data and audit files had to be modified, requiring special programming. The adoption of a batch identification code as the index key for the 1986 entry system tracking file permitted changing the session codes without impacting other parts of the system.

A related problem frequently occurred under the 1984 entry system with regard to the student identification numbers in each batch data file. These codes were used as the ind:x kev for direct access of the student data records and an erroneous code was difficult to correct. In anticipation of the many types of problems involved in accurately gridding the student identification numbers and transcribing them through the scanner, the batch sequence number was adopted as the key for the batch data files in the 1986 entry system. This number was generated by the scanning program, written to each record on the scanning output file, and, by its nature, nonredundant.

Another addition to the batch data records was the data entry status codes. The records in a batch file were generated in one of two ways: the tape loading program or manual entry of the booklets rejected by the scanner. The manually entered records had to undergo the two-step entry and verification processes. Due to the high accuracy rate of the optical scanner, the loaded records were treated by the system as if they had been through verification. The entry status code was used to distinguish between records that were undergoing manual processing and those that were loaded. The code on each record was tested and set by the different processes: entry, verification, loading, and resolution. Since each record contained its own status code, it was no longer necessary to maintain a vector of booklet counts on the tracking record as in the 1984 system.

The form parameters, which controlled processing of each data entry screen, were maintained in a text library. Each set of parameters for each form were stored as a separate member or subfile within this library. This format permitted easy extraction, modification and replacement of parameter information as well as faster access by the entry programs. A set of programs were developed to facilitate the entry, documentation, and editing of the form parameter data.

The teacher questionnaires for the two older grade/ages contained separate content-related sections of questions within and a corresponding set of boxes on the front cover. The teacher filling out a questionnaire was supposed to indicate the subject taught for that grade/age: reading, mathematics, or science at grade \(7 / a g e 13\) and reading, mathematics, science,
or history at grade \(11 /\) age 17 . The teacher questionnaire entry program was enhanced to accept the subject code and display the appropriate form for the entry of responses to the questions for that subject.

CHAPTER 6.4
Editing Data

\title{
EdIting data
}

\author{
Alfred M. Rogers \\ Educational Testing Service
}

The data editing process is divided into three separate steps: validation, identification, and correction. Validation ensures that each data value in the computer file is of the correct type, is within a range or set of ranges of values, and is consistent with other data values. All invalid data values are then identified and located in the raw data. The erroneous data are then either corrected or flagged as unresolvable in the computer file.

The errors uncovered by the editing process fall into two types: those made by the respondent (e.g., choosing two responses for a multiple-choice exercise requiring only one response) and those made by data entry. The validation process reports both types of error with no knowledge of their source. The identification process determines the type of each error. The data entry errors are, for the most part, correctable; the correct value can be determined from an examination of the raw data. Errors made by the respondent, however, are difficult, if not impossible, to correct. If the intent of the respondent cannot be determined, the error must remain unresolved, but be flagged in some way to prevent incorrect interpretation in analysis and reporting procedures.

\subsection*{6.4.1 ABSENTEE DATA}

As described in section 6.1.2, the absentee data were transcribed by ETS key entr.y systems from the administration schedules. Key entry operation standards required that all data be entered and verified. Verification consisted of a blind second entry of each data record, comparing each data value with the original entry. This procedure ensured the highest likelihood of correctly transcribing the data.

The output data files were transferred to disk where the data values could be validated by specific programs and corrected through the use of an online editor. Validation consisted of matching the school and session codes with those in the tracking file and checking that the sex, grade, and birth date codes were within the appropriate ranges for age cohort and session type. A further check performed on these files compared the number of absentee records within each session against the absentee count field on the corresponding tracking record.

The online text editor proved to be the easiest and most efficient method of correcting most, if not all, of the errors. The editor had the
facility for locating specific records, writing over the incorrect field with its correct value, and performing global substitution of systematic data errors, such as incorrect school code, over one or more records.
'The corrected file was again processed by the validation program to ensure that all errors had been fixed and that no new problems were created in the process. If more errors were uncovered, the cycle of identifying the records, correcting the errors, and validating the corrected file was repeated until no more errors were found. At this point, the absentee file was ready for transmittal to Westat for sampling weight estimation.

\subsection*{6.4.2 STUDENT DATA}

The introduction of scannable materials to the 1986 assessment greatly improved the efficiency and accuracy of the transcription process by removing the possibility of human error. The scanning machinery was progranmed to detect the marked responses in unique and fixed positions on each page; erroneous and out-of-range response codes could not be generated.

On the other hand, removing human intervention as a source of error also prevented the exercise of human judgment when more than one mark was detected for a single-response item. This would commonly happen when a subject marked a second response without erasing the first, or misinterpret the question as a "circle all that apply"-type response. Neither the human eye nor the scanning equipment can determine the student's intent in such a situation. However, if the student had incompletely erased the first response, or inadvertently made a stray mark on one of the bubbles, the scanning program would also return a multiple response code where a human eye could determine the intended response. Hence there were proportionally many more multiple response codes produced by the scanning process in 1986 than by the manual entry process in 1984.

Furthermore, collating errors in the printing of the booklets resulted in both missing and multiple pages, which the scanning program was unprepared to handle. A new code was appointed and used to designate responses to items from pages that were missing or otherwise unscannable.

Every multiple response code and unscannable page code had to be checked against the raw data and, where possible, corrected by resolution operators. At the completion of resolution processing, all of the batch student data files were spooled onto a single master file in preparation for transfer to the IBM mainframe. A second validation was performed during this spooling process to catch errors that had "slipped through" the entry system. An editing program was developed for applying corrections to this master file, using the same methodology as for the data entry program. This master file also served as the basis for preliminary descriptive data analyses and quality control checks.

\subsection*{6.4.3 QUESTIONNAIRE DATA}

The data entry system was used for the entry of questionnaire data and served as the first line of defense against bad data. As described above, all data values were validated for type and range as they were entered from the data terminal keyboard. Special codes assigned for multiple and indeterminate responses were recorded and reported via the audit trail. The indeterminate values were later corrected under the resolution process.

The questionnaire files received the same secondary validation processing as the student data. Special attention was given to the "circle all that apply" items to ensure consistency in the coding of responses: if a respondent circled one or more of the alternatives, those would be coded "l" while the rest would be coded "0"; if no alternatives were marked, yet the respondent had the opportunity to reply, all fields would be coded "0"; if no alternatives were marked and the respondent had not reached the item or was instructed to skip it, all fields would be coded as "no response".

\subsection*{6.4.4 PROFESSIONALLY SCORED ITEMS}

The open-ended reading, mathematics, and science item responses were read and scored prior to scanning processing. Their data values were subject to the same editing procedures as the multiple-choice item responses. The open-ended computer items, however, were not scored until after scanning and resolution processing. It was neither feasible nor economically prudent to enter so few scores for each booklet through the entry system, therefore this data went through a separate entry and editing process.

Special forms were designed and printed for each age group for the scoring of the open-ended computer items. As each booklet was scored, the student ID number, birth date, and PSU and school codes were transferred to the form. The first set of scores were written into the appropriate boxes for the items in that booklet. Every fifth line on the form had boxes for the entry of the second reader's scores, ensuring a 20 percent rater reliability sample.

These forms were batched and forwarded to ETS key entry systems where they were entered, verified, and transcribed to magnetic tape. These tape files were loaded onto the VAX computer system where specially written validation programs performed thorough checks on the data values. An online text editor was used to make corrections to the data and the validation programs run again. When all of the items had been scored, entered, validated, and corrected, the data files were transferred to the IBM mainframe system for merging with the student database.

\subsection*{6.4.5 CONCLUSION}

Before the NAEP data entry methodology was developed, the editing process for any data file proceeded in the same manner as for the absentee data and professionally scored computer items. The validation process was
especially inefficient because it was performed after the fact of transcription and often by a second party who did not have immediate access to the raw data. Putting the validation mechanism at the point of entry removed most, if not all, of this inefficiency by informing the entry operator of a possible keying error while the raw data value was accessible.

The editing process does not guarantee that all errocs are removed from the data; only that the invalid, inconsistent, or otherwise unreasonable values have been at least identified, if not corrected. If a data value has been miskeyed during the entry process and meets the validation criteria, this error could persist through the editing process to the analysis stage without detection. The verification process detects most of these errors by comparing independent entries of the same data and reporting discrepancies. The likelihood of an error surviving verification is thus very small, but still present. A quality control process must follow the entry and editing processes to ensure that the data values in a given record agree with the responses in the corresponding instrument.
\(14 i\)

\section*{CHAPTER 6.5}

\section*{Quality Control of Data Entry}

142
ERIC

Chapter 6.5
QUALITY CONTROL OF DATA ENTRY

John J. Ferris
Educational Testing Service

The purpose of this work was to assess the accuracy of the NAEP 1986 data entry operation, or how closely the contents of the various instruments matched the corresponding data in the resulting datasets that were analyzed. A more complete discussion of the general approach taken to quality control can be found in Chapter 10.5 of the Technical Report for the 1984 assessment. Following are the detailed results of the quality control operation for each of the 1986 instruments; a table at the end of this chapter summarizes the findings.

\subsection*{6.5.1 STUDENT DATA}

A total of 213 different booklets was used for the student assessment across the three cohort levels. These booklets were designed to be machinescanned, but not all booklets were received in scannable condition. Those that could not be scanned had to be keyed by hand.

One of each of the 213 different booklets from among those that were scanned was selected for analysis. In addition it was considered prudent to treat the hand-keyed booklets as an independent pool; therefore, one each of them was also selected for quality control analysis. The booklets that belonged to the Language Minority Probe in this assessment were not considered independently since the booklets used were the same and the data entry process was the same.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline At Age 9, & 52 & \begin{tabular}{l}
booklets \\
"
\end{tabular} & were & ecked & \[
\underset{n}{\text { out of }}
\] & \[
\begin{array}{r}
37,401 \\
1,068
\end{array}
\] & scanned; keyed. \\
\hline \multirow[t]{2}{*}{At Age 13,} & 68 & " & " & : & " " & ,900 & \\
\hline & 68 & " & " & " & " " & 886 & keyed. \\
\hline \multirow[t]{2}{*}{At Age 17,} & 93 & " & " & " & " " & 48,164 & scanned \\
\hline & 93 & & " & " & " " & 1,162 & keyed. \\
\hline \multirow[t]{2}{*}{TOTALS:} & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
213 scanned booklets were checked (0.16 percent) \\
213 keyed " " (6.8 percent)
\end{tabular}}} \\
\hline & & & & & & & \\
\hline
\end{tabular}

As expected, the scanned booklets were much more accurately captured by the data entry process; only one "error" was discovered in all 213 of these bookiets, the pickup of an erasure. In the group of keytd booklets examined, a total of 11 keystrokes were wrong. The total number of keystrokes in a full set of 213 booklets was 42,366 .

\subsection*{6.5.2 EXCLUDED STUDENT QUESTIONNAIRE DATA}

Excluded student questionnaires were randomly sampled at the rate of 2.5 percent, the same rate used in the 1984 assessment:
\begin{tabular}{lllllllll}
At Age & 9, & 53 & booklets checked out of & 2151 \\
" " 13, & 64 & \("\) & \("\) & \("\) & \("\) & 2595 & \\
" " 17, & \(\underline{61}\) & \("\) & \("\) & \("\) & \("\) & \(\underline{2465}\) & \\
TOTALS: & 178 & \("\) & \("\) & \("\) & \("\) & 7211 & (2.5 percent)
\end{tabular}

No errors at all were found among these 178 booklets, which involved a total of 16,020 keystrokes.

\subsection*{6.5.3 TEACHER QUESTIONNAIRE DATA}

Teacher questionnaires were randomly sampled at the rate of 2.5 percent, or approximately one booklet out of 40 .
\begin{tabular}{cccccccc}
At Age 9, & 19 & booklets checked out of & 789 \\
" " 13, & 19 & \("\) & \("\) & \("\) & \("\) & 800 & \\
" " 17, & \(\underline{29}\) & \("\) & \("\) & \("\) & \("\) & 1244 & \\
TOTALS: & 67 & \("\) & \("\) & \("\) & \("\) & 2833 & (2.4 percent)
\end{tabular}

A total of 25,809 keystrokes was involved in this sample of teacher questionnaires. One of these keystrokes was in error.

A separate teacher questionnaire was administered as part of the Language Minority Probe in the 1986 assessment. These booklets were sampled at about the same rate.
\begin{tabular}{llllllllll}
At Age & 0, & 4 & booklets checked out of & 168 \\
\("\) & \("\) & 13, & 3 & \("\) & \("\) & \("\) & \("\) & 135 & \\
" " & 17, & \(\underline{2}\) & \("\) & \("\) & \("\) & \("\) & \(\underline{92}\) & \\
TOTALS: & 9 & \("\) & \("\) & \("\) & \("\) & 395 & (2.3 percent)
\end{tabular}

A total of 1,589 keystrokes was involved in this sample of teacher questionnaires. One of these keystrokes was in error.

\subsection*{6.5.4 SCHOOL CHARACTERISTICS QUESTIONNAIRE DATA}

School characteristics questionnaires were randomly sampled at the rate of 5 percent, or one booklet out of 20 .

A total of 18,739 keystrokes was involved in this sample of school questionnaires. Two of these keystrokes were in error.

A separate school questionnaire was administered as part of the Language Minority Probe in the 1986 assessment. These booklets were sampled at about the same rate.
\begin{tabular}{lllllllll}
At Age & 9, & 5 & booklets checked out of & 106 \\
\("\) & \("\) & 13, & 3 & \("\) & \("\) & \("\) & \("\) & 50
\end{tabular}

A total of 7,029 keystrokes was involved in this sample of school questionnaires. No errors were found.

\subsection*{6.5.5 COMPUTER COORDINATOR QUESTIONNAIRE DATA}

Computer coordinator questionnaires were randomly sampled at the rate of 5 percent, or one booklet out of 20.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline At Age & 9, & & k & c & ut & of & \multicolumn{2}{|l|}{250} \\
\hline \(n \quad n\) & 13, & 14 & " & " & n & n & 287 & \\
\hline & 17, & 17 & " & H & " & " & 336 & \\
\hline TOTALS & & 44 & " & n & n & " & 873 & (5.0 percent) \\
\hline
\end{tabular}

A total of 8,316 keystrokes was involved in this sample of computer coordinator questionnaires. Two of these keystrokes were in error.

\subsection*{6.5.6 SUMMARY OF RESULTS}

The quality control of the NAEP data for 1986 showed extremely high standards of data entry. The use of scannable booklets contributed to the improvement of what had already been a very high quality of data entry in the 1984 assessment (see Ferris, 1987). Two values are tabled below, the observed error rate and the upper bound of the 99.8 percent confidence interval.

Table 6.5.1
Observed Error Rate and Upper Confidence Limit, by Instrument
\begin{tabular}{|c|c|c|}
\hline INSTRUMENT & \[
\begin{aligned}
& \text { OBSERVED } \\
& \text { ERROR RATE }
\end{aligned}
\] & UPPER 99.8\% CONFIDENCE LIMIT \\
\hline Student Data including Language Minority - scanned (97.7 percent of books) & . 00002 & . 0002 \\
\hline Student Data including Language Minority - keyed (2.3 percent of books) & . 00026 & . 0005 \\
\hline Excluded Student Questionnaire & zero & . 0004 \\
\hline Teacher Questionnaire & . 00004 & . 0003 \\
\hline Language Minority Teacher Questionnaire & . 00065 & . 0055 \\
\hline School Questionnaire & . 00011 & . 0006 \\
\hline Language Minority School Questionnaire & zero & . 0015 \\
\hline Computer Coordinator Questionnaire & . 00024 & . 0013 \\
\hline Note: An error was discovered in es for the student data in the 1984 assessment are: & computatio essment. & he corresponding rrect values for \\
\hline Student Data & . 00006 & . 0003 \\
\hline (not as reported: & . 00002 & .0001) \\
\hline
\end{tabular}

\section*{CHAPTER 6.6}

\section*{Database Creation}

Chapter 6.6

\section*{DATABASE CREATION}

\author{
Alfred M. Rogers \\ Educational Testing Service
}

The data transcription and editing procedures described in Chapter 6.1 resulted in the generation of disk and tape files containing various assessment information. Before any analysis could begin, these files had to be pulled together into a comprehensive, integrated database. Sampling weights were also required in order to make any valid statistical inferences about the population from which the assessment sample was drawn.

This chapter describes the processes of extraction of sample information for the derivation of sampling weights, and the merging, or bringing together, of the many transcription files into the NAEP database.

\subsection*{6.6.1 EXTRACTION}

For each grade/age cohort, four sets of weights were required to perform inferential analyses: school weights, excluded student weights, student weights, and teacher weights. Due to the method by which teachers were selected, sampling weights could not be assigned to teachers, but were instead assigned to sEudents who were linked to participating teachers. (See Chapter 3 for more details.)

All of the sample information was extracted from the data files, edited, and transferred to tape files for shipment to Westat, where the weight computation was performed. The editing process included both the validation of the data values as well as frequency distribution analyses to be compared with tracking information from the data entry system.

The school sample information was available to Westat from the beginning of the assessment. They did not require any additional information from ETS to compute school sample weights.

The excluded student sample information was extracted from the excluded student questionnaire data file. This information included booklet serial number, PSU and school code, grade, sex, birth date, race/ethnicity, and a code indicating reason for exclusion. All data fields were taken from the front cover information of each booklet, except for the exclusion code, which was derived from the response to item 3 of the questionnaire. A listing of the excluded student questionnaires that had not been received at ETS was included with the file for each grade/age cohort.

The student sample information came from two sources: the student database and the absentee file from the administration schedules. The assessed student sample information included booklet serial number, PSU and school code, grade, sex, birth date, race/ethnicity, and teacher code. Since the absent students were not observed and not assigned an assessment booklet, the booklet serial number, race/ethnicity, and teacher code were not available for the absentee data.

The absentee file had to be adjusted for makeup sessions. The field administration procedures required scheduling of makeup sessions if absentee rates exceeded certain limits. The students attending these makeup sessions were supposed to be originally sampled students who were absent for the regular sessions. Failure to remove the makeup students from the absentee file would have resulted in incorrect estimates of the number of students in those schools. This problem could have been particularly acute in the grade 11 age 17 sample where absentee rates were high and many schools required makeup sessions.

The first step in the removal process was to identify the students in the student file who attended makeup sessions in each school. Then, for each school and session type (spiral or tape), the sex, grade, and birth dates of the makeup students were matched with those of the absentee students in the same school and session type. The absentees identified by perfect matches were removed from the absentee file; the remaining unmatched makeup students, if any, were paired with randomly selected absentees who were then removed from the file. This latter procedure was necessary only for the grade 11/age 1) sample in only a few of the many schools that had makeup sessions.

The teacher sample information was extracted from the teacher questionnaire data file. It consisted of only the PSU, school, and teacher codes from the questionnaire booklet covers. Westat used this information in conjunction with the student sample information to produce a file of studentbased teacher weights.

\subsection*{6.6.2 FILE MERGING}

The transcription process resulted in the generation of five data files for each grade/age cohort: one file for each of the three questionnaire instruments, the student response data file from the data entry system, and the student reading and writing scores from professicnal scoring and key entry. The sample weight derivation process produced an additional four files of sampling weights. To perform data analysis, these files had to be integrated into a coherent and comprehensive database.

This database would ultimately consist of four files per cohort: school, teacher, excluded student, and student files. The student file would contain all six student samples: the spiral and five bridge samples. The school file could be linked to the other three files through the PSU and school codes. The teacher file could be linked to the student spiral sample through the PSU, school and teacher codes.

The school file vas created by merging the school questionnaire file with the computer coordinator questionnaire and then with the school weights file. The PSU and school code were used as the matching criterion. Each record of the resulting file was formed by concatenating the weight information with the response data. Since not all schools returned their questionnaires, some of the output records contained only weight information.

The teacher file was generated from the teacher questionnaire file. Since the teacher weights were derived at the student level, no information had to be added to the questionnaire data.

The excluded student file was the result of merging the excluded student questionnaire file with the excluded student weights file. The booklet serial number was used as the matching criterion.

The creation of the student data file was a three-stage process, merging the student weights, teacher-based student weights, and professionally scored computer items with the student response data, in that order. In all three procedures, the booklet serial number was used as the matching criterion. The merging of the professionally scored item data was a more complex procedure than the others, because the set of scores for each item within a booklet were inserted into the response data fields in the order in which the items appeared in the booklet.

The database was then ready for analysis. As new data values and scores were derived, they were added to the relevant files using the same matching procedures as described above. The public-use data tapes files were ultimately generated from this database.

\subsection*{6.6.3 MASTER CATALOG}

A critical part of any database is the processing control and descriptive information. A central repository of this information may be accessed by all analysis and reporting programs to provide correct parameters for processing the data fields as well as consistent identification labeling of the analysis results. The master catalog file was designed and constructed to serve both of these purposes.

Each record of 'he master catalog contains the processing, labeling, classification, and location information for each data field in the database. The control parameters are used by the access routines in the analysis programs to define the manner in which the raw data values are to be transformed and processed.

All data fields have a 50 -character label in the catalog describing the contents of the field and, where applicable, the source of the field. The data fields with discrete or categorical values have additional label fields in the catalog containing the permitted values and 8- and 20-character labels for those values.

The classification area of the catalog record contains distinct fields corresponding to predefined classification categories for the data fields. For a given classification field, a nonblank value indicates the code within that classification category for the data field. This permits the collection of identically classified items or data fields by performing a selection process on one or more classification fields in the catalog.

According to the NAEP design, it is possible for item data fields to occur in more than one age assessment and more than one block within each age. The location fields of the catalog record contain the age, block and, where applicable, the item sequence number within block of each occurrence of the data field throughout the 1986 database.

The master catalog file was constructed in parallel with the collection and transcription of the assessment data to be ready for use by analysis programs when the database was created. As new data fields were derived and added to the database, their descriptive and control information was entered into the catalog.

One of the most important uses of the master catalog was the control of the creation of the public-use data tapes files as well as the codebooks and file layouts. A synopsis of this process is presented in the next chapter.

\section*{CHAPTER 6.7}

\section*{Public-use Data Tape Construction}

150

Chapter 6.7
PUBLIG-USE DATA TAPE CONSTRUCTION

\author{
Alfred M. Rogers \\ Educational Testing Service
}

The public-use data tapes are designed to permit any researcher or research organization with an intervst in the National Assessment to perform secondary analysis on the same data as that used at ETS. This section discusses some of the issues raised during the creation of the data, and summarizes the procedures followed in generating the data and related materials.

The three elements of the distribution package are the data tapes, printed documentation, and microfiche of the assessment instruments. Each grade/age cohort is represented on a separate tape, with each tape containing the data files; a set of SPSS-X control statement files for generating an SPSS-X system file for each data file; a set of SAS control statement files for generating a SAS system file for each data file; and a set of machinereadable catalog files containing control and descriptive information for each data file, for the non-SPSS-X and non-SAS user. The printed documentation consists of four volumes: a guide to the use of the data files, and a set of file layouts and codebooks for the data files within each of the three cohorts (see The NAEP 1985-86 Public-Use Data Tapes Version 2.0 Users.' Guide [Rogers, Kline, Norris, Johnson, Mislevy, Trick, Barone, \& Kaplan, 1988]).

\subsection*{6.7.1 FILE DEFINITION}

The organization and format of the data files to be produced was the first issue to be addressed. The ETS database consisted of four data files for each grade/age cohori, corresponding to the three questionnaire instruments and the student database, incorporating the spiral and all five bridge samples. The logical relationship of the data files was a three-level hierarchy, with the six student and the excluded student samples at the bottom level; the teacher sample at the next level, with a linkage only to the spiral sample; and the school sample at the top, with direct linkages to all samples below it. A linkage may be viewed as a one-to-many mapping of the records within the two files linked. For example, one school record is linked to one or more records in the teacher file, and each of these teacher records are in turn linked to one or more records in the spiral student file.

One organization scheme has seven files corresponding to the seven samples at the bottom level, with the data from the higher-order samples appended to and repeated across as many of tinf lower-level records as required by the linkages. Using the previous example, each spiral sample
\(15 \cdot\)
record would be appended by its corresponding teacher record and school record. This approach places no demand on the user to define the linkages since each data record is complete, but it requires substantially more computer storage space due to the larger record size.

An alternative scheme would have these same seven samples without the appended teacher and school data. The teacher and school samples would reside in their own files, with special data fields in all files to facilitate their linkage through program control. At the expense of a little more sophistication on the part of the user, this approach is more economical in computer resource utilization. This potential for savings on computer storage and processing costs was the overriding consideration in choosing this scheme.

\subsection*{6.7.2 VARIABLE DEFINITION}

The selection and arrangement of variables, or data fields, in each file was the next order of business. The first step in the decision process was the generation of a file of variable descriptors for each data file to be created. Each of these LABELS files contained one record for each variable, each record containing the variable name, a short text description of the variable, and processing control information to be used by later steps in the public-use data tapes process. This file could be edited for deletion of variables, modification of control parameters, or reordering of the variables within the file.

The first program in the processing stream, GENLYT, produced a printed layout for each file from the information in its corresponding LABELS file. These layouts were initially reviewed for the selection and ordering of the variables. The variables that were excluded from public-use data tape processing fell primarily into two categories: nonapplicable and confidential.

The nonapplicable variables were found mostly in the student database. Since the bridge samples were combined with the spiral sample, many of the variables that applied to the spiral students did not apply to the bridge students, and vice versa. For example, the teacher code and the studentbased teacher weights were used for the analysis of spiral sample data, but were not in the design at all for the bridge sample.

The confidential variables included any descriptor or code that could be used to identify individual states, schools, or students in the NAEP sample. The PSU, school, teacher, and student identification codes used internally by ETS and WESTAT were "scrambled" according to specific algorithms to obtain new codes for use in linking the files together.

Another confidentiality problem arose in the response data, where the students were asked to identify the state they had lived in four years ago. A new variable was created using the response code and current state residency information from the PSU code to indicate if the student had lived in the same state, the same region, or a different region.

The ordering of the variables within the data files followed a general trend of decreasing likelihood of usage: Identification information preceded weights, scores, and other derived variables, which were followed by the response data. The identification variables were generally those on the front covers of the instruments. The derived variables included the sampling weights, IRT scale values, and variables derived from the response data or other sources for reporting purposes. The response data variables were arranged according to their order in the instrument.

The spiral sample posed an additional problem because it entailed the expression of as many as 91 different booklet formats into a single, fixed format. The solution lay in arranging the data "blocks" in order within subject areas. The common background questionnaire preceded the first spiral block in the new record. Each data record from the input student base was reformatted according to its booklet number; the data for its constituent blocks were moved into their assigned locations in the output record. The remaining data block areas contained blank fields, indicating that the data was missing by design.

The spiral design also created a problem from the user's standpoint: how to determine, from a given booklet record, which data blocks were present and their relative order in the instrument. This problem was remedied by the creation of a set of control variables, one for each block, which indicated not only the presence or absence of the block but its order in the instrument. These control variables were included in the section of derived variables.

\subsection*{6.7.3 DATA DEFINITION}

To enable the data files to be processed on any computer system using any procedural or programming language, it was desirable that the data be expressed in numeric format. This was possible, but not without the adoption of certain conventions for re-expressing the data values.

As mentioned in Chapter 6.3, the responses to all multiple-choice items were transcribed and stored in the database using the letter codes printed in the instruments. This scheme afforded the advantage of saving storage space for items witt ten or more response options, but at the expense of translating these codes into their numeric equivalents for analysis purposes. The response data fields for most of these items would require a simple alphabetic-to-numeric conversion. However, the data fields items with ten or more response choices would require "expansion" before the conversion, since the numeric value would require two column positions. One of the processing control parameters on the LABELS file indicates whether or not the data field is to be expanded before conversion and output.

The ETS database contained special codes to indicate certain response conditions: no response, "I don't know" response, multiple response, and unresolvable response. The primary trait scores for the reading essay items included additional special codes for ratings of "illegible" and "off-task"
by the scorers. A final special code was assigned to the items that, due to printing error, did not appear in some of the booklets at all. These codes had to be re-expressed in numeric format.

A convention used by ECS in the creation of their public-use data tapes was adopted and enhanced in the designation of these codes: The "I don't know" and nonrateable response was always coded as 7; the "no response" code was 8; and the multiple response received a code of 9 . The small number of out-of-range and "missing" responses were coded as blank fields, corresponding to the "missing by design" designation.

This coding scheme created conflicts for those items that had seven or more valid responses as well as the "I don't know" response. Tnese items also required expansion to accommodate the valid responses values. The special codes were "extended" to fill the output data field: The "I don't know" and nonrateable code was extended from 7 to 77; the "no response" code from 8 to 88 ; the multiple response code from 9 to 99.

The numeric variables on the tape files were classified into two categories: continuous and discrete. The continuous variables include the weights, IRT values, identification codes, and item responses where counts or percentages were requested. The discrete variables include those items for which each numeric value corresponds to a response category. This designation also includes those derived variables to which numeric classification categories have been assigned. The open-ended items were treated as a special subset of the discrete variables and were given a separate categorization to facilitate their identification in the documentation.

\subsection*{6.7.4 DATA FILE LAYOUTS}

The data file layouts, as mentioned above, were the first user product to be generated in the public-use data tapes process. The generation program, GENLYT, used a LABELS file as input and produced a printable file. This LAYOUT file is little more than a formatted listing of the LABELS file.

Each line of the LAYOUT file contains the following information for a single data field: sequence number, field name, output column position, field width, number of decimal places, data type, value range, key or correct response value, and a short description of the field. The sequence number of each field is implied from its order on the LABELS file. The field name is an 8 -character label for the field that is to be used consistently by all public-use data tapes materials to refer to that field on that file. The output column position is the relative location of the beginning of that field on each record for that file, using bytes or characters as the unit of measure. The field width indicates the number of columns used in representing the data values for a field. If the field contains continuous numeric data, the number of decimal places value indicates how many places to shift the decimal point before processing data values.

The data type category uses three codes to designate the nature of the data in the field: Continuous numeric data are coded "C"; discrete numeric data are coded "D"; open-ended item data are coded "O". Additionally, the discrete numeric fields that include "I don't know" response codes are coded "DI" and the open-ended items that include nonrateable response codes are coded "OI". If the field type is discrete numeric, the value range is listed as the minimum and maximum permitted values separated by a hyphen to indicate range. If the field is a scorable item response, the correct response value, or key, is printed. A range of correct responses was indicated for those professionally scored items that received cut-point scoring for IRT scaling. Finally, each variable was further identified by a 50 -character descriptor.

\subsection*{6.7.5 DATA file catalogs}

The LABELS file contains sufficient descriptive information for generating a brief layout of the data file. However, to generate a complete codebook document, substantially more information about the data is required. :This function is filled, in part, by the CATALOG file.

The CATALOG file is created by the CATGEN program from the LABELS file and the 1986 master catalog file. Each record on the LABELS file generates a CATALOG record by first retrieving the master catalog record corresponding to the field name. The master catalog record contains usage, classification, and response code information. This record is prefixed by the positional information from the LABELS file: field sequence number, output column position, and field width.

The response code information, also referred to as "foils", consists of the possible data values for the discrete numeric fields, and a 20 -character description of each. The CATGEN program uses additional control information from the LABELS file to determine if extra foils should be generated and saved with each CATALOG record. The first flag controls generation of the "I don't know" or nonrateable foil; the second flag regulates "no response" foil generation; and the third flag denotes the possibility of multiple responses for that field and sets up an appropriate foil. All of these control parameters, including the expansion flag, may be altered in the LABELS file by use of a text editor to suit the data behavior for any given field.

The LABELS file supplies control information for many of the subsequent public-use data tapes processing steps. The CATALOG file provides the detail information for those same steps and for others as well.

\subsection*{6.7.6 CODEBOOKS}

The data file codebook is designed as a printed document containing complete descriptive information for each data field. Most of this information derives from the CATALOG file; the remaining data came from two other files: the COUNTS file and the IRT parameters file.

Each data field receives at least one line of descriptive information in the codebook. If the data type is continuous numeric, no more detail is given. If the variable is discrete numeric, the codebook lists the foil codes, foil labels, and frequencies of each value in the data file. Additionally, if the field represents an item used in IRT scaling, the codebook lists the parameters used by the scaling program.

The frequency counts are not available on the catalog file, but must be generated from the data itself. The GENFREQ program created the COUNTS file using the field name to locate the variable in the database, and the foil values to validate the range of data values for each field. This program also serves as a check on the completeness of the foils in the CATALOG file, as it flags any data values not represented by a foil value and label.

The IRT parameter file is linked to the CATALOG file through the field name. Printing of the IRT parameters is governed by a control flag in the classification section of the CATALOG record.

The LAYOUT and CODEBOOK files are written by their respective generation programs to print-image disk data files. Draft copies are printed and distributed for review before the production copy is generated. The production copy is printed on an IBM \(\oint 900\) printing subsystem using laserimaging technology. The printing is performed at 15 characters per horizontal inch (pitch) and 8 lines per vertical inch. This accommodates printing of 120 characters per line and 80 lines per page on standard \(81 / 2^{\prime \prime}\) x 11" paper.

\subsection*{6.7.7 SAS AND SPSS-X CONTROL FILES}

The SAS and SPSS-X control statement files are provided to the user as a means for converting the raw data files directly into a system file for subsequent analyses under either package. The files are very similar in their content and structure, although actual implementation of their features differ slightly. Two separate programs, GENSAS and GENSPX, generate the control files using the CATALOG file as input.

Each of the control files contain separate sections for variable definition, variable labeling, missing value declaration, value labeling, and creation of scored variables from the cognitive items. The variable definition section describes the locations of the fields, by name, in the file, and, if applicable, the number of decimal places or type of data. The variable label identifies each field with a 50 -character description. The missing value section declares which values of which variables are to be treated as missing and excluded from analyses. The value labels correspond to the foils in the CATALOG file. The code values and their descriptors are listed for each discrete numeric variable. The scoring section is provided to permit the user to generate item score variables in addition to the item response variables.

Each of the code generation programs combine three steps into one complex procedure. As each CATALOG file record is read, it is broken into
several component records according to the information to be used in each of the resultant sections. These record fragments are rogged with the field \(s\) quence number and a section sequence code. They are then sorted by section code and sequence number. Finally, the reorganized information is output in a structured format dictated by the syntax of the processing language.

The generation of the system files accomplishes the testing of these control statement files. These files are saved for use by internal ETS users of the NAEP data.

\subsection*{6.7.8 MAGHINE-READABLE CATALOG FILES}

For those NAEP data users who have neither SAS nor SPSS-X, yet require processing control information in a computer-readable format, the distribution tape also contains machine-readable catalog (CAT) files. In addition to processing control information, each CAT record contains the IRT parameters and the foil codes and labels.

PART II

\section*{CHAPTER 7}

\section*{Overview of Part II:}

The Analysis of the 1986 NAEP

\section*{Chapter 7}

\section*{OVERVIEW OF PART II: THE ANALYSIS OF 1986 NAEP}

\author{
Albert E. Beaton \\ Educational Testing Service
}

This chapter introduces the second part of this technical report by presenting an overview of the procedures used in analyzing the 1986 NAEP data. The details of the analytic procedures are contained in the chapters that follow. The results of these analyses are presented in many substantive reports which have been published or are in preparation.

Part II of the technical report assumes the existence of a carefully edited database. The reader should consult Chapter 1 of this report for general information about the design of the 1986 assessment and for an overview of the processes that went into the construction of the NAEP database, including the development of objectives and items, the sampling design, the measuring instruments, field administration, professional scoring, data processing, and quality control. Detailed information about these topics is given in the remaining chapters of Part I.

Many of the analytical procedures used in the 1986 NAEP are the same or similar to those used in the 1984 assessment, and their details were reported in Implementing the New Design: The NAEP 1983-84 Technical Report (Beaton, 1987a). We will not repeat general expository information here, but refer to that report instead. In the following chapters describing subject area data analyses, emphasis will be placed on how the techniques were applied.

The 1986 data analysis has introduced some innovations in scaling, which were first introduced to NAEP in the 1984 reading and writing assessments. The purpose of scaling, as used in NAEP, is to communicate to educational policymakers and the concerned public what students in American schools know and can do. Using scaling and statistical estimation thchniques, the vast amount of data collected in each assessed subject area can be reduced to a few, informative summary estimates of student performance.

The scaling process permits us to take advantage of certain patterns of responses in the data in order to reduce the information about a student in the sample from his or her responses to many individual items to one or a few summary numbers that represent his or her performance in a subject area. Under certain assumptions, the scaling process allows us to project the performance of different students onto the same scale although, in NAEP, different students may have been asked to respond to different sets of items. Since students who were measured using different sets of items will be measured with different precision, we have developed the plausible values technology to make consistent population estimates and appropriate estimates of their sampling errors.

Since the scaling process, as used in NAEP, is used for data reduction, a question arises as to how far the reduction should go. Scaling uses some, not all, of the available information, and the more the data are reduced, the more the detailed information in the full database is unused and unreported. In analyzing the 1984 assessment data, the decision was made to reduce the reading data to one scale to represent a generalized reading proficiency. The studies of dimensionality that supported this decision are described by Zwick (1987). Reducing the data to one overall scale does not seem adequate for reporting results in the areas of mathematics and science.

A major technical innova: :on, which was introduced in the analysis of the 1986 NAEP data, was multivariable scaling. In analyzing the 1986 data, we decided to perform less data reduction in mathematics and science by developing and reporting several subscales. The subscales were determined after reviewing the objectives for the subject areas and the number of items assessing those objectives. For mathematics, the subscales were:
- Measurement
- Numbers and operations: Higher-level
- Numbers and operations: Knowledge and skills
- Geometry
- Relations and functions

The first three subscales span all three grade/age levels. Since the last two subareas were not assessed at all grade/age levels, the geometry subscale spans only grade 7 /age 13 and grade 11 /age 17 and the relations and functions is available for grade 11 /age 17 only.

For science, the following subscales were defined:
- Life science
- Chemistry
- Nature of science
- Physics
- Earth and space science
- Physical science

The life science and nature of science subscales span all three grade/age levels. Since a sufficient number of items was not administered for definition of all subscales at all age/grade levels, the chemistry, physics, and earth and space science subscales span grade 7 /age 13 and grade 1l/age 17 only. The physical science subscale is defined for grade \(3 / a g e 9\) only.

Although some persons may prefer and make use of the more detailed information available in the mathematics and science subscales, we did not wish to forgo a single overall measure of performance in each subject area. We have assumed that other readers, particularly educational policymakers at the national level as well as the concerned public, would prefer and make use of a general measure of overall proficiency in mathematics or science, although it is possible that such an overall scale might mask gains in some subscales that are balanced by losses in others. We therefore also developed
composites of the subscales to represent overall proficiency in mathematics and science. The reader or the user of the public-use data tapes may, therefore, focus on either the overall scales, the subscales, or both.

The overall estimate of a student's proficiency in mathematics or science is a weighted average of his or her proficiency estimates for the several subscales in the area. The weights used in forming the overall estimate was derived from the importance that the Learning Area Committee in the subject area placed on that objective.

The 1984 reading assessment introduced scale anchoring as a way of communicating to educational policymakers what students in American schools know and can do. We wished to anchor the mathematics and science scales as well, but did not feel that enough items were available to anchor at the subscale level, and so decided to anchor only the overall scales. Since the overall scales were not derived directly from item response theoretic methods, the method used in 1984 and described by Beaton (1987b), which uses IRT item parameters, was not directly applicable. Thus, a different way of scale anchoring had to be used.

As mentioned in Implementing the New Design, scale anchoring is not dependent on the parameters of a model such as the three-parameter logistic model, which is used in item response theory. The basic idea of scale anchoring is locating items that discriminate between selected points on a scale, and then analyzing those items to describe what it is that students at a higher level can do that students at a lower level cannot. The location of discriminating items was done directly, that is, by computing the proportion of students at or near each anchor point on the overall scale who responded correctly to an item and then comparing that proportion with the proportion of students at the next lower anchor point who correctly responded. Items with large increases in proportion correct at particular scale points were referred to subject matter experts for interpretation. Both the overall mathematics and science composites were anchored in this way.

A substantial part of the 1986 NAEP data analysis involved the reading anomaly. The 1986 NAEP trend data indicated a substantial drop in the average reading proficiency of students at the \(9-\) and 17 -year-old levels and increases in variance at all three age levels. The changes were so substantial as to be deemed anomalous, and a major effort was made to explain whac happened. The NAEP staff examined a number of hypotheses about what might have caused such anomalous results, including changes in the student population, modifications of the NAEP design and administrative procedures, lapses in quality control, computer bugs, as well as external uncontrollable events. Although the results of some of its investigations are inconclusive, some hypotheses, such as inaccuracies in sampling, scaling, and quality control, can be ruled out beyond a reasonable doubt. The design of the 1988 NAEP was modified to expiore the reading anomaly further. The study of the reading anomaly is presented in another report ihe NAEP 1985-86 Reading Anomaly: A Technical Report (Beaton, 1988).

The remaining chapters in this part of the report are as follows:
Chapter 8 is a general discussion of the scaling procedures used in NAEP, including the multivariable scaling procedures used for mathematics and science and the WARM method that was used for background and attitude questions. This chapter also discusses the procedures that created the plausible values and suggestion about how these values can be used for consistent estimates of population parameters and their standard errors. Sources of bias in secondary analyses are also discussed. Finally, this chapter presents an overview of the 1986 NAEP scales and the conditioning variables used in their creation.

Chapter 9 presents the details of the analysis procedures used with the 1986 reading data. The reading data were scaled using the same scaling method that was used in 1984, which produced a single overall reading scale. However, the trend results were deemed anomalous, and have not been reported to the public. Cross-sectional analyses were performed and reported in who Reads Best? Factors Related to Reading Achievement in Grades 3, 7, and 11 (Applebee, Langer, \& Mullis, 1988).

Chapter 10 presents the details of the analysis of the mathematics data. For developing trend information, the 1986 design included subsamples in which mathematics was assessed in the same way as in the 1972-73, 1977-78, and 1981-82 assessments, the only years in which mathematics was assessed in the past. The number of items common to all assessments in the different years was small, and so a single overall mathematics scale was developed for trend reporting. The main NAEP sample in the 1986 assessment had a sufficient number of mathematics items for multivariable scaling, and so proficiencies on several subscales were estimated, and the estimates were used for cross-sectional analyses. The results of the mathematics assessment, both trend and cross-sectional, are presented in The Mathematics Report Card: Are We Measuring Up? Trends and Achievement Based on the 1986 National Assessment (Dossey, Muliis, Lindquist, \& Chambers, 1988).

Chapter 11 presents the details of the science data analyses. The general form of the science analyses was the same as mathematics, since this was also the first time science was scaled. Science was assessed in the past in 1971-72, 1977-78, and 1981-82. The results of the science analyses will be published in August, 1988.

Chapter 12 presents the methodology used in the computer competence assessment. The 1986 assessment was the first to include computer competence and thus there was no trend information to report. Since the types of information was varied and its structure unexplored, no scaling was attempted in this area. The statistical methodology was limited to the average percentage correct method that was used in past assessments. The computer competence results are presented in Computer Competence; The First National Assessment (Martinez \& Mead, 1988).

Chapter 13 describes the analytic procedures used in the analysis of the U.S. history and literature assessments. U.S. history and literature were assessed at grade \(11 / a g e 17\) only. Neither subject area had comparable data
available from past assessments, and so no trend analysis was possible. The dimensionality of the two subject areas was studied, and one overall scale for each area was decided upon. The results of the scaling and analysis have been published in the NAEP report Literature \& U.S. History: The Instructional Experience and Factual Knowledge of High School Juniors (Applebee, Langer, \& Mullis, 1987).

Chapter 14 presents the analytical procedures used in developing the sampling weights, including various nonresponse adjustments, trimming, and poststratification. This chapter also details the jackknife procedure used to make estimates of sampling variance in the NAEP analyses. The final section shows estimates of the design effects for 1986 NAEP.

\section*{CHAPTER 8}

Scaling Procedures

ERIC
163

\section*{Chapter 8}

\title{
SCALING PROCEDURES \({ }^{1}\)
}

\author{
Robert J. Mislevy \\ Educational Testing Service
}

\subsection*{8.1 INTRODUCTION}

A key innovation in NAEP during the ETS tenure is scale-score reporting. With scale-score methods, the performance of a sample of students in a subject area or subarea can be summarized on a single scale even if different students have been administered different exercises. Similar procedures can be used to summarize responses to sets of related background questions. This chapter presents an overview of the scaling methodologies employed in the analyses of the 1986 NAEP surveys:
- Section 8.2 briefly discusses the perspective on scaling from which the procedures were conceived and applied.
- Section 8.3 reviews the "plausible values" methodology used in NAEP scale-score analyses.
- Section 8.4 describes how plausible values are used in subsequent analyses.
- Section 8.5 lists the scale-score analyses carried out on the 1986 data.

Derails of scaling procedures for specific subject areas are presented in Chapters 9, 10, 11, and 13.

\subsection*{8.2 SCALING IN NAEP}

As it was originally conceived some twenty years ago, NAEP was intended to limit reports to percents-correct on individual items. It soon became apparent, however, that some level of aggregation was needed to communicate results effectively. Average percents-correct over sets of items, as introduced by the Education Commission of the States, improved reporting by providing such an aggregation. Their limitation to specific and unchangeable sets of items hampered the refinement of the item pool over time, however,

1
The contributions of Albert Beaton, Douglas Gentile, Eugene Johnson, Kathleen Sheehan, Minhwei Wang, and Rebecca Zwick to this chapter are gratefully acknowledged.
and provided no information about the distributions of skills among students in targeted populations.

These limitations can be overcome by the use of response scaling methods. If several items require similar skills, the regularities observed in response patterns can often be exploited to characterize both respondents and items in terms of a relatively small number of variables. When combined through appropriate mathematical formulas, these variables capture the dominant features of the data. Using the scale, it becomes possible to talk about distributions of proficiency in a population or subpopulation, and to estimate the relationships between proficiency and background variables.

Early work on scaling is attributed to Thurstone, but the more recent development of item response theory (IRT; e.g., Lord, 1980) has been particularly influential on measurement practice. IRT and a newly developed procedure called the weighted average response method (WARM), both of which are reviewed in section 8.3 , are the two scaling procedures ETS has introduced in NAEP reporting.

We hasten to point out that any procedure of aggregation, from a simple average to a complex multidinensional scaling model, highlights certain patterns by collapsing over others. In a very real sense, every single item in a NAEP survey is of interest in its own right, and may provide useful information about what young Americans know and can do. The choice of an aggregation procedure must be driven by a conception of just which patterns are salient for a particular purpose. The procedure that is optimal for one purpose may be poorly suited for another.

The relatively high levels of aggregation found in ETS/NAEP reports such as The Reading Report Card: Progress Toward Excellence in Our Schools (1985), for example, are well suited to high-level discussions of trends and policy implications. They average over, and therefore are not keyed to, the microanalysis of performance at the level of specific skills, as might be desired by educational psychologists; they do not reveal popular student misconceptions or erroneous rules, as might be of interest to classroom teachers in a subject area. For the first of these latter purposes, one might prefer the precision of a latent class model for more highly specified skills. For the second, detailed discussions of results for individual items might be more appropriate. By no means do the scale-score methods we employ as a reporting vehicle exhaust the potential of NAEP data; neither do they preclude other researchers from carrying out alternative analyses from different perspectives.

A reporting scale in the 1986 NAEP survey simply provides a summary of performance on a collection of items. To be useful in the context of educational assessment, such collections must be defined in terms of (1) the psychology of school learning (Messick, 1984), since this reflects how pupils learn, and (2) the organization of schools, since this is the channel through which educational policy flows. The following paragraphs outline the perspective on scale delineation employed in the 1986 assessment, as based on
the experiences of not only NAEP itself, but of the California Assessment Program (CAP) and the assessments of Britain's National Foundation for Educational Research (NFER).

CAP and NFER offer two early experiences concerning the breadth of scaling, both occurring during the mid- to late seventies. NFER employed a collection of broadly defined scales in conjunction with an IRT model that made strong assumptions about item reliabilities and the character of change. Unfortunately, this approach led to measures whose meanings could not always be maintained over time or from one subpopulation to another (Gcldstein, 1980). Partly in response to these problems, CAP took an opposite tack, delineating large numbers of narrowly defined scales within each subject area at each assessment grade level. Third-grade reading, for example, comprises seventeen "indivisible skill elements," each conceived so that changes in curricular emphasis have similar impact on all its items (Bock \& Mislevy, 1981). The adequacy of this approach has been borne out empirically by the stability of item parameter estimates over time (Mislevy \& Bock, 1982).

The specifficity of the CAP scales offers the possibility of detecting the effects of small shifts in curricular emphases, an important concern for an assessment whose primary focus is the school. The CAP scales prove more specific than necessary for tracking more broadly conceived trends in performance. After correction for measurement error, CAP school-level correlation matrices among elements exhibit blocks of entries that are essentially unity. Parallel patterns of trends within such blocks of elements also indicate that the integrity of scales within reading, for instance, would be maintained if they were defined at the level of "inferential comprehension" rather than of five subcaiegorizations within inferential comprehension.

The evidence on scaling for educational assessment, then, suggests that one scale for a subject area is probably too few, but twenty is probably too many. ETS/NAEP scaling procedures for mathematics and science reflect this view. Five scales in mathematics and six in science, along with a composite in each area, have been designed to capture the essential subdivisions of the subject areas as indicated by NAEP's learning area committees. We initially fit models to data along these lines, and modified the final analyses when unacceptable model violations resulted (see chapters on specific subject areas).

Scaling within subareas does not ignore the desire of policymakers and the public at large for a single index of performance in a subject area--one of the objectives of an educational assessment discussed by Bock and Mislevy (1988) in their introduction of the "duplex design." A summary is easily obtained as the (possibly weighted) average of results across subscales. The resulting composite scores are useful to policymakers as quick summaries of overall performance, and to secondary researchers interested in the relationships between performance and student background variables. Compared to fitting a single scale to a broadly defined subject area, though, the approach of first scaling within narrowly defined subareas more closely satisfies the assumptions of scaling models and maintains the capability to
characterize important interactions or countertrends within educationally relevant subdivisions of the subject area as a whole.

\subsection*{8.3 NAEP SCELING METHODOLOGY}

The paragraphs that follow review the scaling models employed in the analyses of 1986 NAEP data, and the "plausible values" methodology that allows such models to be used with NAEP's sparse item-sampling design. The reader is referred to Mislevy (1988) for an introduction to plausible values methods and a comparison with standard psychometric analyses, to Mislevy and Sheehan (1987) and Beaton and Johnson (1987) for additional information on how the models are used in NAEP, and to Rubin (1987) for the theoretical underpinnings of the approach.

\subsection*{8.3.1 The Scaling Models}

Two types of scaling models were used by NAEP in the 1986 assessment. For the subject areas, the 3 -parameter logistic (3PL) model from item response theory (IRT; e.g., Lord, 1980) was used. For selected sets of background questions, the weighted average response method (WARM; Beaton \& Johnson, 1987), developed by NAEP for the 1984 assessment, was used. Both are "latent variable" models, quantifying respondents' tendencies to provide responses in a given direction (e.g., correct answers to items in a subject area; positive responses on attitude questions), as a function of a parameter that i.s not directly observed.

The 3-parameter logistic (3PL) IRT model. The fundamental equation of the 3PL is the probability that a person whose proficiency is characterized by the unobservable variable \(\theta\) will respond correctly to item \(j\) :
\[
\begin{align*}
P\left(x_{j}=1 \mid \theta, a_{j}, b_{j}, c_{j}\right) & =c_{j}+\left(1-c_{j}\right) /\left\{1+\exp \left[-1.7 a_{j}\left(\theta-b_{j}\right)\right]\right\} \\
& =P_{j}(\theta), \tag{8.1}
\end{align*}
\]
where
\(\mathrm{X}_{\mathrm{j}}\) is the response to item \(\mathrm{j}, 1\) if correct and 0 if not;
\(a_{j}\), where \(a^{>}>0\), is the slope parameter of item \(j\), characterizing its sensitidity to proficiency;
\(b_{j} \quad i s\) the threshold parameter of item \(j\), characterizing its difficulty; and
\(c_{j}\), where \(0 \leq c_{j}<1\), is the lower asymptote parameter of item \(j\), reflectint the chances of a correct response from students of very low proficiency. In 1986 NAEP analyses, c parameters were estimated for multiple-choice items, but were fixed at zero for open-ended items.

For the purposes of reporting item parameter estimates and other intermediary estimates, the linear indeterminacy apparent in (8.1) may be resolved by an arbitrary choice of the origin and unit size in a given scale. This was done for the reading scale in 1984 by standardizing the combined grade 4/age 9, grade 8 /age 13 , and grade 11 /age 17 samples. To aid interpretation, final published results are reported on scales that are transformed linearly from the \(\theta\) scale in ways related to the 0 -to-500 reading proficiency (RP) scale developed in the 1984 NAEP assessment of reading (Beaton, 1987b). These transformations are described in the appropriate subject area chapters in this report.

Under the usual IRT assumption of local independence, the probability of a vector \(x-\left(x_{1}, \ldots x_{n}\right)\) of responses to \(n\) items is simply the product of terms
based on (8.1)
\[
\begin{equation*}
P(x \mid \theta, \underline{a}, \underline{b}, \underline{c})=\prod_{j}^{n}\left[P_{j}(\theta)\right]^{x} j_{\left[1-P_{j}(\theta)\right]^{1-x_{j}}} . \tag{8.2}
\end{equation*}
\]

After x has been observed, (8.2) can be considered a likelihood function, and provides a basis for inference about \(\theta\) or about item parameters. In NAEP, estimates of item parameters were obtained with Mislevy and Bock's (1982) BILOG computer program, then treated as known in subsequent calculations. Once items have been calibrated in this manner, a likelihood function for \(\theta\) is induced by a veztor of responses to any subset of calibrated items, thus allowing \(\theta\)-based inference from matrix samples.

In all NAEP IRT analyses, missing responses at the end of each block a student was presented were considered as not-reached, and treated as if they had not been presented. Missing responses before the last observed response in a block were considered intentional omissions, and treated as fractionally correct at the value of the reciprocal of the number of response alternatives. These conventions are discussed by Mislevy and Wu (1988). With regard to the handling of not-reached items, they find that ignoring not-reached items introduces slight biases into item parameter estimation to the degree that (i) not-reached items are present and (ii) speed is correlated with ability. With regard to omissions, they find that the method described above provides consistent, though limited information, estimates of item and ability likelihoods under the assumption that respondents are acting in accordance with directions to omit only if they can do no better than responding randomly.

The weighted average response method (WARM). The basic equation of the WARM is an average of item responses:
\[
\begin{equation*}
\theta=w ' x . \tag{8.3}
\end{equation*}
\]

Here w is a vector of constants, specified so as to provide a meaningful summary of performance. Weights of \(1 / n\) for an \(n\)-item \({ }^{\text {fest, }}\) for example, yield simply an average score; weights given by the \(k\) eigenvector of the covariance matrix for \(x\) yield the \(k\) component score. If a respondent responded to all items, then a WARM score would be directly calculable via (8.3) without error. Typically, however, a given NAEP respondent receives only a subset of the items in a WARM scale, so that his or her WARM \(\theta\) is not observed directly.

\subsection*{8.3.2 An Overview of Plausible Values Methodology}

Item response theory was developed in context of measuring individual examinees' abilities. In that setting, each individual is administered enough items (often 100 or more) to permit precise estimation of his or her \(\theta\), as a maximum likelihood estimate \(\theta\), for example. Because the uncertainty associated with each \(\theta\) is negligible, the distribution of \(\theta\), or the joint distribution of \(\theta\) with other variables, can then be approximated using individuals' \(\theta\) values as if they were \(\theta\) values.

This approach breaks down in the assessment setting when each respondent is administered fewer items in any single scaled area, in order to provide broader content coverage in limited testing times. (It was in fact attempted by ETS in early, aborted analyses of the 1984 NAEP reading survey; see Beaton, 1987, section 10.2.) The main difficulty is that the uncertainty associated with individual 8 s is too large too ignore, and the features of the \(\hat{\theta}\) distribution can be seriously biased as estimates of the \(\theta\) distribution. Plausible values were developed as a means of obtaining consistent estimates of at least some population features, and approximations of others no worse than would be obtained using standard IRT procedures. A detailed development of plausible values methodology is given in Mislevy (1988). Along with theoretical justifications, that paper presents comparisons with standard procedures, discussions of biases that arise in some secondary analyses, and numerical examples. The following paragraphs give a brief overview of the approach, focusing on its implementation in the 1986 NAEP analyses.

Let \(y\) represent the responses of all sampled examinees to background and attitude questions. If IRT or WARM \(\theta\) values were available for all sampled examinees, it would be possible to compute a statistic \(t(\underline{\theta}, \underline{y})\)--such as a subpopulation sample mean, a sample percentile point, or a sample variance-to estimate a corresponding population quantity \(T\). A function \(\mathrm{U}(\underline{\theta}, \underline{y})--\mathrm{e} . \mathrm{g} .\), a jackknife estimate--would be used to gauge sampling uncertainty.

Because the 3PL and the WARM are latent variable models, however, \(\theta\) values are not observed even for sampled students. In the U.S. history and literature assessments, where enough responses are solicited from each student to provide a fairly precise estimate \(\hat{\theta}\) of his or her \(\theta\) value, values of \(t(\underline{\theta}, y)\) and \(U(\underline{\theta}, \underline{y})\) are reported as approximations of corresponding \(t(\underline{\theta}, \dot{y})\)
and \(U(\underline{\theta}, y)\) values. In other subject areas, and with WARM backgroundvariable scales, the small numbers of items administered to most sampled students preclude this simple approximation. In these areas, "plausible values" methods were used.

Following Rubin (1987), we can think of \(\underline{\theta}\) as "missing dat \(z^{\prime \prime}\) and approximate \(t(\underline{\theta}, \underline{y})\) by its expectation given (\(\underline{x}, \underline{y}\)), the data that actually were observed, as follows:
\[
\begin{align*}
t^{*}(\underline{x}, \underline{y}) & =\mathrm{E}[\mathrm{t}(\underline{\theta}, \underline{y}) \mid \underline{x}, \underline{y}] \\
& =\int \mathrm{t}(\underline{\theta}, \underline{y}) \mathrm{p}(\underline{\theta} \mid \underline{x}, \underline{y}) \mathrm{d} \underline{\theta} \quad . \tag{8.4}
\end{align*}
\]

It is possible to approximate \(t^{*}\) using random draws from the conditional distributions \(p\left(\theta \mid x_{i}, y_{i}\right)\) of each sampled student \(i\). These values are referred to as imputations in the sampling literature, and "plausible values" in NAEP. The value of \(\theta\) for any respondent that would enter into the computation of \(t\) is thus replaced by a randomly selected value from the conditional distribution for \(\theta\) given his or her responses to cognitive items (\(\mathrm{x}_{\mathrm{i}}\)) and background items (\(\mathrm{y}_{\mathrm{i}}\)). Rubin (1987) proposes this process be cařried out several times-multiple imputations--so that the uncertainty associated with imputation can be quantified. The average of the results of \(K\) estimates of \(t\), each computed from a different set of plausible values, is a Monte Carlo approximation of (8.4); the variance among them, B, reflects uncertainty due to not observing \(\theta\), and must be added to the estimated expectation of \(U(\underline{\theta}, y)\), which reflects uncertainty due to testing only a sample of students from the population. Section 8.4 explains how these plausible values are used in subsequent analyses.

It cannot be emphasized too strongly that plausible values are not test scores for individuals in the usual sense.

Plausible values are offered only as intermediary comp'stations for calculating integrals of the form of Equation 8.4 in order to estimate population characteristics. When the underlying model is correctly specified, plausible values will provide consistent estimates of population characieristics, even though they are biased estimates of the proficiencies of the individuals with whom they are associated.

In both IRT and WARM analyses in NAEP, plausible values are included for students who were preserited items in a subject area or subarea, but did not respond to any of them. The conditional distribution employed here for such a nonrespondent is based solely on his or her background values y. Nonrespondents were included in this manner, even though they provide no information about their proficiency, in order to maintain the representativeness of the sample. This convention provides estimates of population characteristics that have the same expected value and precision as would be obtained under the more familiar nonresponse adjustment of deleting the nonrespondents and boosting the sampling weights of responderics with the same y values.

\subsection*{8.3.3 Computing Plausible Values in IRT-based Scales}

Plausible values for each respondent i are drawn from the conditional distribution \(p\left(\theta \mid x_{i}, y_{i}\right)\). This subsection describes how, in IRT-based scales, these conditional distributions are characterized and how the draws are taken. Using conditional independence,
\[
\begin{equation*}
p\left(\theta \mid x_{i}, y_{i}\right) \propto P\left(x_{i} \mid \theta\right) p\left(\theta \mid y_{i}\right), \tag{8.5}
\end{equation*}
\]
where \(P\left(x_{i} \mid \theta\right)\) is the likelihood function for \(\theta\) induced by observing \(x_{i}\) (treating item parameter estimates as known true values) and \(p\left(\theta \mid y_{i}\right)\) is the distribution of \(\theta\) given the observed value \(y_{i}\) of background responses.

Equations (8.4) and (8.5) can also be employed with vector-valued \(\theta\), as in the 1986 NAEP mathematics subscales. In such cases, \(P\left(x_{i} \mid \theta\right)\) is the product over subscales of the indeper dent likelihoods induced by the items within each subscale, and \(p\left(\theta \mid y_{i}\right)\) is the multivariate--and generally non-independent--joint density of proficiencies for the subscales, conditional on background variables \(y\).

In the analyses of 1986 NAEP data, a normal (Gaussian) form was assumed for \(p\left(\theta \mid y_{i}\right)\), with a common dispersion and with a mean given by a main-effects model for selected elements of the complete vector of background variables. The included background variables will be referred to as the conditioning variables, and will be denoted \(y^{c}\). (The conditioning variables used in 1986 NAEP analyses are given in Table 8.4.) The following model was fit in each subject area:
\[
\begin{equation*}
\theta=\Gamma y^{c}+\varepsilon, \tag{8.6}
\end{equation*}
\]
where \(\varepsilon\) is normally distributed with mean 0 and dispersion \(\Sigma . \quad \Gamma\) and \(\Sigma\) are the parameters to be estimated. In subject areas with only one scale, such as reading, \(\Gamma\) is a vector and \(\Sigma\) is a scalar. In subject areas comprising subscales, \(\Gamma\) is a matrix and \(\Sigma\) is a covariance matrix. Like item parameter estimates, these estimates of the parameters of conditional distributions were treated as known true values in subsequent steps of the analyses. (Planned developments for future assessments will take this uncertainty into account.)

Maximum likelihood estimates of \(\Gamma\) and \(\Sigma\) were obtained with Sheehan's (1985) M-GROUP computer program, using a variant of the EM solution described in Mislevy (1985). The difference from the published algorithm lies in the numerical approximation that was employed. Note from (8.5) that \(p\left(\theta \mid x_{i}, y_{i}\right)\) is proportional to the product of two terms, the likelihood \(\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \theta\right)\) and the conditional distribution \(p\left(\theta \mid y_{i}\right)\). The conditional distribution has been assumed multivariate normal, with mean \(\mu_{i}^{c}=\Gamma y_{i}^{c}\) and covariance matrix \(\Sigma\); if
the likelihood is approximated by another normal distribution, with mean \(\mu^{\mathrm{L}}\) and covariance matrix \(\Sigma_{i}^{L}\), then the posterior \(p\left(\theta \mid x_{i}, y_{i}\right)\) is also multivaria \(\dot{E}_{e}\) normal with covariance matrix
\[
\begin{equation*}
\Sigma_{i}^{\mathrm{p}}=\left(\Sigma^{-1}+\left(\Sigma_{\mathbf{i}}^{\mathrm{L}}\right)^{-1}\right)^{-1} \tag{8.7}
\end{equation*}
\]
and mean vector
\[
\begin{equation*}
\tilde{\theta}_{i}=\left(\theta_{i}^{\mathrm{c}} \Sigma^{-1}+\theta_{i}^{\mathrm{L}} \Sigma_{i}^{\mathrm{L}}-1\right)\left(\Sigma_{i}^{\mathrm{p}}\right)^{-1} . \tag{8.8}
\end{equation*}
\]

In the 1986 analyses, a normal approximation for \(P\left(x_{i} \mid \theta\right)\) is accomplished in a given scale by the steps described below. (Recall that by the assumed conditional independence across scales, the joint conditional likelihood for multiple scales is the product of independent likelihoods for each of the scales.) These computations are carried out in the scale determined by BILOG (Mislevy \& Bock, 1982) item parameter estimates, where the mean and standard deviation of the composite population formed by combining the three NAEP grade/ages has mean zero and standard deviation one.
1. Lay out a grid of \(Q\) equally spaced points from \(-5: 0+5\), a range that covers the region in each scale where all examinees from all NAEP grade/age groups are virtually certain to occur. The value of \(Q\) varies from 20 to 40 , depending on the scale being used; smaller values suffice for scales with few items given to each respondent, while larger values are required for scales with many items.
2. At each point \(X_{q}\), compute the likelihood \(L\left(X_{i} \mid \theta=X_{q}\right)\).
3. To improve the normal approximation in those cases in which likelihoods are not roughly symmetric in the range of interest--as when all of a respondent's answers are correct--multiply the values from Step 2 by the mild smoothing function
\[
S\left(X_{q}\right)=\frac{\exp \left(X_{q}+5\right)}{\left[1+\exp \left(X_{q}+5\right)\right]\left[1+\exp \left(X_{q}-5\right)\right]}
\]

This is equivalent to augmenting each examinee's response vector with responses to two fictitious items, one extraordinarily easy item that everyone gets right and one extraordinarily difficult item that everyone gets wrong. This expedient improves the normal approximation for examinees with flat or degenerate likelihoods in the range where their conditional distributions lie, but has negligible effects for
examinees with even modestly well-determined symmetric likelihoods.
4. Compute the mean and standard deviation of \(\theta\) using the weights \(S\left(X_{q}\right)\) obtained in Step 3.

At this stage, then, the likelihood induced by a respondent's answers to the items in a given scale is approximated by a normal distribution. In an area such as reading where there is only one scale, a single normal distribution thus summarizes information from item responses. In an area such as mathematics or science where there are several scales, independent normal distributions, one per subscale, summarize information from responses to items from the several scales.

This normalized-likelihood/normal posterior approximation was then employed in both the estimation of \(\Gamma\) and \(\Sigma\) and in the generation of plausible values. From the final estimates of \(\Gamma\) and \(\Sigma\), a respondent's posterior distribution was obtained from the normal approximation using the four-step procedure outlined above. A plausible value was drawn from this normal distribution--univariate normal, in areas like reading with only a single scale; multivariate normal in areas like mathematics and science, with multiple subscales. For those subject areas with multiple subscales, weighted-average composites over subscales were also calculated after appropriate rescaling (see subject area chapters for definitions of composites).

\subsection*{8.3.3.2 Computing Plausible Values in Warm Scales}

In 1986 NAEP, the weighted average response method (WARM) was used to create composite variables from related background questions. The creation of the WARM composites proceeded in two steps:
(1) the definition of the composite variables, and
(2) the construction of strdent-level plausible values for each composite.

The process of developing the composite variables for the background factors relating to achievement in a given subject area was initiated by conducting a factor analysis of the results of the pool of background questions related to that subject area for each of the three grade/age levels separately. As was the case for the cognitive questions, the background questions were included in the BIB spiralled blocks in such a way that no student responded to all of the questions. However, since BIB spiralling has the property that every pair of questions is administered to a randomly equivalent subsample of students, all intercorrelations among the pool of background questions can be consistently estimated from the responses of the students answering each pair of questions. This resulted in nine correlation matrices, one for each combination of grade/age and subject area. Each of these matrices were factored using principal components with unities on the
diagonal. The latent roots were examined and a decision of the number of factors to rotate was made. For each of the nine grade/age-by-subject-area cases, the selected number of factors were rotated orthogonally to a varimax solution, the results were examined and questions were assigned to unique factors.

The questions assigned to a factor were then scaled so that the responses to each question were on a 1 to 5 scale and, if necessary, oriented by reversal so that a score of 1 corresponded to the most negative response and a score of 5 to the most positive. Finally, the WARM composite corresponding to the factor was defined as the simple average of these scaled and oriented responses to the questions assigned to that factor.

The final step in the creation of the composite background variables was the creation of sets of student level plausible values for each composite. If a respondent had answered all questions going into the composite, then that respondent's WARM score would be directly calculable, without error, by
\[
\theta=w^{\prime} x
\]
where \(x\) is the vector of the subject's responses to the \(n\) questions in the composite and \(w\) is a vector of \(n\) constants, each equal to \(1 / n\). However, since each respondent is typically presented only a subset of the questions, a respondent's composite value must be estimated by an application of the WARM technology. Briefly, the WARM technology, which is a kind of multiple regression, produces for each student a set of plausible values, each of which predicts what that student's composite score might plausibly be, based on the student's responses to the questions in the composite that were presented to the student and based on the student's status on the conditioning variables listed in Table 8.4 at the end of this chapter.

Let \(\mathrm{x}^{\circ}\) represent the responses of the \(\mathrm{i}^{\text {th }}\) student to the questions in the composite which were presented to that student and 1 let \(y^{c}\), be the values of that student's conditioning variables. Then the \(k\) th plausible value of the WARM composite \(\theta\), based on the student's observed responses and conditioning variables is
\[
\hat{\theta} \mathrm{i}_{\mathrm{k}}=\hat{\Gamma} \mathrm{y}_{\mathrm{i}}^{\mathrm{c}}+\hat{\beta} \mathrm{x}_{\mathrm{i}}^{\mathrm{o}}+\gamma_{\mathrm{k}} \mathrm{y}_{\mathrm{i}}^{\mathrm{c}}+\alpha_{\mathrm{k}} \mathrm{x}_{\mathrm{i}}^{\mathrm{o}}+\varepsilon_{\mathrm{ik}}
\]
where
\(\hat{\theta}_{\text {ik }}\) is the \(k^{\text {th }}\) plausible value of the WARM composite,
\(\hat{\Gamma} \quad \begin{aligned} & \text { is the vector of estimated effects for the conditioning } \\ & \text { variables, }\end{aligned}\)
\(\hat{\beta} \quad \begin{aligned} & \text { is the vector estimated.as giving the change in the } \\ & \text { composite variable for a unit change in the scores on } \\ & \text { each of the questions in } x \\ & \text { the conditioning variables held fixed, }\end{aligned}\)
[\(\left.\gamma_{k}, \alpha_{k}\right]\) is a random draw from a \(N(0, \Sigma)\) distribution, where \(\Sigma\) is the estimated variance-covariance matrix of the estimates of \(\hat{\Gamma}\) and \(\hat{\beta}\) and reflects the uncertainty due to using sample estimates of the regression equation; and
\(\varepsilon_{i k}\) is an estimated residual drawn from a \(N\left(0, \sigma^{2}\right)\) distribution where \(\sigma^{2}\) is the variance of the predictive distribution of the \(\mathfrak{W} A R M\) value given the observed values of \(y_{i}{ }_{i}\) and \(x_{i}\).

The parameters relating the responses on a given set of background questions \((\hat{\beta})\) and values of the conditioning variables (\(\hat{\Gamma}\)) with the means of the responses each of the questions in the WARM composit- were estimated by least-squares technology. To accomplish this it is sufficient to obtain estimates of the means, variances, and interitem covariances, by conditioning subgroup, for the complete set of background questions going into the composite. Because the WARM composite is the mean of the individual questions, this in turn produces estimates, by conditioning subgroup, of the WARM value mean and variance, as well as of the covariances between the WARM composite and each of the individual background questions. These provide a complete set of sufficient statistics (the normal equations) for the standard least-squares prediction of a WARM composite value given conditioning variable characteristics and responses to any subset of the background questions

Solving these normal equations produces the standard least-squares point estimate of a student's score on the composite, which is, in the above notation,
\[
\tilde{\theta}_{\mathrm{i}}=\hat{\Gamma} \mathrm{y}_{\mathrm{i}}^{c}+\hat{\beta} \mathrm{x}_{\mathrm{i}}^{o}
\]

This standard estimate does not take into account the distribution of potential scores for any individual. In fact, \(\bar{\theta}\) is an estimate of the mean of the predictive distribution of potential \(\theta \mathrm{s}\) for the individual and, as such, does not address the likelihood of other values from this distribution, any one of which might also have been the student's WARM composite score had the student answered all the questions. (Note: for convenience we are treating the WARM composite as a continuous variable; it is in fact discrete, but can take a large number of closely spaced values.)

A check on the impact of the approximations and simplifying assumptions employed in the WARM approach was carried out with the writing data from the 1984 NAEP writing assessment (Beaton \& Johnson, 1987). As a comparison for subgroup average writing scores, the same statistics were calculated using a totally different approach--the model-free, unbiased estimate for average responses based on the methodology employed by the Education Commission of the States in previous NAEP analyses. The latter method is prohibitively expensive to be used for all NAEP statistics, but could be calculated for the 44 questions in the common background questionnaire. Beaton and Johnson found that statistics based on the WARM were nearly indistinguishable from
the model-free averages for those subgroups distinguished as conditioning variables, and for subgroups whose memberships were well-predicted by conditioning variables. Estimated standard errors were also smaller for the WARM estimates. For those subgroups that were neither conditioned on nor well-predicted by conditioning variables, the WARM exhibited biases. The nature of such biases in plausible values methodology is discussed further in section 8.4.3 of this report. Their eauses, properties, and remedies are discussed at length in Mislevy (1988).

\subsection*{8.4 ANALYSES}

When survey variables are observed without error from every respondent, standard variance estimators quantify the uncertainty associated with sample statistics from the only source, namely the sampling of respondents. Item percents-correct for NAEP cognitive exercises meet this requirement, but scale-score proficiency values do not. The IRT and WARM models used in their construction posit an unobservable proficiency variable \(\theta\) to summarize performance on the items in the area. The fact that \(\theta\) values are not observed even for the respondents in the sample requires additional statistical machinery to draw inferences about \(\theta\) distributions and to quantify the uncertainty associated with those inferences. As described above, we have adapted Rubin's (1987) multiple imputations procedures to the context of latent variable models to produce the plausible values upon which many analyses of the 1986 NAEP data are based. This section describes how plausible values were employed in subsequent analyses to yield inferences about population and subpopulation distributions of proficiencies.

\subsection*{8.4.1 Computational Procedures}

Even though we do not observe the \(\theta\) value of respondent \(i\), we do observe variables that are related to it: \(x_{i}\), the respondent's answers to the cognitive items he or she was administered in the area of interest, and \(y_{i}\), the respondent's answers to demographic and background variables. Suppose we wish to draw inferences about a number \(T(\underline{\theta}, \underline{Y})\) that could be calculated explicitly if the \(\theta\) and \(y\) values of each member of the population were known. Suppose further that if \(\theta\) values were observable, we would be able to estimate \(T\) from a sample of \(N\) pairs of \(\theta\) and \(y\) values by the statistic \(t(\underline{\theta}, y)\) \(\left[\right.\) where \(\left.(\theta, y)=\left(\theta_{1}, y_{1}, \ldots, \theta_{N}, y_{N}\right)\right]\), and that we could estimate the variance in \(t\) around \(T\) due to sampling respondents by the function \(U(\underline{\theta}, \underline{y})\). Given that observations consist of (\(X_{i}, y_{\dot{i}}\)) rather than (\(A_{i}, y_{i}\)), we can approximate \(t\) by its expected value conditional on (\(x, y\)), or
\[
\begin{aligned}
t^{*}(\underline{x}, \underline{y}) & =E[t(\underline{\theta}, \underline{y}) \mid \underline{x}, \underline{y}] \\
& =\int t(\underline{\theta}, \underline{y}) p(\underline{\theta} \mid \underline{x}, \underline{y}) d \underline{\theta} .
\end{aligned}
\]

It is possible to approximate \({ }^{*}\) with random draws from the conditional distributions \(p\left(\theta_{i} \mid x_{i}, y_{i}\right)\), which are obtained for all respondents by the
method described above in section 8.2. Let \(\hat{\theta}_{m}\) be the \(m^{\text {th }}\) such vector of "plausible values," consisting of a (possibly multidimensional) value for the latent variable of each respondent. This vector is a plausible
representation of what the true \(\theta\) vector might have been, had we been able to observe it. The following steps describe how an estimate of a scalar statistic \(t(\underline{\theta}, \underline{y})\) and its sampling variance can be obtained from M (>l) such sets of plausible values. (Note: Five sets of plausible values were used in NAEP analyses in each subject area, and are provided on the NAEP public-use data tapes for secondary analysis.)
1. Using each set of plausible values \(\hat{\theta}_{\mathrm{m}}\) in turn, evaluate \(t\) as if the plausible values were true \({ }^{\text {mil }}\) values of \(\underline{\theta}\). Denote the results \({\hat{t_{m}}}_{m}\), for \(m=1, \ldots, M\).
2. Using the multiple weight jackknife approach (see section 14.2.1), compute the estimated sampling variance of \(\hat{t}_{m}\), denoting the result \(U_{m}\).
3. The final estimate of \(t\) is
\[
t^{*}=\sum_{m=1}^{M} \hat{t}_{m} / M
\]
4. Compute the average sampling variance over the \(M\) sets of plausible values, to approximate uncertainty due to sampling respondents:
\[
U^{*}=\sum_{m=1}^{M} U_{\mathrm{m}} / M
\]
5. Compute the variance among the \(M\) estimates \(\hat{t}_{m}\), to approximate uncertainty due to not observing \({ }^{m} \theta\) values from respondents:
\[
B_{M}=\underset{m=1}{M}\left(\hat{t}_{m}-t^{*}\right)^{2} /(M-1)
\]
6. The final estimate of the variance of \(t^{*}\) is the sum of two components:
\[
V=U^{*}+\left(1+M^{-1}\right) B_{M}
\]

Note: Due to the excessive computation that would be required, NAEP analyses did not compute and average jackknife variances

182
over all five sets of plausible values, but only on the first set. Thus, in NAEP reports, \(U\) is approximated by \(U_{1}\).

\subsection*{8.4.2 Statistical Tests}

Suppose that if \(\theta\) values were observed for sampled students, the statistic \((t-T) / \mathrm{U}^{1 / 2}\) would follow a t -distribution with d degrees of freedom. Then the incomplete-data statistic (\(\left.t^{*}-T\right) / V^{1 / 2}\) is approximately \(t\)-distributed, with degrees of freedom given by
\[
\nu=\frac{d}{d+r_{M}^{-2}(M-1)}(M-1)\left(1+r_{M}^{-1}\right)^{2}=d \frac{\left(1+r_{M}\right)^{2}}{1+\left(d r_{M}^{2} /(M-1)\right)},
\]
where \(r_{M}\) is the relative increase in variance due to not observing \(\theta\) values:
\[
r_{M}=\left(1+M^{-1}\right) B_{M} / U^{*} .
\]

When \(B_{M}\) is small relative to \(U^{*}\), the reference distribution for incomplete-data statistics differs little from the reference distribution for the corresponding complete-data statistics. This is the case with main NAEP reporting variables. If in addition \(d\) is large, the normal approximation can be used to flag "significant" results.

For \(k\)-dimensional \(\underset{\substack{t \\ \text {, }}}{ }\) such as the \(k\) coefficients in a multiple regression analysis, each \(U\) and \(U^{*}\) is a covariance matrix, and \(B_{M}\) is an average of squares and cros \(\frac{m}{s}\)-products rather than simply an average of squares. In this case, the quantity
\[
\left(T-t^{*}\right) V^{-1}\left(T-t^{*}\right),
\]
is approximately \(F\) distributed, with degrees of freedom equal to \(k\) and \(\nu\), with \(\nu\) defined as above but with a matrix generalization of \(r_{M}\) :
\[
r_{M}=\left(1+M^{-1}\right) \operatorname{Trace}\left(B_{M} U^{*-1}\right) / k
\]

By the same reasoning as used for the normal approximation for scalar \(t\), a chi-square distribution on \(k\) degrees of freedom often suffices.

\subsection*{8.4.3 Biases in Secondary Analyses}

Statistics \(t^{*}\) that involve proficiencies in \(a_{c}\) scaled content area and variables included in the conditioning variables \(\mathrm{y}^{c}\), are consistent estimates of the corresponding population values \(T\). Statistics involving background variables \(y\) that were not conditioned on, or relationships among proficiencies from different content areas, are subject to asymptotic biases whose magnitudes depend on the type of statistic and the strength of the relationships of the nonconditioned background variables to the variables that were conditioned on and to the proficiency of interest. That is, the large sample expectations of certain sample statistics need not equal the true population parameters.

The direction of the bias is typically to underestimate the effect of nonconditioned variables. For details and derivations, the interested reader is referred to Beaton and Johnson (1987), Mislevy (1988) \({ }_{*}\) and Mislevy and Sheehan (1987, section 10.3.5). For a given statistic \(t\) involving one content area and one or more nonconditioned background variables, the magnitude of the bias is related to (1) the extent to which observed responses \(\mathbf{x}\) account for the latent variable \(\theta\), and (2) the degree to which the nonconditioned background variables are explained by conditioning background variables. The first factor--conceptually related to test reliability--acts consistently in that greater reliability reduces biases in all secondary analyses. (This salutary effect is roughly proportional to the average number of items in a content area the respondents are administered.) The second factor acts to reduce biases in certain analyses but increase it in others. In particular,
- High shared variance between conditioned and nonconditioned background variables mitigates biases in analyses that involve only proficiency and nenconditioned variables, such as marginal means or regressions.
- High shared variance exacerbates biases in regression coefficients or conditional effects for nonconditioned variables, when nonconditioned and conditioned background variables are analyzed jointly as in multiple regression.

In the 1984 NAEP reading assessment, the magnitude of shrinkage for the subgroup means of a background va.iable that was not conditioned on averaged about 15 percent. Biases in multiple regressions that included conditioning variables averaged about 35 percent. These values may be taken as approximate lower bounds for shrinkage for similar analyses with total reading, mathematics, and science proficiencies in the 1986 assessment, as the total proportion of variation in proficiency accounted for by item and sonditioned-background responses is very similar--values between 80 and 90 percent, as compared to the 80 -percent values attained with 1984 reading (see Table 8.1). Somewhat higher degrees of shrinkage are possible in subscale areas, but may be mitigated by the fact that four times as many background variables were included in the conditioning vector this year. Thus more analyses of important variables are free from such biases (i.e., those variables that have been conditioned on), which unequivocally improves the

18:

Table 8.1
Proportions of Proficiency Variance Accounted For
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Grade/Age} & \multirow[b]{2}{*}{Scale Ba} & \multicolumn{4}{|l|}{Percent Variance Accounted for by.} \\
\hline & & Background only & Background + Items & Items given Background & \begin{tabular}{l}
Items \\
Only*
\end{tabular} \\
\hline 3/9 & Reading & . 505 & . 836 & . 669 & . 803 \\
\hline 7/13 & Reading & . 508 & . 813 & . 621 & . 769 \\
\hline 11/17 & Reading & . 450 & . 827 & . 685 & . 798 \\
\hline \multirow[t]{4}{*}{3/9} & Science Composite & . 696 & . 827 & . 432 & . 714 \\
\hline & Life Science & . 528 & . 726 & . 418 & . 604 \\
\hline & Nature of Science & . 485 & . 667 & . 354 & . 515 \\
\hline & Physical Science & . 509 & . 719 & . 428 & . 604 \\
\hline \multirow[t]{6}{*}{7/13} & Science Composite & . 784 & . 873 & . 410 & . 763 \\
\hline & Life Science & . 564 & . 745 & . 415 & . 619 \\
\hline & Chemistry & . 526 & . 670 & . 303 & . 478 \\
\hline & Nature of Science & . 613 & . 750 & . 355 & . 587 \\
\hline & Physics & . 467 & . 636 & . 318 & . 467 \\
\hline & Earth \& Space & . 552 & . 728 & . 393 & . 591 \\
\hline \multirow[t]{6}{*}{11/17} & Science Composite & . 819 & . 892 & . 405 & . 790 \\
\hline & Life Science & . 599 & . 771 & . 428 & . 651 \\
\hline & Chemistry & . 659 & . 774 & . 336 & . 598 \\
\hline & Nature of Science & . 608 & . 761 & . 391 & . 621 \\
\hline & Physics & . 591 & . 745 & . 378 & . 597 \\
\hline & Earth \& Space & . 576 & . 727 & . 356 & . 566 \\
\hline \multirow[t]{4}{*}{3/7} & Mathematics Composite & e . 681 & . 838 & . 493 & . 753 \\
\hline & Measurement & . 543 & . 736 & . 423 & . 616 \\
\hline & High-level Applic. & . 528 & . 722 & . 411 & . 597 \\
\hline & Number Skills & . 501 & . 741 & . 481 & . 650 \\
\hline \multirow[t]{5}{*}{7/13} & Mathematics Composite & e . 741 & . 890 & . 576 & . 840 \\
\hline & Measurement & . 601 & . 781 & . 450 & . 673 \\
\hline & High-level Applic. & . 618 & . 795 & . 462 & . 692 \\
\hline & Number Skills & . 511 & . 806 & . 602 & . 756 \\
\hline & Geometry & . 598 & . 730 & . 329 & . 550 \\
\hline \multirow[t]{6}{*}{11/17} & Mathematics Composite & . 810 & . 926 & . 612 & . 892 \\
\hline & Measurement & . 657 & . 822 & . 480 & . 730 \\
\hline & High-level Applic. & . 661 & . 860 & . 586 & . 807 \\
\hline & Number Skills & . 509 & . 793 & . 579 & . 737 \\
\hline & Geometry & . 672 & . 830 & . 484 & . 740 \\
\hline & Functions & . 711 & . 841 & . 450 & . 739 \\
\hline
\end{tabular}
*analogous to reliability in classical test theory
situation; and those that have not been included are more likely to be related to others that have, which improves marginal analyses of those variables. The shrinkages to be expected in mathematics and science subscales, however, will be larger than those for areas as a whole due to their lower conditional reliabilities.

\subsection*{8.4.4 A Numerical Example}

In order to provide a feel for how plausible values are used in subsequent analyses, this subsection gives some of the steps in the calculation of 1986 grade-level reading means and their estimation-error variances.

The weighted mean of the first plausible values of the 9,793 grade 3 students in the sample is 38.09 , and the jackknife variance of these values is .03. Were these values true \(\theta\) values, then 38.09 would be the estimate of the mean and .03 would be the rstimation-error variance. The weighted mean of the second plausible values of the same students, however, is 37.95; the third, fourth, and fifth plausible values give weighted means of 37.99 , 38.04 , and 37.96. Since all of these figures are based on precisely the same sample of students, the variation among them is due to uncertainty about the students' \(\theta\) s, having observed their item responses and background variables. Taking the jackknjfe variance estimate from the first plausible value, . 03 , as our estimate \(U\) of sampling variance, and the variance among the five weighted means, . 0034, as our estimate \(B\) of uncertainty due to not obserying \(\theta\), we obtain as the fina? estimate \(V\) of total error variance \(.03+\left(1+5^{-1}\right)\) \(.0034=.034\).

With \(\mathrm{J}^{*}\) and \(B\) defined as above, and with \(M=5\), we may obtain values for Rubin's (1987) indices characterizing the properties of the plausible-valuebased estimate of the grade 3 mean:
- \(r\), the relative increase in variance due to the latency of \(\theta\), is . 1372 .
- \(\quad \nu_{\infty}\), the degrees of freedom associated with the precision \(\mathrm{l}^{\infty}{ }^{\infty}\) ss due to the latency of \(\theta\) if the degrees of freedom for the complete-data statistic were infinite, is 274.

Corresponding values were also calculated for grade 7 and grade 11. The results are shown in Table 8.2.

Table 8.2
Estimation Error Variances and Related Coefficients for the 1986 Grade-level Reading Assassments
\begin{tabular}{rllllll}
Grade & \(\underline{U}^{*}\) & \(\underline{B}\) & \(\underline{V}\) & \(\underline{r}\) & \(\underline{\nu}_{\infty}\) \\
3 & & .03 & .003 & & .034 & .137 \\
7 & .02 & .001 & .022 & .088 & 274 \\
11 & .04 & .002 & .043 & .071 & 901
\end{tabular}

\subsection*{8.5 OVERVIEW OF SCALES IN THE 1986 NAEP ASSESSMENT}

Scale-score analyses based on IRT were carried out in the following subject areas in the main sample (BIB administration) of the 1986 NAEP assessment.
- Reading: 1 scale, scalar plausible values.
- Mathematics: 5 subscales, multivariate plausible values.
- Science: 6 subscales, multivariate plausible values.
- . History: 1 scale, point estimates for each student.
- Literature: 1 scale, point estimates for each student.

The conditioning variables employed in the construction of plausible values for reading, mathematics, and science are listed in Table 8.4. Table 8.5 gives details of exactly how the background effects were coded in order to produce the conditioning vector \(y\). Conditional effect parameters \(\Gamma\) and the associated residual covariances \(\Sigma\) were estimated separately in each subject area and in each grade/age. Additional information on these analyses is presented in Chapters \(9,10,11\), and 13.

IRT scale-score analyses were also carried out separately in bridge samples, which differed substantially in administration procedures and are not to be merged with the main-sample scale-score data:
- Mathematics, bridge sample, paced administration: l scale, plausible values.
- Science, bridge sample, paced administration: 1 scale, plausible values.

Additional information on these analyses appears in Chapters 10 and 11 , following the discussion of the main-sample analyses.

The weighted average response method (WARM) was used to construct sets of composite background variables for each grade/age and for each of the subject areas of reading, mathematics, and science. Between 4 and 8 WARM composites were specified for each grade/age and subject area, each of these composites being defined as averages of subsets of the background and attitude questions related to that subject area which were also presented to the students of that grade/age. The number of such composites, by grade/age and subject area, are shown in Tabie 8.3. The names of the WARM variables, along with short descriptors, are given in the subject area chapters.

Table 8.3
Number of WARM Composite Variables by Subject Area and Grade/Age
\begin{tabular}{lccc}
\multicolumn{2}{c}{ Grade/Age } & Reading & Mathematics
\end{tabular}

The questions comprising each of the final set of 50 WARM composites appear in Appendix C in Tables C.1, C.2, and C. 3 (for reading); Tables C.5, C.6, and C. 7 (for mathematics); and Tables C.9, C.10, and C.11 (for science). The conditioning background variables used in their construction appears in Table 8.4. The mapping of the original responses to the questions to the scaled and oriented responses used for the WARM composites appears in Tables C.4, C.8, and C. 12 respectively for reading, mathematics, and science.

Table 8.4
Variables Conditioned on for 1986 by Grade/Age

\section*{Grade 3/Age 9}

Grade 7/Age 13
Overall
Gender
Ethnicity
STOC
Region
Parents' Education
Items in the Home
TV Watching
Homework
Home Language Minority (self) crossed with Ethnicity
Percent in Lunch Program
Percent White in School
Ethnicity by Gender
Ethnicity by Parents'
Education
Age by Grade
Public v. Private School
Family Asks About Schoolwork
Went to Preschool
Single/Multiple Parent Home
Mother at Home
Mother Works Outside Home
Use Computers for Math
Type of Math Class In
Studying in Science this Year
Grades in School
First Quantile*
Second Quantile*
Sample Type (Reading only)

Grade 11/Age 17
Overall
Gender
Ethnicity
STOC
Region
Parents' Education
Items in the Home
TV Watching
Homework
Home Language Minority (self) crossed with Ethnicity
Percent in Lunch Program
Percent White in School
Ethnicity by Gender
Ethnicity by Parents'
Education
Age by Grade
Public v. Private School
Family Asks About
Schoolwork
Went to Preschool
Single/Multiple Parent Home
Mother at Home
Mother Works Outside Home
Grades in School
High School Program
Number of Math Courses
Number of Science Courses
Post-Secondary Plans
Hours of Outside Work
Type of English Class In
First Quantile*
Second Quantile*
* When reading is the subject area being analyzed, the variables "First Quantile" and "Second Quantile" refer to a respondent's booklet-based percent-correct scores in mathematics and science. When mathematics is being analyzed, the variables refer to reading and science. When science is being analyzed, the variables refer to reading and mathematics. Quantiles are obtained by trichotomizing percentiles; a student is designated as either in the lowest quarter, the middle half, or the upper quarter. Students not receiving any items of the type in question a:e coded in the same manner as those who had received some items and we-e found to be in the middle half.

Table 8.5
Contrast Codings for 1986 Conditioning Variables
\begin{tabular}{|c|c|c|c|}
\hline Variable Name & Ages & Variable Coding & Contrast Coding* \\
\hline Overall & A11 & --- & 1 \\
\hline \multirow[t]{2}{*}{Gender} & \multirow[t]{2}{*}{A11} & 1 Male & 0 \\
\hline & & 2 Female & 1 \\
\hline \multirow[t]{7}{*}{Ethnicity} & \multirow[t]{7}{*}{All} & 1 White & 000 \\
\hline & & 2 Black & 100 \\
\hline & & 3 Hispanic & 010 \\
\hline & & 4 Asian American & 001 \\
\hline & & 5 American Indian & 000 \\
\hline & & 6 Unclassified & 000 \\
\hline & & BLK Missing & 000 \\
\hline \multirow[t]{3}{*}{STOC} & \multirow[t]{3}{*}{All} & 1 Low Metro & 00 \\
\hline & & 2 High Metro & 10 \\
\hline & & 3 All Others and Missing & \[
01
\] \\
\hline \multirow[t]{4}{*}{Region} & \multirow[t]{4}{*}{Al1} & 1 Northeast & 000 \\
\hline & & 2 Southeast & 100 \\
\hline & & 3 Central & 010 \\
\hline & & 4 West & 001 \\
\hline \multirow[t]{5}{*}{Parents' Education} & \multirow[t]{5}{*}{A11} & 1 < High School & 0000 \\
\hline & & 2 High School Grad & 1000 \\
\hline & & 3 Post-High Schuol & 0100 \\
\hline & & 4 College Grad & 0010 \\
\hline & & BLK Missing and I Don't Know & 0001 \\
\hline \multirow[t]{2}{*}{Items in the Hon.c} & \multirow[t]{3}{*}{A11} & 10 to 3 of the five items & 00 \\
\hline & & 2 Four of the five items & 10 \\
\hline (Items asked about are & & 3 Five of the five items & 01 \\
\hline \multirow[t]{3}{*}{Newspaper, Dictionary, \(>25\) Books, Encyclopedia, and Magazines. Three or more missing = Missing.)} & & BLK Missing & 00 \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
* Multicolumn entries without overbars indicate multiple contrasts. "Items in the home", for example, induces two contrasts: A response of 2 vs. all other responses, and a response of 3 vs. all other responses. Barred columns treated as one contrast
\begin{tabular}{|c|c|c|c|}
\hline & & Table 8.5 (continued) & \\
\hline Variable Name & Ages & Variable Coding & Contrast Coding* \\
\hline TV Watching & A11 & 1 None & \(0 \overline{00}\) \\
\hline & & 2 One hour or less per day & 101 \\
\hline & & 3 Two hours & 204 \\
\hline & & 4 Three hours & 309 \\
\hline & & 5 Four hours & 416 \\
\hline & & 6 Five hours & 525 \\
\hline & & 7 Six or more hours per day & \[
636
\] \\
\hline & & BLK Missing & \[
309
\] \\
\hline Home Language Minority & A11 & Yes and Hispanic & 100 \\
\hline by Ethnicity & & Yes and Asian American & 110 \\
\hline & & Yes and other Ethnicity & \[
101
\] \\
\hline & & No and Missing & 000 \\
\hline Homework & 9 & 1 None & 10 \\
\hline & & \(2<15\) minutes & 11 \\
\hline & & \(31 / 2\) hour & 12 \\
\hline & & 4 One hour & 13 \\
\hline & & \(5>\) One hour & 14 \\
\hline & & BLK Missing & 00 \\
\hline & 13, 17 & 1 Don't have any & 100 \\
\hline & & 2 Don't do any & 010 \\
\hline & & \(31 / 2\) hour & 011 \\
\hline & & 4 One hour & 012 \\
\hline & & 5 Two hours & 013 \\
\hline & & \(6>\) Two hours & \[
014
\] \\
\hline & & BLK Missing & \\
\hline Percent in Lunch Program & A11 & & \\
\hline & & 1 & \[
0010
\] \\
\hline & & 2 & 0020 \\
\hline & & - & . \\
\hline & & \(\cdot 99\) & 0990 \\
\hline & & 100 & 1000 \\
\hline & & BLK & 0001 \\
\hline
\end{tabular}

Table 8.5
(continued)
\begin{tabular}{|c|c|c|c|}
\hline Variable Name & Ages & Variable Coding & Contrast Coding* \\
\hline \multirow[t]{4}{*}{Percent White in School} & All & 0-49 White Minority & 100 \\
\hline & & 50-79 Integrated & 010 \\
\hline & & 80-100 Predominantly White & 001 \\
\hline & & BLK Missing & 000 \\
\hline \multirow[t]{8}{*}{Ethnicity by Gender} & All & White, Other, \& Missing Male & 000 \\
\hline & & Black Male & 000 \\
\hline & & Hispanic Male & 000 \\
\hline & & Asian American Male & 000 \\
\hline & & White, Other, \& Missing Female & 000 \\
\hline & & Black Female & 100 \\
\hline & & Hispanic Female & 010 \\
\hline & & Asian American Female & 001 \\
\hline \multirow[t]{20}{*}{Ethnicity by Parents' Education} & All & White, Other, \& Missing < HS & 000000000000 \\
\hline & & White, Other, \& Missing HS Grad & 000000000000 \\
\hline & & White, Other, \& Missing Post HS & 000000000000 \\
\hline & & White, Other, \& Missing Co Grad & 000000000000 \\
\hline & & White, other, \& Missing Unknown & 000000000000 \\
\hline & & Black < HS & 000000000000 \\
\hline & & Black HS Grad & 100000000000 \\
\hline & & Black Post HS & 010000000000 \\
\hline & & Black College Grad & 001000000000 \\
\hline & & Black Unknown & 000100000000 \\
\hline & & Hispanic < HS & 000000000000 \\
\hline & & Hispanic HS Grad & 000010000000 \\
\hline & & Hispanic Post HS & 000001000000 \\
\hline & & Hispanic College Grad & 000000100000 \\
\hline & & Hispanic Unknown & 000000010000 \\
\hline & & Asian American < HS & 000000000000 \\
\hline & & Asian American HS Grad & 000000001000 \\
\hline & & Asian American Post HS & 000000000100 \\
\hline & & Asian American College Grad & 000000000010 \\
\hline & & Asian American Unknown & 000000000001 \\
\hline \multirow[t]{5}{*}{Age by Grade} & All & 1 < Modal Age, Modal Grade & 0000 \\
\hline & & 2 Modal Age, < Modal Grade & 1000 \\
\hline & & 3 Modal Age, Modal Grade; and Missing & 0100 \\
\hline & & 4 Modal Age, > Modal Grade & 0010 \\
\hline & & \(5>\) Modal Age, Modal Grade & 0001 \\
\hline
\end{tabular}

19~
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table 8.5 (continued)} \\
\hline Variable Name & Ages & Variable Coding & Contrast Coding * \\
\hline \multirow[t]{6}{*}{Public v. Private Schools} & \multirow[t]{6}{*}{All} & 1 Public & 0 \\
\hline & & 2 Private & 1 \\
\hline & & 3 Catholic & 1 \\
\hline & & 4 Bureau of Indian Affairs & 1 \\
\hline & & 5 Dept. of Defense & 1 \\
\hline & & BLK Missing & 1 \\
\hline \multirow[t]{5}{*}{Family Asks About Schoolwork} & \multirow[t]{5}{*}{A11} & 1 Almost Every Day & 1 \\
\hline & & 2 Once a Week & 0 \\
\hline & & 3 Once a Month & 0 \\
\hline & & 4 Never & 0 \\
\hline & & BLK Missing & 0 \\
\hline \multirow[t]{4}{*}{Went to Preschool} & \multirow[t]{4}{*}{A11} & 1 Yes & 1 \\
\hline & & \[
2 \text { No }
\] & 0 \\
\hline & & 3 I Don't Know & 0 \\
\hline & & BLK Missing & 0 \\
\hline \multirow[t]{3}{*}{Single/Multiple Parent Home} & \multirow[t]{3}{*}{A11} & 1 Yes to Father and Mother at Home & 1 \\
\hline & & 2 Any Other Responses & 0 \\
\hline & & BLK Missirg & 0 \\
\hline \multirow[t]{9}{*}{Mother at Home} & \multirow[t]{4}{*}{9} & 1 Works Outside & 1 \\
\hline & & 2 Doesn't Work Outside & 1 \\
\hline & & 3 Mother Not at Home & 0 \\
\hline & & BLK Missing & 0 \\
\hline & \multirow[t]{5}{*}{13, 17} & 1 Works Outside Full-Time & 1 \\
\hline & & 2 Works Outside Part-Time & 1 \\
\hline & & 3 Doesn't Work Outside & 1 \\
\hline & & 4 Mother Not at Home & 0 \\
\hline & & BLK Missing & 0 \\
\hline \multirow[t]{9}{*}{Mother Works Outside of Home} & \multirow[t]{4}{*}{9} & 1 Works Outside & 1 \\
\hline & & 2 Doesn't Work Outside & 0 \\
\hline & & 3 Mother Not it Home & 0 \\
\hline & & BLK Missing & 0 \\
\hline & \multirow[t]{5}{*}{13, 17} & 1 Works Outside Full-Time & 1 \\
\hline & & 2 Works Outside Part-Time & 1 \\
\hline & & 3 Doesn't Work Outside & 0 \\
\hline & & 4 Mother Not at Home & 0 \\
\hline & & BLK Missing & 0 \\
\hline
\end{tabular}
\[
190
\]
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variable Name} & \multirow[b]{2}{*}{Ages} & \multicolumn{2}{|l|}{Table 8.5 (continued)} \\
\hline & & Variable Coding & Contrast Coding \(\star\) \\
\hline Time Spent Studying & 9 & 1 Daily & 10 \\
\hline \multirow[t]{5}{*}{Science} & & 2 Several Times a Week & 10 \\
\hline & & 3 Once a Week & 10 \\
\hline & & 4 < Once a Week & 01 \\
\hline & & 5 Never & 01 \\
\hline & & BLK Missing & 00 \\
\hline \multirow[t]{3}{*}{Use Computers for Math} & 9, 13 & 1 Yes & 1 \\
\hline & & 2 No & 0 \\
\hline & & BLK Missi.ng & 0 \\
\hline \multirow[t]{3}{*}{Adult Supervision of Student after School} & 9 & 1 Yes & 1 \\
\hline & & 2 No & 0 \\
\hline & & BLK Missing & 0 \\
\hline \multirow[t]{6}{*}{Type of Math Class In} & 13 & 1 None & 000 \\
\hline & & 2 Regular Math & 100 \\
\hline & & 3 Pre-Algebra & 010 \\
\hline & & 4 Algebra & 001 \\
\hline & & 5 Other & 001 \\
\hline & & BLK Missing & 000 \\
\hline \multirow[t]{7}{*}{Studying in Science this Year} & 13 & 1 None & 0000 \\
\hline & & 2 Life Science & 1000 \\
\hline & & 3 Physical Science & 0100 \\
\hline & & 4 Earth Science & 0010 \\
\hline & & 5 General Science & 0001 \\
\hline & & 6 Other & 0001 \\
\hline & & BLK Missing & 0000 \\
\hline \multirow[t]{9}{*}{Grades in School} & 13, 17 & 1 A & \(\overline{4.0}\) \\
\hline & & \(2 \mathrm{~A}-\mathrm{B}\) & 3.5 \\
\hline & & 3 B & 3.0 \\
\hline & & \(4 \mathrm{~B}-\mathrm{C}\) & 2.5 \\
\hline & & 5 C & 2.0 \\
\hline & & \(6 \mathrm{C}-\mathrm{D}\) & 1.5 \\
\hline & & 7 D & 1.0 \\
\hline & & \(8<\mathrm{D}\) & 0.5 \\
\hline & & BLK Missing & 2.0 \\
\hline
\end{tabular}
* Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

Table 8.5
(continued)
\begin{tabular}{|c|c|c|c|}
\hline Variable Name & Ages & Variable Coding & Contrast Coding \\
\hline \multirow[t]{4}{*}{High School Program} & \multirow[t]{4}{*}{17} & 1 General & 00 \\
\hline & & 2 College Preparatory & 10 \\
\hline & & 3 Vocational, Technical & 01 \\
\hline & & BLK Missing & 00 \\
\hline \multirow[t]{9}{*}{\begin{tabular}{l}
Number of Math Courses Taken \\
(Classes asked about: General Business, PreAlgebra, lst year Algebra, 2nd year Algebra, Geometry, Trigonometry, Pre-Calculus, Calculus.)
\end{tabular}} & \multirow[t]{9}{*}{17} & 0 None of the seven classes & 0 \\
\hline & & 1 One of the seven classes & 1 \\
\hline & & 2 Two of the seven classes & 2 \\
\hline & & 3 Them of the seven classes & 3 \\
\hline & & 4 Four of the seven classes & 4 \\
\hline & & 5 Five of the seven classes & 5 \\
\hline & & 6 Six of the seven classes & 6 \\
\hline & & 7 Seven of the seven classes & 7 \\
\hline & & BLK Missing & 0 \\
\hline \multirow[t]{6}{*}{Number of Science Courses Taken (Classes asked about: General Science, Biology, Chemistry, Physics.)} & \multirow[t]{6}{*}{17} & 0 None of the four classes & 0 \\
\hline & & 1 One of the four classes & 1 \\
\hline & & 2 Two of the four classes & 2 \\
\hline & & 3 Three of the four classes & 3 \\
\hline & & 4 Four of the four classes & 4 \\
\hline & & BLK Missing & 0 \\
\hline \multirow[t]{5}{*}{Posí-Secondary Plans} & \multirow[t]{5}{*}{17} & 1 Work Full Time & 00 \\
\hline & & 2 Two-year College & 10 \\
\hline & & 3 Four-year College & 01 \\
\hline & & 4 Other & 00 \\
\hline & & BLK Missing & 00 \\
\hline \multirow[t]{9}{*}{Hours of Outside Work} & \multirow[t]{9}{*}{17} & 1 None & 0 \\
\hline & & \(2<6\) Hours & 1 \\
\hline & & 36 to 10 Hours & 1 \\
\hline & & 411 to 15 Hours & 1 \\
\hline & & 516 to 20 Hours & 1 \\
\hline & & 621 to 25 Hours & 1 \\
\hline & & 726 to 30 Hours & 1 \\
\hline & & \(8>30\) Hours & 1 \\
\hline & & BLK Missing & 0 \\
\hline \multirow[t]{6}{*}{Type of English Class In} & \multirow[t]{6}{*}{17} & & 00 \\
\hline & & 2 Advanced Placement & 10 \\
\hline & & 3 College Preparatory & 10 \\
\hline & & 4 General & 00 \\
\hline & & 5 Remedial & 01 \\
\hline & & BLK Missing & 00 \\
\hline
\end{tabular}
* Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

Table 8.5
(continued)

* Multicolumn entries without overbears indicate multiple contrasts. Barred columns treated as one contrast.

CHAPTER 9
Reading Data Analysis

\section*{Chapter 9}

\title{
READIÑG data analysis \({ }^{1}\)
}

\section*{Rabecca Zwick}

Educational Testing Service

\subsection*{9.1 SAMPLING OF STUDENTS AND ITEMS}

In 1986, reading items were administered to subsets of the spiral samples at all three grade/age levels and to all students in the Bridge A samples at the two lower age levels. Further detail on these samples is given in Chapter 1. In brief, the purpose of the Bridge A samples was to allow measurement of the effects of changes in age definition and time of testing. Since there were no such changes at grade \(11 /\) age 17 , no Bridge \(A\) sample was needed. The table below gives the number of students in each of the five samples listed above who received at least one reading block, the total number of reading scale items administered to each sample, and the number of reading scale items common to the 1984 assessment.

Table 9.1
Reading Scale Item Information, by Sample
\begin{tabular}{lcccc}
& Sample & No. of Cases & & \begin{tabular}{c}
No. of Reading \\
\\
Scale Items
\end{tabular}
\end{tabular}

In total, 107 reading scale items were administered in 1986; 76 of these items had also been administered in 1984. Four of these items were openended; the remainder were muitiple-choice. Two of the four were administered at all three age levels, the remaining two at the two upper age levels only. These items were rated on four- or five-point scales by professional judges, as described in Chapter 6.2. For purposes of item response theory (IRT) scaling, these ordinal scores were then dichotomized using rules provided by reading experts (Table 9.2).

1
Laurel Barnett, David Freund, Bruce Kaplan, Laura McCamley, and Minhwei Wang provided statistical programming. Robert Mislevy, Kathleen Sheehan, and Eugene Johnson provided consultation on IRT and WARM scaling.

Table 9.2
Dichotomization Rules for Open-ended Reading Items Used in Scaling
\begin{tabular}{|c|c|c|c|}
\hline NAEP ID & Cohort & Score Range for Valid Responses & Scores Considered Correct \\
\hline N003104 Goods to Market & 3/9, 7/13, 11/17 & 1-5 & 3-5 \\
\hline N021301 Jacob & 3/9, 7/13, 11/17 & 1-4 & 2-4 \\
\hline N021801 Eggplant I & 7/13, 11/17 & \(1-5\) & 3-5 \\
\hline N021805 Eggplant II & 7/13, 11/17 & 1-4 & 3-4 \\
\hline
\end{tabular}

Twelve reading items that had been excluded from the reading scale in 1984 were again excluded in 1986. Also, in the case of open-ended items, neither primary trait scores for Rater 2 nor secondary trait scores were scaled. Table 9.3 lists the reading item scores excluded from the scale, as well as the reasons for exclusion.

\subsection*{9.2 SCALING}

In 1984, responses to reading items were summarized in a single reading scale, a decision that was supported by dimensionality analyses (see Beaton, 1987a and Zwick, 1987a). The IRT procedures applied to the 1986 reading scale items, more than 70 percent of which are common to 1984, are essentially the same as those used to scale the spiral data in 1984. Because these methods are extensively documented in Beaton (1987a) and in Chapter 8 of this report, only a brief outline of the scaling procedures is given here.

\subsection*{9.2.1 Steps in Scaling the 1986 Reading Data}

\subsection*{9.2.1.1 Item Calibration}

For all three grade/ages combined, the BILOG program (Mislevy \& Bock, 1982) was used to obtain item parameter estimates on a provisional scale, based on the three-parameter logistic model. Parameters were estimated even for previously administered items; parameter values were not assumed equal to their 1984 values at this phase.

To reduce costs, a random sample of students was used for this item calibration phase. Table 9.4 gives the number of students in each sample that were included in the BILOG run.
\begin{tabular}{|c|c|}
\hline \(\mathrm{COHORT}^{+}\) & REASON FOR EXCLUSION \\
\hline 1,2,3 & Supplementary score for scaled item* \\
\hline 2,3 & Document literacy items ~ Encluded as is 1984** \\
\hline " & " \\
\hline " & * \\
\hline " & " \\
\hline " & " \\
\hline " & " \\
\hline 1 & Opinion item-excluded as in 1984** \\
\hline \[
1,2,3
\] & Supplementary score for scaled item \({ }^{*}\) \\
\hline " & " \\
\hline " & " \\
\hline 2,3 & 退-exclude \\
\hline " & Opinion item-excluded as in \(1984^{* *}\) \\
\hline " & Supplementary score for scaled item \\
\hline
\end{tabular}

Table 9.4
Students Included in BILOG Run, by Sample
\begin{tabular}{ccccc}
Grade/Age & Spiral & Bridge & Total \\
\(3 / 9\) & & & & \\
\(7 / 13\) & 3,116 & & 497 & 4,613 \\
\(11 / 17\) & 4,612 & & 443 & 4,388 \\
& & \(\cdots\) & 4,612
\end{tabular}

Note that 2,997 students from the Language Minority Probe, a NAEP add-on project, were also included in this phase of analysis, but not in subsequent phases. Students in each of the eight samples (the five above, plus one Language Minority sample at each grade/age) were treated as distinct subpopulations in the BILOG run. That is, in estimating the item parameters, the densities for these eight groups were not assumed to be the same. A graphical analysis of residuals was conducted to determine whether it was reasonable to assume common item response functions for these eight groups. For each item and each group, expected proportions-correct (see Beaton, 1987a, p. 302) for each of approximately eight proficiency levels were obtained. The departures of these proportions from the common estimated item response function were examined. No major or systematic departures were found, indicating that a common item response function was appropriate for all groups.

\subsection*{9.2.1.2 Rescaling of Item Parameters}

Using the Stocking-Lord (1983) equating procedure, implemented in the TBLT program (Stocking, 1986), the item parameters were rescaled by deriving a linear equating function based on items common to 1984. This function was used to rescale parameter estimates for items new to 1986; the 1984 parameter estimates were used for old items. The equating procedure and a study of the error are described in Appendix D. The final parameter estimates are given in Tables E.1, E.2, and E. 3 of Appendix E. Items common to the 1984 scale are indicated in the table. The item parametc"a ware treated as known in all subsequent calculations. (The metric in which e parameters are reported is discussed in section 9.4.)

\subsection*{9.2.1.3 Proficiency Estimation}

Using the iterative method described by Mislevy (1985) and implemented in the M-GROUP program (Sheehan, 1985), a reading proficiency (\(\theta\)) distribution was estimated for each individual. M-GROUP was applied to each. grade/age separately. Each iteration consists of the following steps:
1) Using the current estimates of the regression coefficients, \(\Gamma\), and error variance, \(\sigma^{2}\), associated with the regression of \(\theta\) on the conditioning variables \(y^{c}\), the distribution of \(\theta\) is estimated for each individual (see

Equation 8.6). The distribution is assumed normal with mean \(\Gamma y^{c}\) and variance \(\sigma^{2}\). (In the first iteration, starting values must be assumed for \(\Gamma\) and \(\sigma^{2}\).)
2) For each individual, standard Bayesian calculations (see Equation 8.5) are used to combine the (prior) distribution from a with a smoothed, normalized approximation to the likelihood based on that individual's observed item responses, yielding a posterior distribution for each individual.
3) Five "plausible values" are randomly selected from each individual's posterior distribution.
4) These plausible values are used to re-estimate the regression parameters \(\Gamma\) and \(\sigma\).
5) Steps 1-4 are repeated until the changes in \(\sigma^{2}\) and the elements of \(\Gamma\) are sufficiently small.

The final set of five plausible values drawn from each individual's distribution is then used for estimating group statistics.

The backgrsund information, or conditioning variables, used in the reading analysis are listed in Table 8.1 and the estimated effects are given in Tables B.1, B. 2, and B. 3 of Appendix B. (The absence of an estimated effect next to a variable name indicates that the variable was deleted in order to eliminate collinearities.) Note that the spiral and Bridge A samples were combined in the M-GROUP analysis for the two younger age groups, and that an indicator variable for spiral versus Bridge A sample was included as a conditioning variable. (As noted above, there was no bridge sample for grade 11/age 17.)

\subsection*{9.3 TREND ANALYSIS}

Comparisons of the 1986 reading results for 9,13 , and 17-year-olds to the 1984 results suggested a large decrease in performance for 9- and 17-year-olds. These changes were evident in the item percents-correct, as well as the reading scale values. Because changes of this magnitude did not seem credible, NAEP did not report trend results in 1986. NAEP staff embarked on a year-long investigation of the possible reasons for the 1986 results. The NAEP Technical Advisory Committee (now the Design and Analysis Committee), statistical staff from the Office of Educational Research and Improvement (OERI), as well as other eminent statisticians and educational researchers, reviewed the results and helped to guide NAEP's investigative efforts. The analyses that were performed to explore the change in reading results are described in The NAEP 1985-86 Reading Anomaly: A Technical Report (Beaton, 1988). Among the issues discussed are sampling, administration, data entry, scoring, and scaiing. Although the source of the change could not be conclusively determined, NAEP is now collecting data that will provide further information about the puzzling results in 1986 . The 1988 data
collection includes, at each age level, two special supplementary samples in addition to the 1988 sample. These additional samples duplicate as closely as possible the 1984 and 1986 assessments, respectively, in terms of sample definition, item booklets, and dates and conditions of administration. By comparing the reading results obtained from the three samples, estimates can be obtained of the effects of changes introduced in 1986 and in 1988. If these effects prove to be nonnegligible, NAEP plans to use the data from these supplementary samples as a basis for adjusting the 1986 and 1988 results so that they can reported in the same metric as the 1984 scale.

Although the 1986 and 1984 assessments differed in some ways and may not be comparable, the 1986 findings resemble past assessments and other reading measures in terms of patterns of subgroup difference, relation of reading proficiency to background variables, ard relation of reading proficiency to performance in other subject areas, such as math and science. It was therefore decided to release a cross-sectional report only, using a scale metric that differed from the 1984 reading scale.

\subsection*{9.4 CROSS-SECTIONAL ANALYSIS}

The 1986 reading cross-sectional report, Who Reads Best? (Applebee, Langer, and Mullis, 1988), is based on the students in the spiral samples who were in grades 3,7 , and 11 . The reading scale was standerdized to have a mean of 50 and a standard deviation of 10 for the three grade samples combined. To obtain results in terms of this metric, the scale values that would be obtained by using the item parameter estimates in Table E.1, E.2, and \(E .3\) of Appendix \(E\) need to be transformed. Letting \(\theta\) represent the proficiency metric that corresponds to the item parameters provided and letting RS represent the metric of the reporting scale, the required transformation is \(R S=10 \theta+50\). The corresponding changes to the item parameters are \(a a_{R S}=a / 10\) and \(b_{R S}=10 b_{\theta}+50 .\left(c_{R S}=c_{\theta}.\right)\) See Appendix \(D\) for an explanation of the linkage between the \(\theta\) metric and the 1984 reading scale.

Who Reads Best? contains analyses relating reading proficiency to background and attitude variables and to styles of reading instruction (as reported by the student). Several composites of background, attitude, and instruction variables were created, using the WARM method described in section 8.3. The questions comprising each of the reading WARM composites are given in Tables C.1, C.2, and C.3 of Appendix C. The score values that were assigned to the original responses to these questions for purposes of deriving the WARM scales are given in Table C. 4 of Appendix C.

204

\section*{CHAPTER 10}

\section*{Mathematics Data Analysis}
20.3
\(\because ;\)

\title{
mathematics data analysis \({ }^{1}\)
}

\author{
Eugene G. Johnson \\ Educational Testing Service
}

This chapter describes the analyses carried out on the responses to the cognitive and background items in the 1973-74, 1977-78, 1981-82 and 1986 assessments of mathematics which lead to the results presented in The Mathematics Report Card: Are We Measuring Up? (Dossey, Mullis, Lindquist, \& Chambers, 1988). The emphasis is on the methods and results of the procedures used to develop the IRT-based scale-scores that formed the basis of that report. The theoretic underpinnings of the particular techniques discussed in this chapter are given in Chapter 8.

The techniques required to develop scale-scores for the cross-sectional analysis of the data from the 1986 BIB-spiral assessment were different from the techniques required to develop scale-scores for the analysis of trends in mathematics achievement. Accordingly, these two analyses are presented in separate sections.

Section 10.1 pertains to the scaling of the data from the spiral administration and describes the creation of mathematics content area subscales as well as a weighted-average composite over the subscales. Also discussed in this section are the procedures for the empirical behavioral anchoring that was carried out on the mathematics composite and the crec.eion of the WARM composites of mathematics background questions. The techniques used to develop scale-scores for the measurement of trend in mathematics achievement are discussed in section 10.2.

\subsection*{10.1 SGALING OF THE CROSS-SECTIONAL MATHEMATICS data}

The data from the spiral assessment of mathematics in 1986 were used for cross-sectional analyses comparing the levels of mathematics achievement for various subgroups of the 1986 target populations. It included three student cohorts: students who were either in the 3rd grade or 9-years-old; students who were either in the 7 th grade or 13 -years-old; and students who were either in the 11 th grade or 17 -year sold. So that the modal grades for the three age groups would be the 3 rd , 7 th, and 11 th grades, the birthrate ranges for age-eligible students were established as October 1976 to September 1977

1
Data analysis and scaling were performed by David Freund, Maxine Kingston, Edward Kulick, Joling Liang, Laura McCamley, Jennifer Nelson, Norma Norris, Alfzed Rogers, and Minhwei Wang. Robert Mislevy, Kathleen Sheehan, and Kentaro Yamamoto provided consultation on IRT scaling.
for age 9, October 1972 to September 1973 for age 13, and October 1968 to September 1969 for age 17. The sampled students in each of these three cohorts were assessed in the spring. (See Chapter 3 for a description of the target populations and the sample design used for the assessment).

The pool of items used in the 1986 mathematics assessment contained a range of open-ended and multiple-choice questions measuring performance on sets of objectives developed by nationally representative panels of mathematics specialists, educators, and concerned citizens and documented in Math Objectives, 1985-86 Assessment (NAEP, 1986a). The objectives defined seven content areas and five process areas. The content areas were:
1) fundamental methods of mathematics;
2) discrete mathematics;
3) data organization and interpretation;
4) measurement;
5) geometry;
6) relations, functions, and algebraic expressions; and
7) numbers and operations.

The process areas were:
1) problem solving/reasoning;
2) routine applications;
3) understanding/comprehension;
4) skills; and
5) knowledge.

A total of 537 distinct mathematics items, addressing the above objectives, was administered in 1986 using a BJ.B-spiral design (Messick, Beaton, \& Lord, 1983; Beaton, 1987a) to allocate the items to the assessed students (see Chapter 3). In this design, the entire 1986 assessment battery (including all subject areas assessed) was divided into blocks of approximately 15 minutes each, and each student was administered a booklet containing three blocks of content area materials as well as a six-minute block of background questions common to all students. Seven blocks of mathematics questions were administered at grade 3 /age 9 , nine blocks at grade 7 /age 13 , and eleven blocks at grade \(11 /\) age 17 . At grade \(3 /\) age 9,52 different booklets were prepared. Thirty-four of them contained one or more mathematics blocks, with each of the seven blocks appearing in six or eight booklets. Sixty-eight booklets were assessed at grade 7/age 13, 38 of which contained mathematics blocks; each mathematics block appeared in six to nine different booklets. Mathematics items were included in 41 of the 90 booklets administered to students at grade 11/age 17, with each block appearing seven to nine times.

\subsection*{10.1.1 Definition of Subscales}

The analysis of the results of the spiral assessment was carried out using five subscales, each measuring a facet of mathematics, along with a composite defined as a weighted average of the subscales. The aim in the
creation of subscales was to facilitate capturing essential subdivisions of mathematics, as indicated by the mathematics Learning Area Committee, in order to allow the detection of potential differences in performance patterns between those subdivisions.

The basis for the definition of the subscales ultimately created was the content areas and process areas defined by the mathematics learning area committee. In selecting subscale definitions, it was necessary to balance two requirements. Our aim was to scale subareas which were as narrowly defined as possible so that the assumptions of the scaling models are most nearly met and so that the capability to identify important interactions within subareas of inathematics would be maximized. Countering this aim was the requirement that the number of items taken by any individual student within a subarea be sufficient to support currently available scaling procedures. This latter requirement precluded the possibility of scaling within each of the 35 content by process cells since, in most of these cells, the small number of items taken by any individual student was insufficient to support current scaling technology.

As a result, we selected the content areas as the initial basis of the subscale definition. The numbers of items, by content area, are shown in Tables \(10.1,10.2\) and 10.3 for grade 3 /age 9 , grade 7 /age 13 and grade 11 /age 17, respectively. (The splitting of the numbers and operations content area into two parts is discussed below). Also included in the tables is information about the distribution of the numbers of items taken by individual students within each content area. Since each student takes a single booklet, this information is presented in terms of the distribution of items per booklet. Included in the tables for each content area are the average numbers of items per booklet and the numbers of booklets with 1-2, 3-5, and more than 5 items within the content area.

Based on the counts shown in the tables, we decided that it was possible to analyze and report the following subscales:

Grade/Age
\begin{tabular}{lccc}
& \multicolumn{2}{l}{\(3 / 9\)} & \(\underline{7 / 13}\) \\
& \(\underline{11 / 17}\) \\
Fundamental Methods & X & X & X \\
Measurement & X & X & X \\
Data Organization and Interpretation & X & X & X \\
\begin{tabular}{l}
Geometry \\
Relations and Functions \\
Numbers and Operations: \\
Higher-1evel Applications \\
Numbers and Operations: \\
Knowledge and Skills
\end{tabular} & & X & X \\
& X & X & X \\
& X & X & X
\end{tabular}

Items in the remaining content categories (discrete mathematics for all grade/ages, geometry for grade 3/age 9, and relations and functions for grade

Table 10.1

Distribution of the Members of Items by Booklet Within Each of the Mathematics Content Areas

Grade 3/Age 9
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & Average Number of & Number & of Book th & lets \\
\hline Area & Total Items & \[
\begin{aligned}
& \text { Number } \\
& \text { of } \\
& \text { Booklets }
\end{aligned}
\] & Items per Booklet & \[
\begin{gathered}
1-2 \\
\text { Items }
\end{gathered}
\] & \[
\begin{aligned}
& 3-5 \\
& \text { Items }
\end{aligned}
\] & 6 or more Items \\
\hline Fundamental Methods & 102 & 25 & 4.1 & 9 & 8 & 8 \\
\hline Discrete Mathematics & 18 & 11 & 1.6 & 10 & 1 & 0 \\
\hline Data Organization and Interpretation & 96 & 19 & 5.1 & 3 & 10 & 6 \\
\hline Measurement & 162 & 28 & 5.8 & 9 & 6 & 13 \\
\hline Geometry & 36 & 11 & 3.3 & 5 & 5 & 1 \\
\hline Relations, Functions, and Algebraic expressions & 48 & 25 & 2.9 & 20 & 5 & 0 \\
\hline Numbers and Operations: Higher-level Applications & 156 & 28 & 5.6 & 9 & 6 & 13 \\
\hline Numbers and Operations: Knowledge and Skills & 180 & 25 & 7.2 & 9 & 0 & 16 \\
\hline
\end{tabular}

Table 10.2
Distribution of the Members of Items by Booklet Within each of the Mathematics Content Areas

Grade 7/Age 13
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Area & \begin{tabular}{l}
Total \\
Items
\end{tabular} & ```
Number
 of
Booklets
``` & Average Number of Items per Booklet & Number with 1-2. Items & \begin{tabular}{l}
of Boo more 3-5 \\
It=ms
\end{tabular} & lets han 6 Items \\
\hline Fundamental Methods & 150 & 25 & 6.0 & 8 & 4 & 13 \\
\hline Discrete Mathematics & 75 & 26 & 2.9 & 13 & 10 & 3 \\
\hline Data Organization and Interpretation & 147 & 28 & 5.3 & 6 & 9 & 13 \\
\hline Measurement & 306 & 32 & 9.6 & 4 & 7 & 21 \\
\hline Geometry & 168 & 30 & 5.6 & 6 & 12 & 12 \\
\hline Relations, Functions, and Algebraic Expressions & 91 & 30 & 3.0 & 14 & 12 & 4 \\
\hline Numbers and Operations: Higher-level Applications & 455 & 32 & 14.2 & 2 & 2 & 28 \\
\hline Numbers and Operations: Knowledge and Skills & 396 & 32 & 12.4 & 6 & 0 & 26 \\
\hline & & \multicolumn{5}{|c|}{;} \\
\hline
\end{tabular}

Table 10.3
Distribution of the Members of Items by Booklet Within each of the Mathematics Content Areas

Grade 11/Age 17
\begin{tabular}{lccccccr} 
Area & \begin{tabular}{c} 
Total \\
Items
\end{tabular} & \begin{tabular}{c} 
of \\
Booklets
\end{tabular} & \begin{tabular}{c} 
per \\
Booklet
\end{tabular} & & \begin{tabular}{cc}
\(1-2\) \\
Items
\end{tabular} & \begin{tabular}{c}
\(3-5\) \\
Items
\end{tabular} & \begin{tabular}{c}
6 \\
Items
\end{tabular} \\
\begin{tabular}{l} 
Fundamental Methods
\end{tabular} & 287 & 35 & 8.2 & 4 & 9 & 22 \\
\begin{tabular}{l} 
Discrete Mathematics \\
Data Organization and
\end{tabular} & 139 & 35 & 4.0 & 9 & 18 & 8 \\
\begin{tabular}{l} 
Interpretation
\end{tabular} & 183 & 32 & 5.7 & 3 & 14 & 15 \\
\begin{tabular}{l} 
Measurement \\
Geometry
\end{tabular} & 355 & 42 & 8.5 & 4 & 6 & 32 \\
\begin{tabular}{l} 
Relations, Functions, and \\
Algebraic Expressions
\end{tabular} & 325 & 39 & 8.3 & 2 & 11 & 26 \\
\begin{tabular}{l} 
Numbers and Operations: \\
Higher-1evel Applications
\end{tabular} & 508 & 42 & 40 & 9.3 & 5 & 12 & 23 \\
\begin{tabular}{l} 
Numbers and Operations: \\
Knowledge and Skills
\end{tabular} & 523 & 39 & 13.4 & 6 & 3 & 30
\end{tabular}

3/age 9 and grade 7/age 13) were not included in any subscales, since consultation with mathematics experts indicated that it would be inappropriate to recluster these items into other content categories.

Because there were so many items in the numbers and operations content area, we felt that it would be feasible and preferable to split these items into two subclassifications defired by process area. We thus created the two subclassifications of numbers and operations:
1) Higher-level applications--consisting of the problem solving/reasoning, routine application, and understanding/comprehension process areas; and
2) Knowledge and skills--consisting of the skills and knowledge process areas.

This resulted in seven subscale areas encompassing a total of 446 unique noncalculator items. (Since items requiring the use of a calculator involve somewhat different skills than items which do not allow the use of a calculator, and since there were too few items per respondent to support a subscale, the calculator items presented in the 1986 spiral assessment were excluded from the scaling process. Analyses of achievement involving these calculator items were based on the percent-correct metric.)

\subsection*{10.1.2 Estimation of Item Parameters for the Subscales}

The next step in the scaling process was the estimation of item parameters for the items in each of the seven defined subscales. This item calibration was performed separately for each of the seven subscales, using data frove all of the grade/age populations for which the subscale was defined. Thus, five of the subscales, which were defined for all three grade/age populations, were calibrated using data from all three grade/ages. The geometry subscale was calibrated using data from the two grade/ages for which it was defined, grada 7 /age 13 and grade 11/age 17 . Since the relations and functions subscale was defined only for grade 11/age 17, only those students were used in the estimation of its item parameters.

Tre calibration for each subscale used the BILOG program and was performed on an approximately quarter sample of all the available subjects, resulting in approximately 1,000 examinees in each grade/age for each item. (See Beaton, 1987a, for further description of the calibration process.)

In the course of calibration, item fit was evaluated by inspecting residuals from the fitted item response curves. In this inspection, the expected proportions of correct responses to the item for each grade/age at various points along the subscale were compared with the fitted threeparameter logistic item response curve. The expected proportions were calculated without assuming any functional form. As a result of these examinations, 11 items were identified as displaying differential subpopulation functioning, in that the expected proportions for one of the grade/age populations deviated significantly from the item response curve.

Each of these 11 items were removed from the scaling of the offending grade/age group but were included in the scaling of the other grade/age groups who were presented the item and whose expected proportions did not appear aberrant. These items, along with the grade/age group excluded, appear in Table 10.4 .

An additional 79 items were removed from the scaling process because of very high rates of students not reaching the item. (An unanswered item occurring after the last valid response in a block is considered not reached.) Table 10.5 shows the distribution, by subscale, of the item level rates of nonresponse. The 79 items, which were excluded from the scaling at all grade/ages, had a nonresponse rate of at least 45 percent and are listed in Table 10.6. The cutoff value of 45 percent was selected for utilitarian reasons in order to ensure that at least 10 items remained in each subscale at each grade/age level. Because we were concerned about the effect that the exclusion of these parameters would have on the ultimate subscales, we compared the estimates of the item difficulty parameters for the retained items when these high nonresponse items were included in the calibration with the equivalent item difficulties estimated after excluding the high nonresponse items. Very little difference in the item difficulties were found; the two sets of estimates when plotted against each other lay very tightly along a line of unit slope through the origin.

The result at the end of the calibration phase was seven subscales consisting of a total of 367 items, distributed by grade/age and subscale as shown in Table 10.7 . For reasons given in the next section, two of these subscales (fundamental methods and data organization and interpretation) were later excluded from the computation of plausible values. A list of the items scaled in the five retained subscales, along with their item parameters appears in Tables E. 4 through E. 15 in Appendix E. (These parameters are in the metrics of the original calibration of the subscales. See section 10.1.5 for the transformation of the item paramecers into the metric of the final reporting subscales.)

\subsection*{10.1.3 Generation of Multivariate Plausible Values for the Subscales}

The next step in the scaling of mathematics was the generation of plausible values for each of the subscales. The construction of plausible values for the subscales used the multivariate procedures given in section 8.3.3. As described there, since a multivariate distribution was assumed for the proficiencies of an individual across the various subscales, plausible values were generated as vectors. That is, the first plausible values (one for each subscale) for a given examinee were generated as a draw from the multivariate distribution \(p\left(\underline{\theta} \mid x_{i}, y_{i}\right)\), where \(\theta\) is a vector, \(x_{i}\) are the subject's item responses to all items in all subscales, and \(y_{i}\) are the subject's observed values on the conditioning variables.

Table 10.4
Mathematics Items Deleted for Specified Populations Because of Differential Functioning


Table 10.5

\section*{Number of Items by Subscale and Percent Not Reached All Grade/Ages}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Subscale} & \multicolumn{6}{|c|}{Percent Not Reached} \\
\hline & 0-9\% & 10-19\% & 20-29\% & 30-44\% & 45\% and Over & Total \\
\hline Fundamental Methods & 14 & 6 & 11 & 5 & 16 & 52 \\
\hline Data Organization and & & & & & & \\
\hline Interpretation & 19 & 4 & 2 & 3 & 8 & 36 \\
\hline Measurement & 30 & 16 & 12 & 9 & 5 & 72 \\
\hline Geometry & 18 & 9 & 7 & 6 & 3 & 43 \\
\hline Relations, Functions, and Algebraic Expressions & 20 & 8 & 4 & 6 & 9 & 47 \\
\hline Numbers and Operations: Higher-level Applications & 35 & 14 & 20 & 9 & 27 & 105 \\
\hline Numbers and Operations: & & & & & & \\
\hline Knowledge and Skills & 58 & 12 & 4 & 6 & 11 & 91 \\
\hline Total & 194 & 69 & 60 & 44 & 79 & \\
\hline
\end{tabular}

Table 10.6
Mathematics Items Deleted Because Percent Nonresponse \(\geq 45\) (Based on Calibration File)

Fundamental Methods
\begin{tabular}{llll} 
N203701 & N216901 & N217701 & N219501 \\
N219701 & N220201 & N220301 & N220601 \\
N227401 & N228301 & N221101 & N220901 \\
N221201 & N221601 & N221701 & N221801
\end{tabular}

\section*{Data Organization and Interpretation}
\begin{tabular}{llll}
N 224401 & N 263001 & N231301 & N225001 \\
N 229201 & N 229202 & N 229203 & N224301
\end{tabular}

Measurement
\begin{tabular}{llll}
N 230601 & N 217801 & N 232601 & N219401
\end{tabular}

Numbers and Operations: Higher-level Applications
\begin{tabular}{llll} 
N200701 & N200702 & N273901 & N201801 \\
N206301 & N227201 & N258501 & N256801 \\
N203001 & N237501 & N204201 & N258901 \\
N204801 & N205001 & N230301 & N263801 \\
N204701 & N207701 & N235301 & N278901 \\
N278902 & N278903 & N278904 & N279401 \\
N285301 & N237401 & N207501 &
\end{tabular}

Numbers and Operations: Knowledge and Skills
\begin{tabular}{llll} 
N283001 & N201201 & N201301 & N273901 \\
N256801 & N258901 & N260301 & N278901 \\
N278902 & N278903 & N278904 &
\end{tabular}

\section*{Geometry}

N253201 N233101 N229601
Relations and Functions
\begin{tabular}{llll} 
N255801 & N230001 & N211001 & N211501 \\
N212101 & N212201 & N212301 & N212501 \\
N212601 & & &
\end{tabular}

Table 10.7

Number of Mathematics Items Scaled by Subscale and Grade/Age
\begin{tabular}{|c|c|c|c|c|}
\hline Subscale & Total & Grade 3/
\[
\text { Age } 9
\] & Grade 7/ Age 13 & \begin{tabular}{l}
Grade 11/ \\
Age 17
\end{tabular} \\
\hline Fundamental Methods & 36 & 15 & 19 & 21 \\
\hline Data Organization and Interpretation & 28 & 15 & 16 & 16 \\
\hline Measurement & 67 & 26 & 45 & 39 \\
\hline Geometry & 40 & -- & 24 & 37 \\
\hline Relations and Iunctions & 38 & -- & -- & 38 \\
\hline Numbers and Operations: Higher-level Applications & 78 & 23 & 50 & 55 \\
\hline Numbers and Operations: Knowledge and Skills & 80 & 30 & 56 & 56 \\
\hline Total & 367 & 109 & 210 & 262 \\
\hline
\end{tabular}

Originally, all seven subscales were included in the generation of the plausible values. However, the results of this initial wave of estimation indicated that the approximations necessary to accomplish multivariate scaling with currently available resources and techniques produced unacceptable results in the case of two of the subscales.

Table 10.8 shows the means and standard deviations, by grade/age group, for the first plausible value of each of the seven subscales. If the estimation procedure is operating correctly, these means and standard deviations, which are based on the multivariate plausible values, should be close to the grade/age group means and standard deviations obtained when each subscale is fit separately. The univariate estimates of the subscale means and standard deviations appear in the columns headed by "BILOG" (since they are obtained as a byproduct of the univariate BILOG item calibration runs). It can be seen from the table that the correspondence between the two sets of estimates is generally good for the bottom five subscales listed in the table (i.e. measurement and below) but that the correspondence is noticeably poorer for the first two subscales (fundamental methods, data organization and interpretation). For both of these subscales, the estimaced standard deviation based on the plausible values is markedly larger within each grade/age group than the corresponding univariate estimate. Additionally, the differences between the means of the two estimates tends to be larger for these two subscales than for the remaining five subscales, particularly for the grade \(11 /\) age 17 students.
\[
\text { Table } 10.8
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
on th \\
lst P1 \\
Val
\end{tabular} & \begin{tabular}{l}
paris \\
Multi \\
Grade is. \(\qquad\)
\end{tabular} & \begin{tabular}{l}
of ariate \\
/Age
\end{tabular} & Sub aus & ale Me le Val
\[
\text { 1st } \mathrm{F}
\]
\[
\mathrm{Va}
\] & \begin{tabular}{l}
s and \\
s wit \\
rade \\
aus. \\
ue
\end{tabular} & Stand the /Age &  & \begin{tabular}{l}
tions \\
e BILO \\
1st \\
Va 1
\(\qquad\)
\end{tabular} & \begin{tabular}{l}
Based \\
Resu \\
Grade laus. \\
ue
\end{tabular} & ts
11/Age
BIL & \\
\hline & Mean & S, D. & Mean & \(\underline{S, D .}\) & Mean & S.D. & Mean & \(\underline{S . D}\) & Mean & S.D. & Mean & S.D. \\
\hline Fundamental Methods & \(-.82\) & . 90 & -. 73 & . 64 & . 13 & . 82 & . 10 & . 63 & . 88 & 1.06 & . 92 & . 93 \\
\hline Daこz Organization and Interpretation & -. 60 & . 92 & -. 68 & . 82 & . 58 & . 81 & . 54 & . 67 & 1.19 & . 83 & 1.13 & . 69 \\
\hline Measurement & -. 89 & . 66 & -. 86 & . 59 & . 18 & . 68 & . 16 & . 64 & . 90 & . 76 & . 87 & . 76 \\
\hline Numbers and Operations: Higherlevel Applications & -. 74 & . 74 & \(-.83\) & . 69 & . 17 & . 67 & . 17 & . 62 & . 98 & . 67 & . 95 & \(6 \%\) \\
\hline Numbers and Operations: Knowledge and Skills & -. 84 & . 82 & -. 84 & . 81 & . 36 & . 67 & . 32 & . 69 & . 85 & . 60 & . 84 & 61 \\
\hline Geometry & -- & - & - & --- & -. 58 & . 87 & -. 43 & . 77 & . 52 & 1.07 & . 48 & 1.04 \\
\hline Relations and Functions & --. & & -- & & & & & & & & & \\
\hline & & & .... & & -- - & --- & --- & --- & . 00 & 1.02 & . 00 & 1.00 \\
\hline
\end{tabular}
paseg suoţetcod pxepuezs pue sueวw əโeวsqns əч7 fo uostixeduo)

213

These discrepancies are likely due to the fact that relatively few items within these two subscales are taken by any individual. This could mean that the normalized-likelihood/normal posterior approximation which was used in the generation of plausible values is not performing adequately for these two subscales.

Because a multivariate scale was desired, and because time and resources precluded the development of improved approximations to the multivariate posterior distribution of the proficiencies, the decision was made to drop the fundamental methods and the data organization and interpretation subscales from the analysis. New sets of vectors of plausible values were generated for the five retained subscales. The estimation of plausible values was conducted independently for each of the three grade/age groups, estimating vectors of plausible values for all subscales defined for a given grade/age. That is, three subscales are defined for grade 3/age 9, four subscales for grade 7/age 13, and five subscales for grade 11/age 17. The conditioning variables and the estimated conditioning effects (the \(\Gamma\) of equation 8.6) are given in Tables B. 4 through B. 9 in Appendix B for the three grade/age groups. (The values of the conditioning effects are in the metrics of the original calibration of the subscales. Section 10.1 .5 provides the transformation to the metric of the final reporting subscales).

\subsection*{10.1.4 Initial Resolution of Linear Indeterminacies of the Subscales}

Like all IRT scales, the mathematics subscales have a linear indeterminacy which may be resolved by an arbitrary choice of the origin and unit-size in each given subscale. In the course of initial tstimation of the item parameters and the plausible values, the origin and unit-size for each of the subscales was provisionally set so that the proficiencies for that subscale would have a mean of zero and a standard deviation of one over the populations for which that subscale was defined. Because three of the subscales spanned all three grade/age groups, while one subscale was only defined for grade 7 /age 13 and grade \(11 / a g e 17\) and one subscale was defined only for grade 11/age 17, this initial choice of origin and unit-size resulted in different means and standard deviations across the subscales for the three grade/age groups, as shown in Table 10.8. For the purposes of comparing achievement between subscales, as well as to facilitate the definition of a mathematics composite, it is useful to have comparable origins and unit-sizes for each of the five subscales. This was accomplished in two steps. In the first step, intermediate transformations of each of the subscales were applied so that the age group differences across the various subscales would be approximately equal to each other. In the second step, the subscales were additionally transformed to match the units of the composite, which is defined in the next section.

For the three subscales that spanned all three grade/ages, the intermediate transformation was accomplished by matching the age 9 and age 17 mathematics means on each subscale to the corresponding averages of the age
group means across the three subscales. That is, let the means, by age, of the initial subscale proficiencies be as follows:
\begin{tabular}{llll} 
Subscale & Age 9 & Age 13 & Age 17 \\
Measurement & \(\theta^{0}{ }_{1,9}\) & \(\theta^{0}{ }_{1,13}\) & \(\theta_{1,17}^{0}\) \\
N \& O (H-L) & \(\theta^{0}{ }_{2,9}\) & \(\theta^{0}{ }_{2,13}\) & \(\theta_{2,17}^{0}\) \\
N \& O (K \& S \()\) & \(\theta_{3,9}^{0}\) & \(\theta^{0}{ }_{3,13}\) & \(\theta_{3,17}^{0}\)
\end{tabular}

Further, let the averages across the three age-spanning subscales for the age 9 and the age 17 samples be
\[
\begin{aligned}
& \bar{\theta}_{9}^{0}=\left(\theta_{1,9}^{0}+\theta_{2,9}^{0}+\theta_{3,9}^{0}\right) / 3, \text { and } \\
& \bar{\theta}_{17}^{0}=\left(\theta_{1,17}^{0}+\theta_{2,17}^{0}+\theta_{3,17}^{0}\right) / 3
\end{aligned}
\]

Then the intermediate transformed value for an initial measurement subscale proficiency value of \(\theta_{1}^{0}\) is
\[
\theta_{1}^{1}=\bar{\theta}_{9}^{0}+\left(\theta_{1}^{0}-\theta_{1,9}^{0}\right)\left(\dot{\theta}_{17}^{0}-\bar{\theta}_{9}^{0}\right) /\left(\theta_{1,17}^{0}-\theta_{1,9}^{0}\right)
\]
and the intermediate transformed values for the remaining two age-spanning subscales are analogously defined. Note that this method permits means to vary for the age 13 samples.

For the geometry subscale, which appeared in only the higher two age groups, the age 17 mean was matched to the average of the age 17 means across the three age spanning subscales, but the age 13 mean was matched to the average transformed age 13 mean obtained in the three mathematics subscales that spanned all three ages. That is, the intermediate transformed value for an initial geometry subscale proficiency value of \(\theta_{4}^{0}\) is
\[
\theta_{4}^{1}=\bar{\theta}_{13}^{1}+\left(\theta_{4}^{0}-\theta_{4,13}^{0}\right)\left(\bar{\theta}_{17}^{0}-\bar{\theta}_{13}^{1}\right) /\left(\theta_{4,17}^{0}-\theta_{4,13}^{0}\right)
\]
where \(\theta^{0}{ }_{4,13}\) and \(\theta_{4,17}^{0}\) are the geometry initial proficiency means for ages 13 and 17 and where
\[
\bar{\theta}_{13}^{1}=\left(\theta_{1,13}^{1}+\theta_{2,13}^{1}+\theta_{3,13}^{1}\right) / 3
\]
is the average of the transformed age 13 mean values for two subscales-measurement, numbers and operations: higher-level and numbers and operations: knowledge and skills.

Finally, for the relations and functions--algebra subscale, which appeared only at age 17 , the intermediate transformed value for an initial proficiency of \(\theta_{5}\) was set to
\[
\theta_{5}^{1}=\theta_{17}^{0}+\left(\theta_{5}^{0}-\theta_{5,17}^{0}\right) \bar{\sigma}
\]
where \(\theta^{0}{ }_{5,17}\) is the initial proficiency mean for age 17 and where \(\bar{\sigma}\) is the geometric mean of \(\sigma_{1}^{1}, \sigma_{2}^{1}, \sigma_{3}^{1}\), and \(\sigma_{4}^{1}\) where \(\sigma_{i}^{1}\) is the standard deviation for the age 17 sample for the intermediate transformed value of the \(i^{\text {th }}\) subscale.

This method of scale determination constrains the age 9 means to be equal across subscales and the age 17 means to be equal across subscales, but the age 13 means can be expected to vary slightly.

\subsection*{10.1.5 Definition of the Mathematics Composite and Setting the Final Origin and Unit-Sizes}

Although examination of results by subscale provides much useful information about how students perform on the facets of mathematics addressed by the subscales; this level of detail is too great for many purposes. Highlevel policymakers and the public at large have the need for a single index of performance in mathematics, to allow the summarization of overall performance. To fulfill this need, a mathematics composite was defined as a weighted average of the results across subscales. (The high correlations between the subscales within each of the three grade/age groups, shown in Table 10.9, shows that much information is shared between the subscales.)

The mathematics composite was defined separately for each grade/age as a weighted average of the estimated student proficiencies (plausible values) for the subscales appearing in that grade/age (after the intermediate transformations of the last section), with weights that reflect the number of items in that subscale on the assessment for that grade/age. (The weights were in fact proportional to the percentage distribution of items by age and content area specified in Math Objectives, 1985-86 Assess ent, [NAEP, 1986a]). This is a near optimal weighting of the subscales in terms of the precision of the resulting composite and is optimal in terms of relative importance of the subscales implicit in the specifications of the Learning Area Committee. The definition of the composite in each grade/age is given in Table 10.10.

As described in section 10.1.4, certain of the linear indeterminacies in the subscales had been resolved by the anctoring of the subscale age means. However, this anchoring still leaves an indeterminacy in the subscales and in

Table 10.9
Estimated Correlations between Subscales (Based on the First Plausible Value)

Grade 3/Age 9
Measurement \(N \& 0(H-L) N \& O(K \& S)\)

Measurement
Numbers and Operations:
'figher-level Applications Numbers and Operations:

Knowledge and Skills
1.00
. 63
.63
.60
1.00
.60
. 60
. 60
1.00

Grade 7/Age 13
Measurement \(N \& O(H-L) N O(K \& S)\) Geometry
Measurement
Numbers and Operations:
Higher-level Applications
Numbers and Operations:
Knowledge and Skills
Geometry
.73
1.00
.73
. 65
.64
. 64
.64
1.00
. 58

Grade 11/Age 17
Measurement \(N \& 0(H-L) N \&(K \& S)\) Geometry \(R \& F\)
\begin{tabular}{lrrrrr} 
Measurement & 1.00 & .75 & .64 & .72 & .69 \\
\begin{tabular}{lrl} 
Numbers and Operations: \\
Higher-level Applications
\end{tabular} & .75 & 1.00 & .68 & .74 & .74 \\
\begin{tabular}{llll} 
Numbers and Operations:
\end{tabular} & & & & & \\
\begin{tabular}{l} 
Knowledge and Skills
\end{tabular} & .64 & .68 & 1.00 & .63 & .66 \\
Geometry & .72 & .74 & .63 & 1.00 & .73 \\
Relations and Functions & .69 & .74 & .66 & .73 & 1.00
\end{tabular}
\[
-231-
\]
\[
220
\]

Table 10.10
Defining Weights for the Mathematics Composite by Grade/Age
\begin{tabular}{|c|c|c|c|}
\hline Subscale & \begin{tabular}{l}
Grade 3/ \\
Age 9
\end{tabular} & \begin{tabular}{l}
Grade 7/ \\
Age 13
\end{tabular} & \[
\begin{gathered}
\text { Grade } 11 / \\
\text { Age } 17 \\
\hline
\end{gathered}
\] \\
\hline Measurement & 28 & 22 & 17 \\
\hline Geometry & 0 & 11 & 14 \\
\hline Relations cnd Functions & 0 & 0 & 17 \\
\hline Numbers ana Operations--Higher-1evel Applications & 36 & 33.5 & 26 \\
\hline Numbers and Operations-Knowledge and Skills & 36 & 33.5 & 26 \\
\hline Total & 100 & 100 & 100 \\
\hline
\end{tabular}
the composite in that the means and standard deviations of the subscalescores and hence the composite scores are still arbitrary. To resolve this ambiguity, the final step in the creation of the mathematics subscales and the composite scale was to linearly transform the intermeiate composite scale so that the final composite would have a weighted mean of 250.5 and a weighted standard deviation of 50 across all students in the three grade/ages. The result is that the overall mathematics composite has the same mean and standard deviation as did the 1984 reading proficiency scale.

The same linear transformation which created the final composite was then applied to each of the intermediate mathematics subscales. Table 10.11 shows the coefficients of the (overall) linear transformations used to transform the subscales from their original units (on the 0-1 scale) to their final units.

Table 10.11
Coefficients of the Linear Transformations of the Subscales from their Original Units to the Units of the Composite
\begin{tabular}{lll} 
Subscale & Intercept & Slope \\
& & \\
Measurement & 255.40 & 51.69 \\
\begin{tabular}{lll} 
Geometry
\end{tabular} & 285.42 & 32.29 \\
\begin{tabular}{c} 
Relations and Functions \\
Numbers and Operations: \\
Higher-level Applications
\end{tabular} & 249.52 & 35.00 \\
\begin{tabular}{c} 
Numbers and Operations: \\
Knowledge and Skills
\end{tabular} & 256.14 & 53.38 \\
& & 54.20
\end{tabular}

The item paraneters shown in Tables E. 4 through E. 15 of Appendix \(E\) and the conditioning effects shown in Tables B. 4 through B. 9 of Appendix B are in the metries of the original calibration of the subscales. To represent these parameters and effects in terms of the metric of the final reporting subscales, the following transformations need to be performed. For a given subscale, let \(a_{\theta}, b_{\theta}\) and \(c_{\theta}\) be the item parameters and \(\Gamma_{\theta}\) the estimated conditioning effects, expressed in terms of the metric of tive original calibration scale. Let \(\alpha\) and \(\beta\) be the intercept and slope (from Table 10.11) of the linear transformation of the subscale proficiencies from their original (calibration) units to their final (reporting) units. Then, the transformation of a proficiency \(\theta\) in original units to the metric of the reporting scale is MP \(-\alpha+\beta \theta\). The corresponding transformations of the item parameters and estinated conditioning effects are
\[
\begin{aligned}
& a_{M P}=a_{\theta} / \beta, \\
& b_{M P}=\alpha+\beta b_{\theta}, \\
& c_{M P}=c_{\theta}, \text { and } \\
& \Gamma_{M P}=\alpha+\beta \Gamma_{\theta} .
\end{aligned}
\]

Within a grade/age group, the composite encompasses the subscales defined for that grade/age, weighted in accordance with the Learning Area Committee's specifications, and consequently provides an index of mathematics achievement applicable to that grade/age. However, since the number of subscales going into the composite differs by grade/age, there is the question of the comparability of the composite scale-scores across grade/ages. To justify the inclusion of additional subscales into the composite at the higher grade/ages, Table 10.12 shows a companison of selected subgroup means for students in grades 7 and 11 for the mathematics composite as it is defined with the equivalent means based on a weighted average of the three age spanning subscales. This latter weighted mean uses weights proportional to the percentage distribution of items by age and for these three subscales as specified in Math Objectives, 1985-86 Assessment (NAEP, 1986a). (The mathematics composite i © identical to this weighted mean for third grade students). It can be seen from the table that there are only trivial differences between the two composites in terms of their subgroup means, due to the high degree of correlation between the subscales (Table 10.9) and the fact that the age group means of each of the subscales have been anchored to the same points. Consequently, a composite based on all available subscales at a given grade/age retains the advantage of summarizing over all facets of mathematics defined for that grade/age while allowing meaningful comparisons between the grade/ages.

Finally, it is necessary to caution that, although the mathematics composite is expressed in apparently the same units as the 1984 reading proficiency scale in that both scales have the same means and standard deviations, it is not appropriate to compare scores on the mathematics composite with scores on the reading scale. The transformation chosen to resolve the linear indeterminacies in the mathematics composite is a convenient transformation, but is only one of a conceptually infinite number

Table 10.12

Compariscn by Grade and Demographic Subgroups of the Mathematics Composite Mean with the Mean of the Three Age-Spanning Subscales
\begin{tabular}{|c|c|c|c|c|}
\hline & Composite Mean & Mean of the Age-spanning Subscales * & Composite
\(\qquad\) & Mean of the Age-spanning Subscales \\
\hline Total & 267.1 (0.6)** & 267.3 (0.6) & 304.0 (0.7) & 303.9 (0.7) \\
\hline Male & 266.6 (0.6) & 266.6 (0.6) & 306.1 (1.0) & 306.5 (0.9) \\
\hline Female & 267.6 (0.7) & 267.9 (0.7) & 301.8 (0.8) & 301.4 (0.8) \\
\hline White & 274.0 (0.6) & 274.2 (0.7) & 309.4 (0.7) & 309.6 (0.6) \\
\hline Black & 245.4 (0.8) & 245.1 (0.9) & 279.2 (1.2) & 278.6 (1.2) \\
\hline Hispanic & 251.3 (1.1) & 251.0 (1.1) & 285.6 (1.5) & 205.2 (1.6) \\
\hline Other & 269.0 (7.2) & 269.3 (6.9) & 317.1 (6.4) & 317.4 ( 6.0\()\) \\
\hline NE & 275.3 (1.2) & 275.4 (1.2) & 309.6 (1.5) & 309.0 (1.4) \\
\hline SE & 261.3 (1.3) & 261.2 (1.2) & 297.2 (1.1) & 297.5 (1.0) \\
\hline Central & 270.6 (1.2) & 270.8 (1.1) & 305.6 (1.2) & 305.9 (1.1) \\
\hline West & 262.8 (1.3) & 263.0 (1.3) & 302.3 (2.0) & 302.4 (1.8) \\
\hline ERural & 265.6 (3.4) & 265.8 (3.2) & 299.0 (3.4) & 300.1 (3.3) \\
\hline IMet & 246.4 (2.2) & 246.2 (2.2) & 279.9 (3.3) & 279.2 (3.1) \\
\hline HMet & 281.9 (1.9) & 282.4 (1.9) & 320.9 (2.1) & 320.3 (2.0) \\
\hline \(<\mathrm{HS}\) & 249.4 (0.8) & 249.5 (0.9) & 284.5 (1.3) & 285.0 (1.4) \\
\hline Grad HS & 260.5 (0.6) & 260.4 (0.7) & 293.8 (0.7) & 294.4 (0.8) \\
\hline \(>\mathrm{HS}\) & 275.0 (0.7) & 275.5 (0.8) & 306.6 (0.8) & 306.6 (0.8) \\
\hline Grad Col & 278.5 (0.9) & 278.8 (0.9) & 316.0 (0.9) & 315.5 (0.9) \\
\hline Unknown & 251.4 (1.0) & 250.9 (1.1) & 278.8 (1.2) & 278.8 (1.6) \\
\hline Public & 265.6 (0.5) & 265.7 (0.5) & 302.7 (0.7) & 302.9 (0.7) \\
\hline Non-publ & 279.8 (2.5) & 280.1 (2.5) & 315.8 (2.3) & 314.6 (2.2) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Composite Mean & Mean of the Age-spanning Subscales * & Composite
\(\qquad\) & Mean of the Age-spanning Subscales \\
\hline Total & 267.1 (0.6)** & 267.3 (0.6) & 304.0 (0.7) & 303.9 (0.7) \\
\hline Male & 266.6 (0.6) & 266.6 (0.6) & 306.1 (1.0) & 306.5 (0.9) \\
\hline Female & 267.6 (0.7) & 267.9 (0.7) & 301.8 (0.8) & 301.4 (0.8) \\
\hline White & 274.0 (0.6) & 274.2 (0.7) & 309.4 (0.7) & 309.6 (0.6) \\
\hline Black & 245.4 (0.8) & 245.1 (0.9) & 279.2 (1.2) & 278.6 (1.2) \\
\hline Hispanic & 251.3 (1.1) & 251.0 (1.1) & 285.6 (1.5) & 205.2 (1.6) \\
\hline Other & 269.0 (7.2) & 269.3 (6.9) & 317.1 (6.4) & 317.4 ( 6.0\()\) \\
\hline NE & 275.3 (1.2) & 275.4 (1.2) & 309.6 (1.5) & 309.0 (1.4) \\
\hline SE & 261.3 (1.3) & 261.2 (1.2) & 297.2 (1.1) & 297.5 (1.0) \\
\hline Central & 270.6 (1.2) & 270.8 (1.1) & 305.6 (1.2) & 305.9 (1.1) \\
\hline West & 262.8 (1.3) & 263.0 (1.3) & 302.3 (2.0) & 302.4 (1.8) \\
\hline ERural & 265.6 (3.4) & 265.8 (3.2) & 299.0 (3.4) & 300.1 (3.3) \\
\hline IMet & 246.4 (2.2) & 246.2 (2.2) & 279.9 (3.3) & 279.2 (3.1) \\
\hline HMet & 281.9 (1.9) & 282.4 (1.9) & 320.9 (2.1) & 320.3 (2.0) \\
\hline \(<\mathrm{HS}\) & 249.4 (0.8) & 249.5 (0.9) & 284.5 (1.3) & 285.0 (1.4) \\
\hline Grad HS & 260.5 (0.6) & 260.4 (0.7) & 293.8 (0.7) & 294.4 (0.8) \\
\hline \(>\mathrm{HS}\) & 275.0 (0.7) & 275.5 (0.8) & 306.6 (0.8) & 306.6 (0.8) \\
\hline Grad Col & 278.5 (0.9) & 278.8 (0.9) & 316.0 (0.9) & 315.5 (0.9) \\
\hline Unknown & 251.4 (1.0) & 250.9 (1.1) & 278.8 (1.2) & 278.8 (1.6) \\
\hline Public & 265.6 (0.5) & 265.7 (0.5) & 302.7 (0.7) & 302.9 (0.7) \\
\hline Non-publ & 279.8 (2.5) & 280.1 (2.5) & 315.8 (2.3) & 314.6 (2.2) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Composite Mean & Mean of the Age-spanning Subscales * & Composite
\(\qquad\) & Mean of the Age-spanning Subscales \\
\hline Total & 267.1 (0.6)** & 267.3 (0.6) & 304.0 (0.7) & 303.9 (0.7) \\
\hline Male & 266.6 (0.6) & 266.6 (0.6) & 306.1 (1.0) & 306.5 (0.9) \\
\hline Female & 267.6 (0.7) & 267.9 (0.7) & 301.8 (0.8) & 301.4 (0.8) \\
\hline White & 274.0 (0.6) & 274.2 (0.7) & 309.4 (0.7) & 309.6 (0.6) \\
\hline Black & 245.4 (0.8) & 245.1 (0.9) & 279.2 (1.2) & 278.6 (1.2) \\
\hline Hispanic & 251.3 (1.1) & 251.0 (1.1) & 285.6 (1.5) & 205.2 (1.6) \\
\hline Other & 269.0 (7.2) & 269.3 (6.9) & 317.1 (6.4) & 317.4 ( 6.0\()\) \\
\hline NE & 275.3 (1.2) & 275.4 (1.2) & 309.6 (1.5) & 309.0 (1.4) \\
\hline SE & 261.3 (1.3) & 261.2 (1.2) & 297.2 (1.1) & 297.5 (1.0) \\
\hline Central & 270.6 (1.2) & 270.8 (1.1) & 305.6 (1.2) & 305.9 (1.1) \\
\hline West & 262.8 (1.3) & 263.0 (1.3) & 302.3 (2.0) & 302.4 (1.8) \\
\hline ERural & 265.6 (3.4) & 265.8 (3.2) & 299.0 (3.4) & 300.1 (3.3) \\
\hline IMet & 246.4 (2.2) & 246.2 (2.2) & 279.9 (3.3) & 279.2 (3.1) \\
\hline HMet & 281.9 (1.9) & 282.4 (1.9) & 320.9 (2.1) & 320.3 (2.0) \\
\hline \(<\mathrm{HS}\) & 249.4 (0.8) & 249.5 (0.9) & 284.5 (1.3) & 285.0 (1.4) \\
\hline Grad HS & 260.5 (0.6) & 260.4 (0.7) & 293.8 (0.7) & 294.4 (0.8) \\
\hline \(>\mathrm{HS}\) & 275.0 (0.7) & 275.5 (0.8) & 306.6 (0.8) & 306.6 (0.8) \\
\hline Grad Col & 278.5 (0.9) & 278.8 (0.9) & 316.0 (0.9) & 315.5 (0.9) \\
\hline Unknown & 251.4 (1.0) & 250.9 (1.1) & 278.8 (1.2) & 278.8 (1.6) \\
\hline Public & 265.6 (0.5) & 265.7 (0.5) & 302.7 (0.7) & 302.9 (0.7) \\
\hline Non-publ & 279.8 (2.5) & 280.1 (2.5) & 315.8 (2.3) & 314.6 (2.2) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Composite Mean & Mean of the Age-spanning Subscales * & Composite
\(\qquad\) & Mean of the Age-spanning Subscales \\
\hline Total & 267.1 (0.6)** & 267.3 (0.6) & 304.0 (0.7) & 303.9 (0.7) \\
\hline Male & 266.6 (0.6) & 266.6 (0.6) & 306.1 (1.0) & 306.5 (0.9) \\
\hline Female & 267.6 (0.7) & 267.9 (0.7) & 301.8 (0.8) & 301.4 (0.8) \\
\hline White & 274.0 (0.6) & 274.2 (0.7) & 309.4 (0.7) & 309.6 (0.6) \\
\hline Black & 245.4 (0.8) & 245.1 (0.9) & 279.2 (1.2) & 278.6 (1.2) \\
\hline Hispanic & 251.3 (1.1) & 251.0 (1.1) & 285.6 (1.5) & 205.2 (1.6) \\
\hline Other & 269.0 (7.2) & 269.3 (6.9) & 317.1 (6.4) & 317.4 ( 6.0\()\) \\
\hline NE & 275.3 (1.2) & 275.4 (1.2) & 309.6 (1.5) & 309.0 (1.4) \\
\hline SE & 261.3 (1.3) & 261.2 (1.2) & 297.2 (1.1) & 297.5 (1.0) \\
\hline Central & 270.6 (1.2) & 270.8 (1.1) & 305.6 (1.2) & 305.9 (1.1) \\
\hline West & 262.8 (1.3) & 263.0 (1.3) & 302.3 (2.0) & 302.4 (1.8) \\
\hline ERural & 265.6 (3.4) & 265.8 (3.2) & 299.0 (3.4) & 300.1 (3.3) \\
\hline IMet & 246.4 (2.2) & 246.2 (2.2) & 279.9 (3.3) & 279.2 (3.1) \\
\hline HMet & 281.9 (1.9) & 282.4 (1.9) & 320.9 (2.1) & 320.3 (2.0) \\
\hline \(<\mathrm{HS}\) & 249.4 (0.8) & 249.5 (0.9) & 284.5 (1.3) & 285.0 (1.4) \\
\hline Grad HS & 260.5 (0.6) & 260.4 (0.7) & 293.8 (0.7) & 294.4 (0.8) \\
\hline \(>\mathrm{HS}\) & 275.0 (0.7) & 275.5 (0.8) & 306.6 (0.8) & 306.6 (0.8) \\
\hline Grad Col & 278.5 (0.9) & 278.8 (0.9) & 316.0 (0.9) & 315.5 (0.9) \\
\hline Unknown & 251.4 (1.0) & 250.9 (1.1) & 278.8 (1.2) & 278.8 (1.6) \\
\hline Public & 265.6 (0.5) & 265.7 (0.5) & 302.7 (0.7) & 302.9 (0.7) \\
\hline Non-publ & 279.8 (2.5) & 280.1 (2.5) & 315.8 (2.3) & 314.6 (2.2) \\
\hline
\end{tabular}

Grade 7

Mean of the
Age-spanning Subscales *

Total 267.1 (0.6)** 267.3(0.6)

Grade 11
* Weighted mean of the Measurement, Numbers and Operations: Higher-level Applications, and Numbers and Operations: Knowledge and Skills subscales with weights determined by the Math Objectives, 1985-86 Assessment (NAEP, 1986a).
** Standard errors presented in parentheses (the correlations between the composite mean and the mean of the age-spanning subscales exceeds .97).
of such transformations that could have been chosen, any one of which would have provided equivalent information about the relative standings of subgroups of the population in terms of their abilities in mathematics.

\subsection*{10.1.6 Anchoring the Points on the Mathematics Composite}

One of NAEP's major goals has always been to describe what students know and can do and stimulate debate about whether those levels of performance are satisfactory. An additional benefit of scale-score methodology is that it provides for a criterion-referenced interpretation of levels on a continuum of proficiency. NAEP initiated the scale anchoring process for the 1984 reading proficiency scale and has applied a technique in the same spirit as that scale anchoring for the anchoring of the mathematics composite. In both cases, the levels \(150,200,250,300\), and 350 on the scale were chosen as anchor points. Each level was defined by describing the types of mathematics or reading (as the case may be) questions that most students attaining that proficiency level would be able to perform successfully and each level was exemplified by typical benchmark items.

The difference between the anchoring of reading proficiency and the anchoring of the mathematics composite stems from the fact that the reading scale was based on a univariate IRT model while the mathematics composite is an average of a number of subscales. In the case of reading, the IRT model provided, through the item parameters, the probability of a correct response by a randomly selected pupil at any point on the proficiency scale. Since these probabilities are not directly available in the case of the mathematics composite, they are empirically determined by the proportion of the assessed population at any given level who answered the item correctly. More precisely, the probability of answering a particular item correctly, given that the student's proficiency is at the 300 level (for example), was estimated by the proportion of students answering the item correctly who also had composite proficiencies within 12.5 units of the target level (i.e. between 287.5 and 312.5 for the 300 level). To avoid problems of instability of the estimated probabilities for very small numbers of respondents to an item, the probability was not defined if fewer than 10 students at a given proficiency level responded to the item.

Apart from this difference in the estimation of probabilities, the anchoring of reading and mathematics proceeded in the same way. Details of the reading anchoring appear in Beaton (1987b).

In the scale-anchoring process for the mathematics composite, NAEP identified sets of items from the 1986 assessment that were good discriminators between proficiency levels. The guideline used to select such items was that students at any given level would have at least a 65 to 80 percent (but often higher) probability of success with these mathematics questions, while the students at the next lower level would have a much lower probability of success. The criterion used was that the difference in probabilities between adjacent levels should exceed 30 percent. Mathematics educators examined these empirically selected items sets and used their
expert judgment to characterize each proficiency level, contrasting tasks at that level with those at the levels just above and below.

\subsection*{10.1.7 WARM Background Composites}

In addition to the mathematics cognitive items, students at all three age/grade levels were asked questions about their coursework, their attitudes toward mathematics, and the type of instruction they had received. The weighted average response method (WARM) was used to construct sets of composite background variables based on background questions specific to mathematics that were included in the mathematics blocks. A general description of the WARM procedure as it was applied to the 1986 assessment appears in Chapter 8.

The questions comprising each of the mathematics WARM composites appear in Appendix C in Tables C.5, C.6 and C.7, for grades 3, 7, and 11 respectively. The mapping of the original responses to the questions to the scaled and oriented responses used for the WARM composites appears in Table C. 8 of Appendix \(C\).

\subsection*{10.2 SCaling of the trend data}

For the portion of the assessment designed to measure trends, students were administered previously assessed mathematics questions according to the procedures used in prior assessments. Only students eligible by age were sampled in this trend assessment. A total pool of 68 questions were given at age 9,98 at age 13, and 94 at age 17, with each of the booklets accompanied by a paced audio recording of the questions as was done in the first three assessments of mathematics. The pool of items that was scaled consisted of all noncalculator items from the trend portion of the 1986 assessment which were also given in at least one of the 1977-78 and 1981-82 assessments of mathematics. Due to the sparsity of trend items within the individual subscales defined in section 10.1, a single scale was fit to these trend items. Because very few of the items were also given in the 1973-74 mathematics assessment (1 at age 9, 2 at age 13, 4 at age 17), the data from this assessment was not included in the scaling for trend. (See section 10.2.3, below, for the technique used to extrapolate 1973 results onto the trend scale.)

The sample sizes for the estimation of trend are as follows:
Table 10.13
Student Sample Sizes for Mathematics Trend Scaling
\begin{tabular}{lrrrr} 
& \(\underline{1977-78}\) & \(\underline{1981-82}\) & \(\underline{1986}\) \\
Age 9 & 14,752 & 12,038 & 6,932 \\
Age 13 (in-school) & 24,209 & 15,758 & 6,200 \\
Age 17 (in & 26,756 & 16,319 & 3,868
\end{tabular}

The measurement of trends in mathematics achievement over time was based on a somewhat different sample from that used for the 1986 spiral assessment results. In contrast to the BIB-spiral administration, where students read items silently to themselves in timed blocks, the method of administration in previous NAEP mathematics assessments used tape recordings to read items and pace students through the session. Furthermore, the range of birthdates which defined 9 -year-old and 13 -year-old students was different in the BIBspiral administration than in previous assessments. Bridge samples of paceadministered mathematics items were included in the 1986 assessment in order to enable comparisons with previous NAEP assessments. To adjust for the changes in age definition in the case of 9-and 13 -year-old students, two separate bridge samples of tape-recorder-administered items were included in the assessment, one using the old age definitions and one the definitions used in the BIB-spiral administration. The scaling for trends was carried out using the bridge data from the 1986 assessment and data from the NAEP mathematics assessments in 1977-78 and 1981-82.

Consequently, the scaling for trend included 11 distinct samples of students, defined as follows:

Table 10.14
Samples of Students Used in the Scaling for Trend
\begin{tabular}{lcccc} 
Assessment & Age 9 & & Age 13 & \\
\cline { 1 - 2 } & Age 17 \\
\(1977-78\) & X & & & \\
\(1981-82\) & X & X & X \\
1986 Bridge A & X & X & X \\
1986 Bridge B & X & X & X
\end{tabular}

In the above, Bridge A refers to the tape-recorder-administered assessment of 9- and 13-year-olds using the old age definitions and time of assessment; Bridge \(B\) refers to the tape-recorder-administered assessment of \(9-, 13-\), and 17 -year-olds using the new age definitions and time of assessmant.' (The Bridge \(B\) assessment of 17 -year-olds actually uses the same age definitions and time of assessment as in previous assessments, since these were unchanged for 17-year-olds).

\subsection*{10.2.1 Estimation of Item Parameters and Generation of Plausible Values}

As noted above, there were insufficient items per content area to support the creation of subscales. Accordingly, the scaling for trends in mathematics was accomplished by fitting a univariate IRT model to the set of trend items.

The first step in the scaling process was the estimation of item parameters for the trend items. This item calibration was performed separately for each of the three age groups, using data from the last three assessments. The calibration for each age used the BILOG program and was perfermed on a subsample of all the available subjects, resulting in
approximately 550 examinees in each assessment year for each item. (Approximately 275 students from the Bridge A sample and 275 students from the Bridge B sample entered the calibration for each item).

A total of 56 items for age 9, 79 items for age 13, and 74 items for age 17 were initially calibrated. In the course of calibration, item fit was evaluated by inspecting residuals from the fitted item response curves. As a result of these examinations, two items were identified as displaying poor fit and dropped from the final scaling. One item ( N 266801 ) was dropped from the age 17 scaling because of poor fit for the \(1981-82\) sample and one item (N252601) was dropped from the age 9 scaling because of poor fit for both the 1981-82 and the 1986 samples. An additional item ( N 286102 ) was dropped from the age 9 scaling because of a change in presentation format which accompanied an outlying trend in percent correct across the assessment years.

The results of the item calibration phase were item parameters for 54 items for age 9, 79 items for age 13, and 74 items for age 17. Table 10.15 shows a breakdown of the ittins scaled by age, assessment year, and content category. A list of the items scaled for the three ages, along with their item parameters appears in Tables E. 31 through E. 33 in Appendix E.

The next step in the scaling of mathematics trend was the generation of plausible values for the trend scale. The estimation of plausible values was conducted independently by age for each of the assessment samples identified in Table 10.14. Because there were fewer background variables available for trend, there were fewer conditioning variables used in the creation of the plausible values. The conditioning variables and the estimated conditioning effects are given in Tables B. 10 through B. 20 in Appendix B for the three grade/age groups.

\subsection*{10.2.2 Linking to the Cross-sectional Mathematics Composite}

The units of the final trend scale were determined linking each of the three age scales to the mathematics composite scaile. This was done for each age by matching the mean and standard deviation of on the trend scale of the 1986 Bridge \(B\) sample (the sample with the new age definition) to the mean and standard deviation on the composite mathematics scale of the corresponding age sample. Table 10.16 shows the coefficients of the linear transformations used to transform the trend scale. A transformation analogous to that discusses in section 10.1 .5 can be used to transform the item parameters presented in Appendix \(E\) and estimated conditioning effects presented in Appendix \(B\) from the original calibration metric to the final reporting metric.

Table 10.15
Counts of Mathematics Trend Items by Age, Year, and Content Area
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Age & Fund. Meth & Data Org. \& Int. & Meas. & Geom. & \begin{tabular}{l}
Rln., \\
Func.
\[
\& \mathrm{Alg} .
\]
\end{tabular} & \[
\begin{gathered}
\mathrm{N} \& 0 \\
\underline{\mathrm{HL}}
\end{gathered}
\] & \[
\begin{gathered}
N \& O \\
\underline{K S}
\end{gathered}
\] & Total \\
\hline \multirow[t]{3}{*}{1977-78} & 9 & 4 & 8 & 7 & 1 & 2 & 3 & 11 & 36 \\
\hline & 13 & 4 & 10 & 4 & 7 & 3 & 6 & 20 & 54 \\
\hline & 17 & 5 & 6 & 6 & 10 & 9 & 9 & 16 & 61 \\
\hline \multirow[t]{3}{*}{1981-82} & 9 & 4 & 11 & 12 & 1 & 2 & 5 & 19 & 54 \\
\hline & 13 & 4 & 10 & 13 & 7 & 3 & 12 & 29 & 78 \\
\hline & 17 & 5 & 6 & 7 & 11 & 9 & 14 & 20 & 72 \\
\hline \multirow[t]{3}{*}{1986} & 9 & 4 & 11 & 12 & 1 & 2 & 5 & 19 & 54 \\
\hline & 13 & 4 & 10 & 13 & 7 & 3 & 12 & 29 & 78 \\
\hline & 17 & 5 & 6 & 7 & 11 & 10 & 14 & 20 & 78 \\
\hline
\end{tabular}

Table 10.16
Coefficients of the Linear Transformation of the Trend Scale from Original Units to Units of the Composite
\begin{tabular}{rcc} 
Age & Intercept & Slope \\
9 & 218.42 & 35.84 \\
13 & 266.58 & 34.57 \\
17 & 300.70 & 33.88
\end{tabular}

\subsection*{10.2.3 Extrapolation of the 1973-74 Mean P-value Results onto the Trend Scale}

Because of insufficient items in common with the 1986 trend assessment, the 1973-74 mathematics assessment was not included in the scaling of NAEP trend data. However, for the nation and several reporting subgroups (e.g., male, female) at each of the three age levels, an estimate of the 1973-74 mean level of student mathematics proficiency was computed.

These estimates were obtained by assuming that the relationship within a given age level between the logit of a subgroup's mean p-value (i.e., mean proportion correct) and its respective mathematics proficiency mean was linear and that the same line held for all assessment years and for all subgroups within the age level. Under this assumption, the between-year difference of the mean proficiency values of a subgroup for a pair of assessment years is equal to a constant (B) times the between-year difference of the logits of the mean \(p\)-values of that subgroup for the same two years.

For each age level, a mean p-value estimate using a common set of items was available for 1973-74, 1977-78, and 1981-82. The constant B was estimated by a regression (through the origin) of the difference between proficiency means in 1977-73 and 1981-82 on the corresponding difference between the logits of the mean p-values for these two years. All subgroups in a given age were included in the regression. The estimate of the 1973-74 proficiency mean for a subgroup was then obtained as the sum of the 1977-78 subgroup mean proficiency and \(B\) times the difference between the logits of the 1973-74 and 1977-78 subgroup mean p-values.

The quality of this extrapolation technique was evaluated by comparing its performance in predicting the 1977-78 data. The actual values of the 1977-78 subgroup mean proficiencies were compared with the predicted values formed as the sum of the 1981-82 subgroup mean proficiency and B times the difference between the logits of the 1977-78 and 1981-82 subgroup mean pvalues. The predictions were very close to the actual values, the residual me -2 s squared error being only .4 percent of the variance of the actual visues.

\section*{CHAPTER 11}

Science Data Analysis

233

Chapter 11

\title{
SCIENGE data analysis \({ }^{1}\)
}

\author{
Kentaro Yamamoto \\ Educational Testing Service
}

The design for the analysis of the spiral and bridge sample data in the science assessment was similar to the one developed for the mathematics data (Chapter 10). The 1586 science assessment, reported in The Science Report Card: Elements of Risk and Recovery (Mullis \& Jenkins, 1988), examined two different aspects of evaluating proficiency in science. One was the crosssectional data analysis, undertaken to examine how subgroups of the population compare to each other across ages. The other was trend data analysis, which examined how 1986 student achievement compared to past assessments, hence permitting the examination of changes in science proficiency over time. This chapter describes the technical details of the item parameter estimation, and rescaling performed for the science crosssectional and trend analyses. The underlying theory is discussed in Chapter 8.

\subsection*{11.1 CROSS-SECTIONAL DATA ANALYSIS}

The design for the analysis of the spiral sample data in the science assessment involved three different grade/age groups. In addition, two bridge samples were used to link the trend data to the BIB data. All samples were multistage stratified random samples across the nation (see Chapter 3 for a discussion). Sample sizes are listed in the following table.

Table 11.1
Science Scale Item Information, by Sample
\begin{tabular}{lcr}
\multicolumn{2}{c}{ Sample } & No. of Cases
\end{tabular} No. of Items

\subsection*{11.1.1 Definition of Subscales}

A total of 447 distinct science items were administered in the 1986 spiral assessment using a BIB-spiral design (Messick, Beaten, \& Lord, 1983; Beaten, 1987a) to allocate the items to the sampled students (Chapter 3). Seven blocks of science questions were assessed at grade 3 /age 9,9 blocks at grade \(7 /\) age 13 , and 11 blocks at grade 11/age 17. Two of the grade 7/age 13 blocks (numbers 5 and 6) were also used at grade 11/age 17 . Out of 52 booklets prepared for grade \(3 /\) age 9,30 contained one or more science blocks. Thirty-two of 68 booklets for grade \(7 /\) age 13 and 42 of 93 booklets for grade 11 /age 17 contained at least one science block. Detailed arrangements of blocks and items contained in them are documented in chapter 4.

The pool of items used in the 1986 science assessment contained a range of open-ended and multiple-choice items. The framework for the development of the items was formulated by nationally representative panels of science specialists, educators, and concerned citizens and is documented in Science Objectives, 1985-1986 Assessment (NAEP, 1986b). The objectives were defined in three dimensions: content, context, and cognition. The content categories included:
1) life science;
2) physics;
3) chemistry;
4) earth and space science;
5) history of science; and
6) nature of science.

The context categories included:
1) scientific;
2) personal;
3) societal; and
4) technological.

The cognition categories included:
1) knows;
2) uses; and
3) integrates.

Science analyses were carried out along six subscales. Science subscales were designed to capture the essential subdivisions of science as indicated by the Science Learning Area Committee in order to allow the detection of potential differences in performance patterns between those subdivisions. The initial basis for the definition of the subscales comes from the three-dimensional framework defined by the Learning Area Committee. While this three-dimensional framework is meaningful and finely defines the subareas of interest to science educators, the number of items contained in each category was insufficient to scale categories with current technology.

As a result, only the content categories were used to create subscales. Physics and chemistry for grade 3 /age 9 were combined and renamed physical science, a term that more aptly reflects the content of learning for that grade/age. Also, since there were only four items in the physical science subscale common to the other two grade/age levels, including them with the items administered to grade \(7 /\) age 13 and grade 11 age 17 would not have been appropriate. The history of science subscale was dropped because it had an insufficient number of items (25) to ensure accurate scaling. Earth and space science was dropped for grade 3/age 9 for two reasons: There were only 13 earth and space science items for grade \(3 / a g e 9\), and there were only two items common to other grade/ages.

\subsection*{11.1.2 Estimation of Item Parameters for the Subscales}

The computer program BILOG (Mislevy \& Bock, 1982) was used to estimate the item. parameters of the three parameter IRT model for the items in each subscale independently using roughly a one-fourth sample of the 1986 sample. Eight items were responded to by slightly fewer than 1,000 subjects; all other items were responded to by at least 1,000 subjects. The largest response size was over 3,000. (See Beaton, 1987a, for further description of the calibration process.)

Table 11.2 lists the names of the subscales and numbers of items for each subscale for each grade/age group after scaling. For various reasons described later in this chapter, some items were dropped from the data analysis. A total of 396 items was used to analyze the 1986 data; 384 were multiple-choice and 12 were open-ended. Among multiple-choice items, 66 had only two choices. Consequently these 66 items had low discrimination parameter values with high "guessing" parameter values (about .50). It should be noted that at the time of calibration, 14 items in the earth and space science subscale for grade 3/age 9 were included, but later 12 items given only to grade 3/age 9 were dropped. The inclusion of these 12 items had little impact on the calibration of remaining science items, because only two items were common to other grade/ages. Henca, a linkage of ability distribution of grade 3 /age 9 to the other grade/ages is very weak.

Items were dropped from other subscales because of a lack of fit to the IRT model. Items that were dropped from the item pool often did not have monotone increasing empirical item characteristic curves. There were no specific characteristics that were common to these dropped items. Table 11.3 lists the items that are dropped because of lack of fit.

Table 11.2
Identification of Science Sulscales and Number of Items Used for Analysis
\begin{tabular}{|c|c|c|c|c|c|}
\hline Subscale & Total & Dropped & \[
\begin{aligned}
& \text { Grade } 3 / \\
& \text { Age } 9
\end{aligned}
\] & ber of I Grade 7/ Age 13 & \begin{tabular}{l}
Grade 11/ \\
Age 17
\end{tabular} \\
\hline Life Science & 116 & (4) & 39 & 44 & 59 \\
\hline Chemistry & 55 & (1) & -- & 23 & 44 \\
\hline Nature of Science & 67 & (4) & 17 & 33 & 36 \\
\hline Physics & 62 & (2) & -- & 30 & 44 \\
\hline Earth and Space Science & 52 & (12) & -- & 42 & 39 \\
\hline Physical Science & 44 & (3) & 44 & -- & -- \\
\hline History of Science & 0 & (25) & -- & -- & -- \\
\hline Total & 396 & (51) & 100 & 172 & 222 \\
\hline
\end{tabular}

Table 11.3
Science Items Dropped for Specified Populations Because of Lack of Fit to IRT
\begin{tabular}{lclcc} 
NAEP ID & \begin{tabular}{c} 
Subscale \\
Number
\end{tabular} & & \multicolumn{1}{c}{\begin{tabular}{c} 
Subscale \\
Name
\end{tabular}} & \begin{tabular}{c} 
Age Group \\
Deleted
\end{tabular}
\end{tabular}

Tables E. 16 through E. 28 in Appendix E show the estimated item parameters. These item parameter estimates are from the BILOG computer program prior to any rescaling. The unit and origin were set provisionally in each subscale calibration run by standardizing the distribution of the calibration sample of examinees. One, two, or three age groups were used to calibrate the item parameters depending upon the subscale (see Table 11.2). Therefore, item parameters in different subscales are not on the same metric, and are not directly comparable. Items in different subscales should not be recombined to form new subsets of items for any reason whatever without first
recalibrating the item parameters for the set of items the user intends to group.

\subsection*{11.1.3 Generation of Multivariate Plausible Values for the Subscales and for Rescaling}

Multivariate plausible values were generated using the M-GROUP computer program (Sheehan, 1985) according to the procedure described in Chapter 8. Initially each subscale was run separately to obtain subscale conditioning coefficients and error variances, then combined as the initial values for the multivariate case. At this point, it was decided to delete the earth and space science subscale for age 9; consequently, the multivariate M-GROUP was repeated in order to exclude this subgroup. The final conditioning coefficients and error variances are listed in Tables B. 21 through B. 26 of Appendix B. For the purpose of verification, the means and standard deviations of the multivariate plausible values were compared to the univariate calibrated ability distributions from the BILOG runs. Note that the calibrating sample is roughly a quarter of the total sample that was used for the multivariate plausible values; therefore, similar but not exact values were expected. The results are listed in Table 11.4.

In Trible 11.4, the means and standard deviations of the plausible values for the physics subscale for grade 7/age 13 appear to be different from the values from the BILOG scale. In order to deternine that this deviation is caused by the selection of the quarter-sample used for calibration, a more detailed posterior population distribution was estimated and was found to have a mean of -.32 and standard deviation of .85 . This is much closer to the multivariate plausible value results than to the BILOG results. Therefore, this strongly indicated that the difference was due to sample variances rather than to the misfit of the measurement model.

Even though item parameters were estimated with the same standardization method so that the calibration sample of examinees have a mean of 0.0 and a standard deviation of 1.0 , the iifferences in the age samples among subscales causes the estimated item parameters to be on different scales. Consequently the estimated abilities of students on all subscales have different origins and accompanying standard deviations. Since any linear transformation of the IRT theta scale retains all information, it is more convenient to have all subscales on a comparable scale. As with mathematics, rescaling was carried out in two steps. The first step was to put each subscale onto the same unit of measure as the others. The second step was to rescale the unit of measure itself so that the distribution of the three age groups combined had a weighted mean of 250.50 and a weighted standard deviation of 50.0 .

The method applied to rescale science plausible values is essentially the same as the one used in mathematics. In science there are two subscales that span all three grade/ages, and an intermediate transformation was accomplished by matching the science age 9 and age 17 means on each subscale to the corresponding averages of the age group means between the two subscales. This produces two different means for age 13 on two of the

Table 11.4
Comparison of the Subscale Means and Standard Deviations Based on the Multivariate Plausible Values with the Univariate BILOG Results
\begin{tabular}{lll} 
First Plausible \\
Values & \\
Mean \(\quad\) SILOG \\
S.D. & Mean
\end{tabular}

\section*{Grade \(3 /\) Age 9}
\begin{tabular}{lrrrr} 
Life Science & -.69 & .81 & -.75 & .79 \\
Nature of Science & -.63 & .91 & -.63 & .90 \\
Physical Science & .08 & 1.07 & .00 & 1.00
\end{tabular}

Grade 7/Age 13
\begin{tabular}{lrrrl} 
Life Science & .04 & .82 & .00 & .80 \\
Chemistry & -.43 & .87 & -.44 & .80 \\
Nature of Science & -.01 & .76 & -.06 & .79 \\
Physics & -.29 & .89 & -.40 & .91 \\
Earth \& Space Science & -.10 & .94 & -.24 & .91
\end{tabular}

Grade 11/Age 17
\begin{tabular}{lrrrr} 
Life Science & .80 & .79 & .75 & .78 \\
Chemistry & .50 & 1.02 & .44 & .99 \\
Nature of Science & .75 & .94 & .69 & .84 \\
Physics & .37 & .94 & .40 & .92 \\
Earth \& Space Science & .65 & .91 & .57 & .93
\end{tabular}
subscales (life science, and nature of science). Chemistry, physics, and earth and space science all appeared at the two higher age groups. The age 17 mean was matched to the mean of the age 17 means across the two age spanning subscales, but the age 13 mean was matched to the mean transformed age 13 mean obtained from the two science subscales that spanned all three ages. Physical science appeared only at age 9 and this mean was set to the mean of the age 9 subscale means (again over the three age-spanning subscales) and the standard deviation was set to the geometric mean of the age 9 standard deviations. This method of scale determination constrains the age 9 mean to be equal across subscales and the age 17 means to be equal across subscales, but the age 13 means can be expected to vary slightly.

\subsection*{11.1.4 Creating the Composite Scale and Final Proficiency Scale}

While multiple proficiency scales provide useful and very revealing information about the relative relationships among subpopulations, the desire to have a single index to summarize overall performance remains a high priority among policymakers and the public at large. For that reason, a science composite was defined as a weighted average of the results across subscales. Not all subscales apply to all ages nor does the importance associated with each subscale remain the same across all ages. Therefore, the weights assigned to compute the average of the estimated subscale proficiencies differ by grade/age. The weights were assigned proportional to the percentage distribution of items by age and content specified in Science Objectives, 1985-86 Assessment (NAEP, 1986b). This is a nearly optimal weighting procedure of the subscales in terms of the precision of the resulting composite. This procedure is also optimal in terms of retaining the relative importance of the subscales implicit in the specifications of the science Learning Area Committee. The definition of weights for the composite in each grade/age is given in Table 11.5.

Table 11.5
Defining Weights for the Science Composite by Grade/Age
\begin{tabular}{lcccc}
\multicolumn{1}{c}{ Subscale } & Grade 3/Age 9 & Grade 7/Age 13 & & Crade 11/Age 17 \\
& & & & \\
Life Science & 47 & 27 & 26 \\
Chemistry & 0 & 17 & 26 \\
Nature of Science & 33 & 17 & 16 \\
Phyics & 0 & 17 & 21 \\
Earth \& Space Science & 0 & 22 & 16 \\
Physical Science & 20 & 0 & 0 \\
Total & 100 & 100 & 100
\end{tabular}

As described earlier, the linear indeterminacies among the subscales had been resolved by the anchoring of the subscale age means; that is, all the
subscales are now on the same common scale. However, this still leaves the indeterminacy of the common scale itself. To resolve this ambiguity, the final step in the creation of the science scale was to linearly transform the intermediate composite scale so that the final composite would have a weighted mean of 250.5 and a weighted standard deviation of 50 across all students in the three ages. The result is that the overall science composite has the same mean and standard deviation as did the 1984 reading proficiency scale.

The same linear transformation that created the final composite was then applied th each of the intermediate science subscales. Table 11.6 shows the coefficients of the (overall) linear transformations used to transform the subscales from their original units (calibrating scale) to the final proficiency scale.

Table 11.6
Coefficients of the Linear Transformations of the Subscales from the Calibrating Scale to the Units of the Reporting Proficiency Scale
\begin{tabular}{lcc}
\multicolumn{1}{c}{ Subscale } & Intercept & Slope \\
Life Science & 244.20 & 52.18 \\
Chemistry & 264.57 & 44.34 \\
Nature of Science & 243.63 & 56.55 \\
Physics & 263.12 & 60.27 \\
Earth \& Space Science & 253.07 & 50.63 \\
Physical Science & 203.82 & 43.57
\end{tabular}

Itam parameters on the calibrating scale may be transformed using the above intercepts and slopes so that conditional probability of correct response given a proficiency scale can be obtained. They are: \(a\) (proficiency)-a(calibrated)/slope, \(b\) (proficiency)=slope \(* b\) (calibrated), and \(c\) parameters remain unchanged.

Finally, it is necessary to caution that, although the science composite is seemingly expressed in the same units as the 1984 reading scale and the 1986 mathematics scale, it is not appropriate to compare scores on the science composite with scores on the other subject area scales. The transformation chosen to resolve the linear indeterminacies in the science composite is a convenient transformation, but is only one of a conceptually infinite number of such transformations that could have been chosen, any one of which would have provided equivalent information about the relative standings of subgroups of the population in terms of their abilities in science. There was no link, real or implied, in the construction of the science composite and the science subscales to mathematics or to reading.

\subsection*{11.1.5 Anchoring the Points on the Science Composite}

Behavioral anchoring was devised to associate descriptive statements of a student's ability with a level on a continuum of proficiency. This was done successfully with the 1984 reading scale and the 1986 mathematics scale. The same technique was applied to the science composite. As with the other subject areas, five levels--150, \(200,250,300\), and \(350-\) were selected on the scale and chosen as anchor points. Each level was defined by a description of the types of questions that most students attaining that proficiency level would be able to answer correctly while most students at least one level lower would answer incorrectly. In this way each level was exemplified by typical benchmark items that describe a subset of abilities indicative of that level of proficiency.

There was no difference in the anchoring procedures used for science or mathematics; both subjects used composite proficiency scores that were derived from multivariate subscale proficiencies. For that reason the empirical proportion correct was used for science as well as mathematics in place of the IRT-driven theoretical conditional probabilities. The empirical proportion correct was calculated by selecting subjects in a range in which we were interested and these responses were averaged. The ranges were set as within 12.5 units of the anchoring levels. For example, students who scored between 287.5 and 312.5 , and also were administered a particular item, were used to estimate the conditional probability of the correct response on that item. To avoid problems of instability of the estimated probabilities for very small numbers of respondents to an item, the probability was not defined if fewer than 10 students at a given proficiency level responded to the item. For the details of behavioral anchoring, see Beaton (1987b).

In the scale-anchoring process for the science composite, NAEP identified sets of items from the 1986 assessment that were good discriminators between proficiency levels. The guideline used to select such items was that students at any given level would have at least a 65 to 80 percent (but often higher) probability of success with these science questions, while the students at the next lower level would have a much lower probability of success. The criterion used was that the difference in probabilities between adjacent levels should exceed 30 percent. Science educators examined these sets of empirically selected items and used their expert judgment to characterize each proficiency level, contrasting tasks at that level with those at the levels just above and below.

\subsection*{11.1.6 WARM Background Composites}

In a fashion identical to that used for the mathematics assessment, students at all three grade/age levels were asked questions about their coursework, their attitudes toward science, and the type of instruction they had received, in addition to science cognitive items. The weighted average response method (WARM) was used to construct sets of composite background variables based on background questions specific to science that were included in the science blocks. A general description of the WARM procedure as it was applied to the 1986 assessment appears in Chapter 8 . The questions
comprising each of the science WARM composites appear in Appendix \(C\) in Tables C.9, C.10, and C.11 for grades 3, 7, and 11 respectively. The matrix used to map the original responses to the scaled and oriented responses used for the WARM composites appears in Table C. 12.

\subsection*{11.2 SCALING OF THE TREND DATA}

To maintain continuity with the past data, sample age definition, the mode of delivery of items, and time of assessment for trend data were different from cross-sectional data. The trend data comprised subsamples defined by age only (9-, 13-, and 17-year-olds), while the cross-sectional data included students in the appropriate grades as well as ages for all three subsamples. There were three booklets used to measure trend for ages 9 and 13. Each booklet contained a reading, a mathematics, and a science block. Each student took one of these booklets. The mathematics and science parts of the booklets were presented aurally using a tape recorder as in the past assessments. The tape recorder was turned off for the reading block. There were two booklets used to measure trend for age 17. Each booklet covered mathematics and science. These booklets were presented aurally to the students (see Chapter 4). There was a total of 63 items in the science trend item pool for age 9 administered to a total of 6,932 students; a total of 83 items for age 13 administered to a total of 6,200 students; and, a total of 82 items for age 17 administered to a total of 3,868 students. The science trend item pool consisted of items that were given in at least one previous assessment. The trend item pool was a subset of the cross-sectional item pool.

The trend data analysis examined data from three points in time, namely the 1976-77, 1981-82, and 1986 assessments. Due to the sparsity of trend items within the subscales defined in section 11.2 , a single scale was fit to these trend items. Too few common items between the 1973-74 and 1986 science assessments prohibited the inclusion of the 1973-74 data in the trend analysis.

Three differences between trend data and cross-sectional data make them incomparable to each other without equating. These differences are mode of administration, age definition of the sample, and time of testing. The bridge sample provides equating information by preserving the same mode of administration and age definition of the sample as the past trend data, and the same time of testing as the cross-sectional data. To align the trend to the cross-sectional, age only students were selected from the crosssectional sample to provide comparable samples of students under the two modes of administration. There is now a link between the trend sample and the cross-sectional sample through the bridge sample, and the age-only subsample of cross-sectional students.

The following table shows 11 distinct samples of students used ror the scaling for trend:

Table 11.7
Samples of Students Used in Scaling for Trend
\begin{tabular}{lcccc} 
Assessment & Age 9 & Age 13 & Age 17 \\
\(1976-77\) & & & & \\
\(1981-82\) & x & x & x \\
1986 Bridge A & x & x & x \\
1986 Bridge B & x & x & \\
& & x & x
\end{tabular}

In the above, Bridge A refers to the tape-recorder-administered assessment of 9- and 13-year-olds using the old age definitions and time of assessment; Bridge B refers to the tape-recorder-administered assessment of 9- and 13-year-olds using the new age definitions and time of assessment. For 17-yearolds, the Bridge \(B\) age definition and time of assessment are identical to those used in past assessments; that is, for age 17, Bridge A is identical to Bridge \(B\).

\subsection*{11.2.1 Estimation of Item Parameters and Generation of Plausible Values}

As noted above, trend data analysis was carried out on a single scale. The majority of items given to age 13 students were also given to age 17 students. Therefore, the age 13 and age 17 samples were combined and item parameters were estimated. Since there was only one item given in common to ages 9,13 and 17, and there were no items in common between ages 9 and 13 or ages 9 and 17, the item parameters for the age 9 sample were estimated separately. The following table shows the number of items in common across the three ages.

Table 11.8
Number of Items in common Across the Three Ages
\begin{tabular}{lccccc} 
& Age 9 & Age 13 & Age 17 & All Ages \\
Age 9 & 82 & & 0 & 0 & \\
Age 13 & & 33 & 42 & \\
Age 17 & & & 35 & \\
All Ages & & & & & 1
\end{tabular}

The above table excludes items that did not fit to the IRT model in either cross-sectional or trend data analysis. There were 3 , 1 , and 3 items dropped from scaling for ages 9,13 and 17, respectively. Twenty-four items that were given in 1976-77 and 1981-82 but not in 1986 were added to the item pool for age 9. The fact that there were so few items given in the 1981-82
special assessment would have made the scaling of the 1981-82 sample very difficult without increasing the number of items. Prior to adding 24 items, there were only ten science items common to the age 9 assessments across the three assessments. A list of the items scaled for the three ages, along with their item parameters appears in Tables E.34, E. 35, and E. 36 in Appendix E.

The estimation of plausible values was conducted independently by age for each assessment sample identified in Table 11.7. Because there were fewer background variables available for trend in the past, there were fewer conditioning variables used in the creation of the plausible values. The conditioning variables and the estimated conditioning effects are given in Tables B. 27 through B. 37 of Appendix B for the three grade/age groups.

\subsection*{11.2.2 Linking to the Cross-sectional Science Composite}

The units of the final trend scale were determined by linking each of the three age scales to the science composite scale. This was done for each age by matching the mean and standard deviation of the trend scale of the 1986 Bridge B sample (the sample with the new age definition) to the mean and standard deviation on the composite science scale of the corresponding age sample. Table 11.9 shows the coefficients of the linear transformations used to transform the trend scale. Note that the transformation coefficients are identical for ages 13 and 17. (See Appendix D for a detailed discussion.)

Table 11.9
Coefficients of the Linear Transformation of the Trend Scale from the Calibration Units to the Units of the Composite
\begin{tabular}{rcr} 
Age & Intercept & Slope \\
9 & 221.73 & 42.43 \\
13 & 269.33 & 44.67 \\
17 & 269.33 & 44.67
\end{tabular}
11.2.3 Extrapolation of the 1971-72 and 1973-74 Mean P-Values Results onto the Trend Scale

Because of insufficient common items between the 1971-72, 1973-74, and 1986 science assessments, data from 1971-72 and 1973-74 were not included in the IRT trend analysis. However, for the nation and several reporting subgroups (e.g., gender) at each of the three age levels, an estimate of the 1971-72 and 1973-74 mean level of student mathematics proficiency was computed and is discussed in this report.

The method used to derive 1971-72 and 1973-74 science proficiency scores is based on the strong linear relationship between the logit of a subgroup's weighted mean proportion correct and its respective proficiency mean across the assessments of 1976-77, 1981-82, and 1986, given an age level. Assuming
this linear rela ionship would hold for both 1971-72 and 1973-74 data, extrapolation of proficiency scores of subgroups can be obtained from weighted mean proportion correct of corresponding subgroups of those years. For each age, separate linear coefficients between proficiency scores and difference in logits of weighted mean proportion correct were obtained. Common items for each pair of the three assessment years 1976-77, 1981-82, and 1986, as well as common ftems for all three years, were used to calculate weighted mean proportion correct. These coefficients per age were kri. constant to estimate proficiency scores of 1971-72 and 1973-74 from differences in the logits of the weighted mean percent correct of the corresponding year.

Al1 subgroups in a given age were included in the regression. The estimate of the 1973-74 proficiency mean for a subgroup was then obtained as the sum of the 1976-77 mean proficiency of the subgroup and the coefficient times the difference between the logit of the 1973-74 and 1976-77 subgroup mean proportion correct. Insufficient common items between 1971-72 and 197677 made it difficult to extrapolate 1971-72 proficiency scores from 1976-77 scores. For that reason, the estimates of 1971-72 proficiency mean were calculated in a fashion similar to that done for 1973-74, except that 1976-77 proficiency scores were replaced by 1973-74 extrapolated proficiency scores.

\section*{CHAPTER 12}

\section*{Computer Competence Data Analysis}

Chapter 12
COMPUTER COMPETENCE DATA ANALYSIS

Nancy A. Mead
Educational Testing Service

The National Assessment of Educational Progiess assessed the computer competence of students at three grade and age levels in the spring of 1986. The levels were grade 3/age 9, grade 7/age 13, and grade 11/age 17. This was the first time that computer competence had been assessed by NAEP. The areas covered by the assessment included knowledge of computer concepts, familiarity with various computer applications, and skills in computer programming.

Initial analysis plans for computer competence did not call for scaling the results. Instead, plans were made to compute mean percents-correct across narrowly defined collecrions of items and to relate these results to background variables. It was felt that scaling was not appropriate for the computer competence because the items tapped a wide range of skills that have no underlying pedagogical or psychological continuum. For example, 11th graders may demonstrate less understanding than 7 th graders; within a grade students may understand some computer applications and not others or may have textbook knowledge of computers and not user knowledge (or the converse).

A group of consultants were asked to assist NAEP staff in developing a data analysis plan and in interpreting the results. Two members of the group were s_sected from the Learning Area Committee that guided item development and three individuals provided new perspectives. The group included a curriculum developer, a teacher trainer and researcher, a school district computer science coordinator, a content area teacher who used computer applications in the classroom, and a writer who specialized in computerrelated topics.

The first meeting was devoted to determining the specifications for the data analysis. The analysis group reviewed the items in the pool, their classification according to the computer competence objectives, and their unweighted percents-correct. Many items were very difficult for students. often the percentage of correct responses fell close to the chance level. As an initial analysis step, the group recommended that item analyses be conducted and that items that did not discriminate between high and low achievers be eliminated. The group also recommended that two items be eliminated from the analysis. One of these questions did not have a clear correct answer and the other had a printing error.

The analysis group reviewed the knowledge items and proposed that they be reported by two categories: textbook knowledge and practical knowledge. The first category deals with concepts usually presented in textbooks, for
example, the history of computers or terminology. The second category deals with knowledge that could be gained through use of a computer.

The analysis group classified the application items into five categories: distinguishing between applications, word processing, databases, graphics, and spreadsheets. The first category of items asked simple questions about what application programs should be used to accomplish various tasks. The other categories focused on sperific applications. Later, when the group reviewed the results, they decided that the first category did not warrant separate reporting and these items were reassigned to the appropriate application categories. The computer competence objectives encompassed several additional applications: laboratory instrumentation, telecommunication, music generation, and models and simulations. However, the analysis group felt that there were not enough items in these areas to warrant reporting.

The analysis group decided that the programming items should be reported by programming language: BASIC, Logo, and Pascal. Within Pascal, two types of items were identified: generic and specific. Students might be able to answer items in the first category if they had a knowledge of a programming language other than Pascal. The second category of items required knowledge of language structures specific to Pascal.

The analysis group also identified student background variables that should be used in the analyses. These included general demographic characteristics as well as factors that were specific to students' experience with computers. A few additional variables were added by NAEP staff. The final list of general variables included:
- student sex
- student race or ethnic background
- student age
- parents' level of education
- region of the country
- size and type of community
- type of school (public or private)
- student's high school program (general, academic or vocational--grade 11/age 17 only)

The computer related variables included:
- Has the student ever used a computer?
- Does the student's family own a computer?
- Is the student studying computers in school now? (grade 3 /age 9 and grade 7 /age 13 only)
- Is the student using computers to practice math, reading or spelling? (grade3/age 9 and grade 7/age 13 only)
- Is the student currently taking a class in compriters?
(grade \(11 /\) age 17 only)
- Has the student taken a computer literacy class? (grade 11/age 17 only)
- Has the student taken a computer programming class? (grade 1l/age 17 only)

The group also wanted to look at the programming language means in relation to the variables "Which programming languages does the student know?" and "Which programming language does the student know best?"

In addition to the variables listed above, the analysis group wanted to develop a composite variable that indicated various levels of exposure to computers. After considering several approaches, the group settled on a variable that crossed "Does the student's family own a computer?" and "Is the student studying computers in school now?" (or, at grade 11/age 17, "Is the student currently taking a class in computers?"). Four different categories of exposure were created:
1) student's family has a computer and student is studying computers;
2) student's family has a computer and student is not studying computers;
3) student's family doesn't have a computer and student is studying computers; and
4) student's family doesn't have a computer and student is not studying computers.

As anticipated, the highest and lowest levels of exposure were associated with the highest and lowest levels of computer competence.

Item analyses were conducted for all items. Even though many items were difficult, all items discriminated between high and low achievers.

Analyses were then conducted for all students in grades 3, 7, and 11 and for all subgroups defined by the background variables. Weighted percentscorrect were computed for each item. Finally, weighted mean percents-correct were computed ccross all items and across all categories of items identified by the analysis group.

Percents-correct and mean percents-correct were computed according to the formula:
\[
\frac{\text { Rights }}{\text { Rights + Wrongs + Omits }}
\]

Students who did not reach an item were excluded from the analyses. The percentages of students who did not reach an item was no greater than 5 percent except for some items in the BASIC and Logo sections for the 3rd graders and for some items in the Logo section for the 7th graders. Means that included any items with a not reached greater than 5 percent were
\[
-261-\quad 2 \div j
\]
flagged with a warning: "Less than 95 percent of the population reflected in the mean."

A small number of the computer competence items were open-ended. Students provided responses in the form of lines of computer code or brief written explanations. These responses were rated by professional scorers. To document the consistency of scorers, a 20 percent sample of the items were independently rated by a second scorer. (See Chapter 6.2 for a description of professional scoring and scorer reliability.)

At their second meeting the analysis group reviewed the results and offered their interpretations of findings. The observations of the group were incorporated into the assessment report.

\section*{CHAPTER 13}

History and Literature Data Analysis

252

\title{
HISTORY AND LITERATURE DATA ANALYSIS \({ }^{1}\)
}

\author{
Rebecca Zwick \\ Educational Testing Service
}

History and literature items were included in four of the 92 booklets administered to 9,774 students who were 17 years old or in grade 11 in the 1986 assessment. These items were administered for the first time in the 1986 assessment. Each of the four booklets contained one of four history blocks (H1, H2, H3, or H4), one of four literature blocks (L1, L2, L3, or L4), and reading block R 4 . (That is, the history and literature blocks were not BIB-spiralled.) The history blocks consisted of 34 to 36 cognitive items and a common set of 25 history background and attitude items; the literature biocks contained 30 to 31 cognitive items, as well as 42 literature background and attitude items. All history and literature items were multiple choice.

\subsection*{13.1 ITEM ANALYSIS AND DIMENSIONALITY ASSESSMENT}

Within each of the two subject areas, the four blocks were constructed to be similar in contert and difficulty. Table 13.1 shows the number of items, KR-20 reliability, average tetrachoric, mean, standard deviation, and mean percent correct for each block. Within each content area, the item analysis results are quite similar across blocks, although the history blocks differed somewhat in difficulty.

A series of analyses of differential item functioning (see Holland \& Thayer, 1986) on the history and literature items was also performed. (The analyses of history items are detailed in Zwick \& Ercikan, in press.) The purpose of these analyses was to identify items on which there were performance differences across racial/ethnic and gender groups who were matched on overall score (and in some cases, on exposure to relevant instruction). After examining the results of the analyses, it was determined that removal of the items that showed differential functioning would seriously impair the validity of the test. For example, all three history items showing substantial differential performance in the White student-Black student comparison were items on Black history, on which Black students performed better than a matched group of White students. Removal of Black history items, however, would clearly be undesirable.
\(1_{\text {Laurel }}\) Barnett and David Freund provided statistical programming. Robert Mislevy and Kathleen Sheehan provided consultation on scaling. David Freund prepared the documentation of history and literature derived variables contained in Table F. 1 of Appendix F.

Table 13.1
NAEP History and Literature Assessment Descriptive Statistics \({ }^{*}\)
\begin{tabular}{ccccccc} 
Block & \begin{tabular}{c} 
Numbers of \\
Items
\end{tabular} & \begin{tabular}{c} 
KR.20 \\
Reliability
\end{tabular} & \begin{tabular}{c} 
Average \\
Tetrachoric
\end{tabular} & \begin{tabular}{c} 
Mean Number \\
Correct
\end{tabular} & S.D. & \begin{tabular}{c} 
Mean Percent \\
Correct
\end{tabular} \\
H1 & 36 & .84 & .39 & 20.8 & 6.3 & .58 \\
H2 & 36 & .83 & .35 & 19.2 & 6.4 & .53 \\
H3 & 35 & .82 & .40 & 16.9 & 6.1 & .48 \\
H4 & 34 & .87 & .48 & 19.2 & 6.9 & .57 \\
L1 & 30 & .78 & .35 & 15.1 & 5.2 & .51 \\
L2 & 31 & .76 & .30 & 15.6 & 4.9 & .50 \\
L3 & 30 & .77 & .30 & 16.4 & 4.9 & .55 \\
L4 & 30 & .72 & .24 & 15.7 & 4.5 & .52
\end{tabular}
*Sample size for each analysis is approximately 1950.

For purposes of dimensionality assessment in NAEP, we have investigated the full-information factor analysis method developed by Bock, Gibbons, and Muraki (1985; see Zwick, 1987a), which provides an elegant model for assessing the dimensionality of dichotomous item :esponses. Unfortunately, the implementation of the full-information solution in the TESTFACT program (Wilson, Wood, \& Gibbons, 1983) is expensive and sometimes results in convergence problems. Furthermore, there is some evidence that heavy reliance on the significance tests provided can lead to over-factoring. At present, therefore, we have chosen to use a less elegant, but apparently satisfactory procedure: Through a nonstandard application of the TESTFACT program, it is possible to perform a MINRES (Harman, 1976) factor analysis of a matrix of tetrachoric correlations that have been corrected for guessing using a modification of Carroll's (1945) correction.

The results of an analysis of this kind are shown in Table 13.2. In each of the eight blocks, a large first factor was in evidence; the size of the second factor ranged from 6 to 13 percent of the first in history and from 16 to 21 percent of the first in literature. Careful examination of the items loading on the second factors, both before and after rotation, revealed no content-based interpretation for these factors. For comparison, results of a similar analysis of NAEP reading items is shown. (This analysis, conducted in 1984, is not strictly parallel with the present analyses in that 42 items intended to represent four distinct types of reading items were selected from a larger pool for inclusion.) As in the case of the reading items, the decision was made that the history and literature data could be well summarized by a single history scale and a single literature scale.

\subsection*{13.2 SCALING}

As in the case of reading, mathematics, and science, item response theory (IRT) methods were used to derive a history scale and a literature scale based on the cognitive items. Scale values were obtained for only the 7,812 students who were in grade 11; scale values were not obtained for 17 -year-olds who were in grades other than 11.

The scaling of history and literature differed in two ways from the IRT scaling approach used in other NAEP subject areas. First, because the history and literature assessment consisted of four nonoverlapping sets of items in each of the two subject areas, it was necessary to make the assumption that the four blocks of items within a subject area were equivalent samples of the content domain. This assumption is reasonable since the blocks were constructed to be similar in content, and was supported by the item analysis results in Table 13.1. The second difference is that, because of the relatively large number of items administered to each student, background data were not used to improve the estimation of students' proficiency distributions. That is, there were no conditioning variables (see Chapter 8).

Scaling was achieved through a straightforward application of the BILOG program (Mislevy \& Bock, 1982). Within each content area, a posterior distribution was estimated for eac'l student, based on that student's observed

Table 13.2
Results of MINRES Factor Analyses of Guessing-Corrected Tetrachoric Matrices of NAEP Items*

Number of Items

Percent of Explained Variance First Factor Second Factor

1984 Reading
(Grade 8/Age 13)

NAEP 1986 History and Literature (Grade 11)

1986 History Block (Grade 11)
\begin{tabular}{llll} 
H1 & 36 & 40 & 5 \\
H2 & 36 & 38 & 5 \\
H3 & 35 & 42 & 5 \\
H4 & 34 & 51 & 3
\end{tabular}

1986 Literature Block (Grade 11)
\begin{tabular}{llll} 
L1 & 30 & 38 & 6 \\
L2 & 31 & 36 & 7 \\
L3 & 30 & 33 & 7 \\
L4 & 30 & 38 & 6
\end{tabular}
**Sample size for each analysis is approximately 1950.
Items were chosen to represent four distinct item types.
item responses and on the estimated grade 11 population distribution. The mean of the posterior distribution was then taken as the proficiency estimate for that student in the provisional \(\theta\) metric. That is,
\[
\begin{aligned}
\hat{\theta}_{i}=E\left(\theta \mid \underline{x}_{i}\right) & =\int \theta p\left(\theta \mid{\underset{\sim}{x}}_{i}, \underset{\sim}{a}, \underset{\sim}{b}, \underset{\sim}{c}\right) d \theta \\
& =\int \theta p\left({\underset{\sim}{x}}_{i} \mid \theta, \underset{\sim}{a}, \underset{\sim}{b}, \underset{\sim}{c}\right) g(\theta) d \theta / \int p\left({\underset{\sim}{x}}_{i} \mid \theta, \underset{\sim}{a}, \underset{\sim}{b}, \underset{\sim}{c}\right) g(\theta) d \theta,
\end{aligned}
\]
where
\[
\begin{array}{ll}
\hat{\theta}_{i} & \text { is the proficiency estimate for the } i^{\text {th }} \text { examinee, } \\
{\underset{\sim}{x}}^{a}, \underset{\sim}{b}, \text { and } \underset{\sim}{\sim} \begin{array}{l}
\text { are the vectors of item parameters for the three- } \\
\text { parameter logistic model, and }
\end{array} \\
g(\theta) \quad \begin{array}{l}
\text { is the (estimated) distribution of proficiency in the } \\
\text { nation. }
\end{array}
\end{array}
\]

This distribution was approximated as a histogram over 20 equally spaced points from -5 to +5 in the manner described in Mislevy (1984). For reporting purposes, the estimated proficiencies were transformed so that, for both history and literature, the grade 11 mean and standard deviation were 285 and 40 , respectively.

Item parameter estimates for the history and literature items are given in Appendix \(E\) in the original BILOG calibration metric. In order to obtain results in terms of the proficiency scales used for reporting (i.e., means of 285, standard deviations of 40 ), the scale values that would be obtained using the parameter estimates in Appendix \(E\) need to be transformed. The relation between the provisional scales from BILOG ( \(\theta \mathrm{H}\) and \(\theta \mathrm{L}\) for history and literature, respectively) and the final repoiting scales (RSH and RSL) are
\[
\begin{aligned}
& \text { RSH }=43.60(\theta \mathrm{H})+285.08 \text { and } \\
& \text { RSL }=45.36(\theta \mathrm{~L})+285.02 .
\end{aligned}
\]

The corresponding changes to the item parameter estimates are \(a_{\text {RSH }}=a_{\theta \mathrm{H}} / 43.60, \mathrm{~b}_{\text {RSH }}=43.60 \mathrm{~b}_{\theta \mathrm{H}}+285.08\) and \(\mathrm{a}_{\text {RSL }}=\mathrm{a}_{\theta \mathrm{L}} / 45.36\), \(b_{\text {RSL }}=45.36 b_{\theta L}+285.02\). The \(c\) parameters are the same in both metrics (i.e., \(c_{R S H}-c_{\theta H}\) and \(c_{R S L}=c_{\theta L}\) ).

\subsection*{13.3 ANALYSES USING BACKGROUND VARIABLES}

The NAEP report Literature and U.S. History (Applebee, Langer, \& Mullis, 1987) includes analyses based on variables derived from the responses to the background and attitude questions contained in the history and literature blocks. The definitions of these variables are given in Table F .1 of Appendix F .

\subsection*{13.4 ANALYSES USING MEAN PERCENTS-CORRECT}

The Literature and U.S. History report also contained analysis based on mean percent correct for sets of items in certain categories. The items included in each of these analyses are listed in Table F. 2 of Appendix F.

\section*{CHAPTER 14}

\section*{Weighting Procedures and Variance Estimation}

Chapter 14
WEIGHTING PROCEDURES AND VARIANCE ESTIMATION \({ }^{1}\)

Eugene G. Johnson
Educational Testing Service

\author{
John Burke, Jill Braden, Morris H. Hansen, Josefina A. Lago, and Benjamin J. Tepping
}

Westat, Inc.

As was the case in previous assessments, the 1986 National Assessment used a complex sample design with the goal to obtain a sample from which estimates of population and subpopulation characteristics could be obtained with reasonably high precision (as measured by low sampling variability). At the same time, it was necessary that the sample be economically and operationally feasible to obtain. The resulting sample had certain properties that had to be taken into account in the proper analysis of the data from the assessment.

The 1986 NAEP sample was obtained through a stratified multistage probability sampling design that included provisions for sampling certain subpopulations at higher rates (see Chapter 3). To account for the differential probabilities of selection, each student was assigned a sampling weight. Section 14.1, below, will discuss the procedures used to derive these sampling weights.

Another consequence of the NAEP sample design is its effect on the estimation of sampling variability. Because of the effects of cluster selection (students within schools, schools within primary sampling units) and because of the effects of certain adjustments to the sampling weights (nonresponse and poststratification), observations made on different students cannot be assumed to be independent of one another. As a result, ordinary formulae for the estimation of the variance of sample statistics, based on assumptions of independence, will tend to underestimate the true sampling variability. Section 14.2 will discuss the jackknifing technique used by NAEP to estimate sampling variability.

Since the sample design determines the derivation of the sampling weights and the estimation of sampling - riability, it will be helpful to note the key features of the 1986 NAEP sample design. More detailed descriptions of the design appear in Chapter 3 of this report and in National Assessment of Educational Progress--17th Year Sampling and Weighting
\(1_{\text {The }}\) tables of design effects were produced by David Freund.

Procedures Final Report (Burke, Braden, Hansen, Lago, \& Tepping, 1987), the final report prepared by Westat, Inc., the firm subcontracted by ETS to select the sample.

The target population in 1986 consisted of 9 -year-olds, 13-year-olds, and 17 -year-olds enrolled in public and private elementary and secondary schools, along with other students in the modal grade for earh of these three ages as these ages were defined. The 1986 sampla was a multistage probability sample consisting of four stages of selection. The first stage of selection, the primary sampling units (PSUs), consisted of counties or groups of counties. The second stage of selection consisted of elementary and secondary schools. The assignment of sessions to sampled schools comprised the third stage of sampling, and the fourth stage involved the selection of students within schools and their assignment to sessions. The probabilities of selection of the first- and second-stage sampling units were proportional to measures of their size, while the probability for subsequent stages of selection were such that the overall probabilities of selection of students were approximately uniform, with exceptions for certain subpopulations that were oversampled by design. Students from schools with relatively high concentrations of Black, Hispanic, or Asian American students were deliberately sampled at twice the normal rate to obtain larger samples of respondents from those subpopulations in order to increase the precision in the estimation of the characteristics of these subpopulations. Students from schools with smaller numbers of eligibles received lower probabilities of selection.

A major change in the 1986 assessment from prior assessments was a shift to spring assessment for each age class, coupled with a change in the age definitions for the 9 - and 13 -year-old students. In previous assessments, 13-year-olds were defined on a calendar-year basis and were assessed in the fall; 9-year-olds were also defined on a calendar-year basis and were assessed in the winter; and 17-year-olds were defined on an October-throughSeptember basis and assessed in the spring. For the spiral (main) assessment in 1986, the students of each of the three age classes were defined as the students born between October 1 and September 30 of the appropriate years. All ages were assessed in the spring for the spiral assessment of 1986. To determine the possible effects of changes in age definitions and time of assessment as well as the effects of change in mode of administration (elimination of the audiotape used for pacing the exercises), two bridge studies were also conducted.

The full 1986 NAEP assessment thus includes a number of different samples from several populations. Each of these samples has its own set of weights that are to be used to produce estimates about the characteristics of the population addressed by the sample (the target population). The various samples and their target populations are as follows:

The Spiral Samples of Students. These samples, one for each of the three grade/age combinations, were drawn in the spring, use the new age definitions, and consist of all students assessed in the main (spiral) assessment. The target population for each of these samples consists of all
students who are in the sprcified grade/age combination who were deemed assessable by their school.

The Bridge A Samples of Students. For each of the ages 9 and 13, there are three bridge samples (from booklets 1, 2 and 3) designed to allow the measurement of the effect of changing the age definitions and the time of year the assessment data were collected. (Since these changes affected only ages 9 and 13, a bridge sample was not necessary for age 17 . Since trend data have been traditionally collected only by age, grade sampling was unnecessary.) These samples were drawn at the old times of assessment and use the old age definitions. The target population for each of these samples consists of the assessable age eligibles, using the old age definitions.

The Bridge B Samples of Students. For each of the three ages (9, 13, and 17) there are two bridge samples (from booklets 4 and 5) designed to allow the measurement of the effect of changing from tape-recorded to printed mode of administration for mathematics and science. These samples were drawn in the spring and use the new age definitions. The target population for each of these samples consists of all students who are of the specified age, using the new age definitions.

\subsection*{14.1 DERIVATION OF THE SAMPLE WEIGHTS}

As indicated previously, NAEP uses differential sampling rates, deliberately oversampling certain subpopulations to obtain larger samples of respondents from those subgroups thereby enhancing the precision of estimates of characteristics of these oversampled subgroups. As a result of this oversampling, these subpopulations, corresponding to students from schools with high concentrations of Black or Hispanic students, are overrepresented in the sample. Appropriate estimation of population characteristics must take this disproportionate representation into account. This is accomplished by assigning a weight to each respondent, where the weights properly account for the sample design and reflect the appropriate proportional representation of the various types of individuals in the population.

The weighting procedures for 1986 included computing the student's base weight, the reciprocal of the probability that the student was invited to a particular session. These base weights were then adjusted for nonresponse and then subjected to a trimming algorithm to reduce excessively large weights. The weights were further adjusted by a poststratification procedure in an effort to reduce the sampling error and certain potential biases of estimates relating to student populations corresponding to several subgroups of the total population. Poststratification was performed by adjusting the weights of the sampled students so that the resulting estimates of the total number of students in a number of specified subgroups of the population corresponded to population totals based on information from the Current Population Survey, the 1980 Census, and from NAEP. The subpopulations were defined in terms of race, ethnicity, Office of Business Economics region, and sampling descriptor of community (based on the size and degree of urbanization of a county).

The following sections provides an overview of the procedures used to derive the sampling weights. Further details in the derivation of these weights can be found in Burke nt al. (1987).

\subsection*{14.1.1 Student Base Weight}

The base weight assigned to a student is the reciprocal of the probability that the student was invited to a particular type of assessment session, that is, a spiral session or a particular bridge assessment session. That probability is the product of four factors
1) the probability that the PSU was selected;
2) the conditional probability, given the PSU, that the school was selected;
3) the conditional probability, given the sample of schools in a PSU, that the school was allocated the specified type of session; and
4) the conditional probability, given the school, that the student was invited to the specified type of session

Thus, the base weight ror a student may be expressed as the product
\[
W_{B}=\operatorname{PSUWT} * \text { SCHWT } * \text { SESSWT * STUDWT }
\]
where PSUWT, SCHWT, SESSWT, and STUDWT are, respectively, the reciprocals of the preceding probabilities.

\subsection*{14.1.2 Adjustment of Base Weights for Nonresponse}

The base weight for a student was adjusted by three nonresponse factors: one to adjust for noncooperating schools, the second to adjust for allocated sessions that were not conducted, and the third to adjust for students who were invited to the assessment but did not appear either in the scheduled session or in a makeup session. Thus, the student nonresponse adjusted weight is of the form
\[
\mathrm{W}_{\mathrm{w}}=\mathrm{W}_{\mathrm{B}} * \mathrm{f}_{1} * \mathrm{f}_{2} * \mathrm{f}_{3}
\]
where \(W_{B}\) is the student base weight, \(f_{1}\) is a school nonresponse factor, \(f_{2}\) is a session nonresponse factor, and \(f_{3}\) is a student nonresponse factor, each computed as described below.

\subsection*{14.1.2.1 School Nonresponse Adjustment}

School nonresponse adjustments were intended to compensate for school nonresponse occurring prior to spiral and tape session assignment. These
factors were computed separately within each PSU for up to three classes of schools using as many nonresponse classes as the number of sampled schools in the PSU and nonresponse pattern allowed. In most cases, only one class was identified in the PSU for each of the three age groups.

For any nonresponse class, \(c\), the school nonresponse factor for schools selected for spring assessment (either spiral or Bridge B) is given by
\[
f_{1 c}=\frac{\sum_{i \varepsilon A} W_{i} G_{i}}{\sum_{i \varepsilon B} W_{i} G_{i}}
\]
where
\begin{tabular}{|c|c|}
\hline \(\mathrm{W}_{\mathrm{i}}=\) & school weight (the reciprocal of the probability of selection of the school conditional on the PSU); \\
\hline \(\mathrm{G}_{\mathrm{i}}\) & estimated number of grade and age eligible students in school i; \\
\hline set A & consists of the original sample of eligible schools (including refusing schools but not including substitutes); and \\
\hline set \(B\) & consists of all cooperating schools at the time of session allocation (including schools that were substituted for noncooperating schools). \\
\hline
\end{tabular}

Note that, for a substitute school, \(W_{i}\) (SCHWT) was defined as the school weight of the originally selected school for which it was a substitute. The sampling rate of students within a substititute school (and hence the value of sTUDWT for such a school) was defined using enrollment data for the substitute itself.

A similar formula was used for the school level nonresponse adjustment for the Bridge A schools with the exception that, since only age-eligible students were selected in the Bridge A samples, the factor \(f_{i}\) is replaced by \(A_{i}\), the number of age-eligible students in the school.

\subsection*{14.1.2.2 Session Nonresponse Adjustment}

The session nonresponse adjustments were intended to compensate for school nonresponse occurring after spiral and/or tape session assignment in the spring-selected schools. (No session nonresponse adjustment was needed for Bridge A schools since those schools were allocated tape sessions only. For those schools, session nonresponse is equivalent to school nonresponse and is adjusted for as in section 14.1.2.1.)

For spiral sessions, the adjustment was computed separately by PSU for one or two classes of schools in each of the three grade/age groups and is a ratio of the form
\[
f_{2 c}=\frac{\sum_{i \varepsilon A}^{W}{ }^{W *}{ }_{i} G_{i}}{\sum_{i \varepsilon B}^{W}{ }^{W}{ }_{i} G_{i}}
\]
where \(G\) is the number of grade/age eligibles as before, \(W *\) is the product of the school-nonresponse adjusted school weight and the session weight (i.e. \(f_{1 c}\) * SCHWT * SESSWT), the set A consists of all spiral-allocated schools in the nonresponse class \(c\) within the PSU who were cooperating at the time of spiral session allocation, and the set \(B\) consists of all such schools who ultimately cooperated.

For the Bridge B tape sessions, the adjustment was computed separately in each PSU for each of the two tape booklets in each of the three age groups and was of similar form to \(f_{2 c}\), above, with two exceptions. First, the factor \(G\) was replaced by \(A_{i}\), the number of age eligibles in the school. Second, the sets \(A\) and \(B\) were restricted to those schools in the PSU who were allocated the particular tape booklet.

\subsection*{14.1.2.3 Student Nonresponse Adjustment}

The student nonresponse adjustment was computed separately within a PSU by age group for each of the two tape booklets in Bridge B sessions and for each of the three tape booklets in Bridge A sessions. For tape booklet \(t\) in PSU \(h\), the student nonresponse adjustment \(f_{3}\) was computed as the ratio of the sum of the weights of all students in the PSU who were invited to a tape booklet \(t\) session divided by the sum of \(t^{\top}\) ? 3 weights of all students in the PSU who actually participated in a tape booklet \(t\) session; where the student weights were adjusted for school- and session-nonresponse.

For spiral sessions, the student nonresponse adjustment was made separately within each PSU for two sets of students: those in or above the grade modal for their age and those in a grade below that modal for their age, and is the ratio of the sum of the (school- and session-nonresponse adjusted) weights of all students in the given age set who were invited to a spiral session divided by the sum of the adjusted weights of all such students who actually participated. The use of two age sets for nonresponse adjustment is in recognition of the likely differences between scudents in the two sets both in their assessed abilities and in their likelihood of nonresponse.

\subsection*{14.1.3 Trimming of Weights}

In a number of cases, students were assigned extremely large weights. One cause of large weights was underestimation of the number of eligible students in some schools leading to inappropriately low probabilities of
selection for those schools. Other extremely large weights arose as the result of high levels of nonresponse coupled with low to moderate probabilities of selection.

Students with extremely large weights have an unusually large impact on estimates such as weighted means. Since the variability in weights contributes to the variance of an overall estimate by an approximate factor 1 \(+V^{2}\), where \(V^{2}\) is the relative variance of the weights, a few extremely large weights are likely to produce large sampling variances of the statistics of interest, especially when the large weights are associated with students with atypical performance characteristics.

To reduce this problem, a procedure of trimming the more extreme weights to values somewhat closer to the mean weight was applied. This trimming can increase the accuracy of the resulting survey estimates, substantially reducing \(\mathrm{V}^{2}\) and hence the sampling variance while introducing a small bias. The trimming algorithm was identical to that used in the 1984 NAEP and had the effect, approximately, of trimming the weight of any school that contributed more than a specified proportion, 5 , to the estimated variance of the estimated number of students eligible for assessment. The trimming was done separately for the spiral assessment and for each tape booklet in each of the bridge samples. In each case, the value of the proportion 5 was chosen to be \(10 / \mathrm{M}\), where M was the number of schools in which a specified assessment was conducted. The number of schools whose weights were trimmed was small, being between 0 and 5 in each of the samples.

\subsection*{14.1.4 Poststratification}

As in most sample surveys, the respondent weights are random variables that are subject to sampling variability. Even if there were no nonresponse, the respondent weights would at best provide unbiased estimates of the variuus subgroup proportions. However, since unbiasedness refers to average performance over a conceptually infinite number of replications of the sampling, it is unlikely that any given estimate, based on the achieved sample, will exactly equal the population value. Furthermore, the respondent weights have been adjusted for nonresponse and a number of extreme weights have been reduced in size.

To reduce the mean squared error of estimates using the sampling weights, these weights were further adjusted so that estimated population totals for a number of specified subgroups of the population, based on the sum of weights of scudents of the specified type, were the same as presumably better estimates derived from other sources. This adjustment, called poststratification, especially reduces the mean squared error of estimates relating to student populations that span several subgroups of the population. The poststratification was done separately for the spiral sessions and each of the bridge sessions within each grade/age group, because each of these can be viewed as separate samples of the appropriate population.

For the spiral assessment, 13 subgroups were defined in terms of race, ethnicity, Office of Business Economics region and community size (SDOC) as shown in Table 14.1. Each of the 13 subgroups was further divided into three classes:
1) students eligible by both age and grade;
2) students eligible by age only;
3) students eligible by grade only.

This resulted in 39 poststratification cells for each age class. The final weight for a student is the product of the base weight (as adjusted for nonresponse and after trimming) and a poststratification factor whose denominator is the sum of those weights for the cell to which the student belongs and whose numerator is an adjusted estimate, based on more reliable data, of the total number of students in the cell.

The adjusted estimate of the total number of students in a given cell is a composite of estimates from the 1986 NAEP sample and independent estimates based on projections based on 1983 and 1984 Current Population Survey estimates and 1985 Census projections. The adjusted estimate is a weighted mean of the various estimates, the weights being inversely proportional to the approximate relative variances of the NAEP and these independent estimates. (Further details are provided in Burke et al., 1987).

The sample of students in each of the tape assessments was much smaller than the sample for the spiral assessments. Consequently, some subgroups were collapsed for poststratification as follows:
\begin{tabular}{ll}
1,2 & 6,7 \\
3 & 8,9 \\
4 & \(10,11,12\) \\
5 & 13
\end{tabular}

Furthermore, there was no subdivision into eligibility classes, so that there were eight poststratification cells for each age class. For the Bridge assessments, the numerators of the poststratification factors for these cells were the corresponding adjusted estimates used for computing the spiral poststratification factor. For each of the tape assessments in Bridge \(A\) and Bridge \(B\), the denominators were the sums of the weights for each age class.

\subsection*{14.1.5 The Final Student-Weight: The Full-Sample Weight}

The final weight assigned to a student is the student full-sample weight. This weight is the student's base weight after the application of the various adjustments described above. The student full-sample weight was used to derive all estimates of population and subpopulation characteristics that have been presented in the various NAEP reports, including simple estimates suc': as the proportion of students of a specified type who would respond in a certain way to an exercise and more complex estimates such as mean proficiency levels.

Table 14.1
Major Subgroups for Poststratification
\begin{tabular}{clllll} 
Subgroup & Race & Ethnicity & Region & SDOC* \\
1 & White & Non-Hispanic & NE & 1,2 \\
2 & White & Non-Hispanic & NE & \(3,4,5\) \\
3 & White & Non-Hispanic & SE, Central & 1,2 \\
4 & White & Non-Hispanic & SE, Central & 3 \\
5 & White & Non-Hispanic & SE, Central & 4,5 \\
6 & White & Non-Hispanic & West & 1,2 \\
7 & White & Non-Hispanic & West & \(3,4,5\) \\
8 & Any & Hispanic & NE,SE,Central & Any \\
9 & Any & Hispanic & West & Any \\
10 & Black & Non-Hispanic & NE & Any \\
11 & Black & Non-Hispanic & SE & Any \\
12 & Black & Non-Hispanic & Central, West & Any \\
13 & Other & Non-Hispanic & Any & Any
\end{tabular}
*SDOC (Sample Description of Community) categories: 1--Big City; 2--Fringe of Big City; 3--Medium City; 4--Small Place; and 5--Extreme Rural. The definition of the categories is based on county level 1980 Population Census data.

\subsection*{14.1.6 Other Weights}

In addition to the weights for the assessed students, weights were also derived for excluded students and for the students whose teachers participated in the Teacher Survey.

Excluded students are those students who were unable to complete the assessment because of being non-English speaking, educable mentally retarded, or functionally disabled. Weights for excluded students were computed separately for the students excluded from any of the sessions in the spring assessment (the spiral and Bridge B samples combined) and for the students excluded from the Bridge A assessments (separately for the age 9 and the age 13 samples). As in the case of the weights for the assessed students, the excluded student weights were based on the probability of selection with adjustments for nonresponse and trimming of excessively large weights. Further details on the derivation of the excluded student weights can be found in Burke et al. (1987).

In every spiral-allocated school, a subsample of nor-excluded students selected for spiral assessment was taken. For each subsampled student enrolled in a course in the learning area randomly assigned to the school, the teacher of that course was identified and asked to complete the teacher questionnaire. The responses of the teacher to that questionnaire are tied to the student to enable the estimation of the number or percent of students in the population whose teachers have certain characteristics. These estimates used the teacher/student weights, which are based on the final student weights of those spiral-assessed students who are linked to a completed teacher questionnaire. The teacher/student weight is the nonresponse-adjusted student weight further adjusted for the probability that the student's teacher was selected as well as for nonresponse on the part of the teachers. Additionaily, the teacher/student weights were subjected to the trimming algorithm and poststratification adjustments. Further details on the construction of these weights appears in Burke et al. (1987).

Finally, in addition to these weights, which were used to derive all estimates of population and subpopulation characteristics, other sets of weights, called jackknife replicate weights, were derived to facilitate the estimation of sampling variatility by the jackknife variance estimation technique. These weights and the jackknife estimator are discussed in the next section.

\subsection*{14.2 PROCEDURES USED BY NAEP TO ESTIMATE SAMPLING VARIABILITY}

A major source of uncertainty in the estimation of the value in the population of a variable of interest exists because information about the variable is obtained on only a sample from the population. To reflect this fact, it is important to attach to any statistic (e.g., a mean) an estimate of the sampling variability to be expected for that statistic. Estimates of sampling variability provide information about how much the value of a given
statistic would be likely to change if the statistic had been based on another, equivalent, sample of individuals drawn in exactly the same manner as the achieved sample. Consequently, the estimation of the sampling variability of any statistic must take into account the sample design.

As we have noted before, the NAEP sample is obtained via a stratified multistage probability sampling design that includes provisions for sampling certain subpopulations at higher rates. Additional chara-teristics of the sample include adjustments for both nonresponse and poststratification. The resulting sample has different statistical characteristics from those of a simple random sample. In particular, because of the effects of cluster selection (students within schools, schools within PSUs) and because of effects of nonresponse and poststratification adjustments, observations made on different students cannot be assumed to be independent of each other (and are, in fact, generally positively correlated). Furthermore, to account for the differential probabilities of selecticn (and the various adjustments), each student has an associated sampling weight, which must be used in the computation of any statistic and which is itself subject to sampling variability. Treatment of the data as a simple random sample, with disregard for the special characteristics of the NAEP sample design, will produce underestimates of the true sampling variability.

\subsection*{14.2.1 Estimation of the Sampling Variance of any Statistic by the Jackknife}

This section describes how the sampling variability of statistics based on the NAEP data was estimated. (The estimation of variability due to imperfect measurement, a component of the overall variance of NAEP scalescores, is discussed in section 8.4).

The jackknife procedure has a number of properties that make it particularly suited for the analysis of NAEP data:
1) It approximately estimates the sampling error arising from the complex sample selection and estima'ion procedures used in NAEP.
2) It reflects the component of sampling error introduced by the use of weighting factors that are dependent upon the sample data actually obtained.
3) It can be adapted readily to the estimation of sampling errors for parameters estimated using statistical modeling procedures, as well as for tabulation estimates such as totals and means.
4) Once appropriate weights are derived and attached to each record, jackknifing is straightforward to use for estimating sampling errors. A single set of replicate weights is required for all tabulations and model parameter estimates that may be needed.
\[
2.3
\]

The method of applying the jackknife procedure involves first defining groups of pairs of first-stage sampling units. For the 1986 NAEP spiral assessment, Westat defined 38 groups of such first-stage unit pairs, where pairing was performed so that the populations represented by each member of the pair were similar. In the definition and pairing of groups of firststage units, a distinction was made between the eight largest certainty PSUs, the 26 smaller certainty PSUs, and the 60 noncertainty PSUs. The noncertainty PSUs were formed into 30 pairs. The pairs were formed on the basis of a number of characteristics of the strata from which they were selected, these being the change in population between the 1970 and 1980 population censuses, the proportions of the 1980 population who were Black or Hispanic and proportions of urban and farm populations. PSUs from similar strata were paired so as to minimize the bias of variance estimation (which reflects the between-stratum variance within these pairs, even though this does not contribute to the true sampling error). The 30 pairs were then combined into 15 groups of pairs, two pairs per group. This combining of pairs reduced the task of jackknife variance estimation to a more manageable level, while not adding bias to the variance estimation. The 26 smaller certainty PSUs were paired on the basis of the same criteria used to pair the strata of noncertainty PSUs, plus the level of educational expenditure per student. Each of the eight largest certainty PSUs constituted at least one jackknife pair in itself, each member of the pair consisting of schools within the PSU.

The end result was 38 jackknife pairs of first-stage units. Similar pairings were defined for the bridge assessments. For the Bridge A assessment, there are 33 pairs; there are also 33 pairs for the Bridge \(B\) assessment, but these correspond to somewhat different clusters of firststage units. Furcher information on the construction of jackknife pairs can be found in Burke et al.(1987).

The component of the sampling variability attributable to the sampling of the portion of the population represented by a jackknife pair is estimated as the squared difference between the value of the statistic for the complete sample and a replicate estimate formed by recomputing the statistic on a specially constructed pseudoreplicate. This pseudoreplicate is created from the original dataset by eliminating one member of the jackknife pair and replacing it with a copy of the data from the complementary member of the jackknife pair. For computational purposes, the pseudoreplicate associated with a given pair is the original dataset with a different set of weights, referred to as the student replicate weights. We shall denote these replicate weights as SRWT01 through SRWT38, where SRWTi is formed by making the above adjustment with the i \({ }^{\text {jackknife pair. This set of weight allows }}\) measurement of the total effect of replacing one member of the jackknife pair with a copy of the other, including adjustments for nonresponse and
poststratification. The replicate estimate associated with the \(i\) pseudoreplicate for a given statistic is obtained by recalculating the statistic using the weights SRWTi instead of the student full-sample weights.

The student replicate weight, SRWTi, for the \(i^{\text {th }}\) pseudoreplicate was computed as follows:

Let \(W_{B}\) be the base weight of a student, where the base weight accounts for the probabilities of selection but does not include nonresponse or poststratification adjustments.
\[
\text { Then } \operatorname{SRWTi}=f_{i}^{P S} W_{B i}
\]
where
is the replicate base weight formed by replacing the second member of the pair by the first, JF is a constant multiplier (usually equal to 2 ) designed to maintain certain population totals, \(\mathrm{f}_{\mathrm{i}}{ }^{\mathrm{PS}}\) is the poststratification adjustment factor based on these replicated base weights, and \(f^{N R}\) denotes the nonresponse adjustment factor appropriate for the student. These replicate weights allow the estimation both of the effect of poststratification, and, except for the case of the 8 largest certainty PSUs, the effect of the nonresponse adjustments. The nonresponse adjustments are taken into account implicitly because they were performed within the 76 jackknife pair halves, except in the case of the 8 certainty PSUs, where adjustments were made within PSU, but across the two pair halves.

As a specific example of the use of the student replicate weights, let \(t(y, \underline{w})\) be any statistic that is a function of the sample responses \(y\) and the weights \(w\) and that estimates population value \(T\). For example, \(t\) could be a weighted mean, a weighted percent-correct point or a weighted regression coefficient. The \(t(y, \underline{w})\), computed with the sampling weights (WEIGHT on the data tapes) is the appropriate sample estimate of \(T\). To compute vâr( \(t\) ), the sampling variance for this statistic, proceed in the following manner:
1) For each of the 38 pairs of first-stage units, compute the associated pseudoreplicate for the statistic. For the \(\mathrm{i}^{\mathrm{th}}\) pair, this is
\[
t_{i}=t(y, \underline{S R W T} i)
\]
which is the statistic \(t\) recalculated by using SRWTi instead of the sampling weights.
2) The sample variance of \(t\) is
\[
\hat{\operatorname{Var}(t)}=\sum_{i=1}^{38}\left(t_{i}-t\right)^{2}
\]

This estimation technique is called the multiweight jackknife approach and was used by NAEP to estimate all sampling errors presented in the various reports. A similar procedure was followed to estimate the sampling variability for statistics based on any of the bridge samples. The only difference was in the number of jackknife pairs (and hence replicate weights) used.

A further discussion of the variance estimation procedure used by ETS including a discussion of alternative jackknife estimators that were also considered appears in Johnson (1987a).

\subsection*{14.2.2 The Degrees of Freedom of the Variance Estimate}

Note that the jackknife procedure estimates the sampling variability of the statistic by assessing the effect of change in the sample at the level of clusters of first-stage units. For this reason, the number of degrees of freedom of the variance estimate vâr( \(t\) ) will be at most equal to the number of pairs. The number of degrees of freedom, which is indicative of the variability of the variance estimate, equals the number of independent pieces of information used to generate the variance estimates. In the current case, for the spiral sample, the pieces of information are the 38 squared differences ( \(t_{i}-t\) ), which are approximately independent, each supplying at most one degree of freedom, regardless of how many individuals were sampled within any PSU. (There are fewer squared differences with the bridge samples.) In fact, as shown in Johnson (1988), there can be considerably fewer than 38 degrees of freedom attributable to jackknife variance estimate for the NAEP sample.

\subsection*{14.2.3 Approximating the Sampling Variance Using Design Effects}

The major computational load in computing uncertainty measures for any statistic exists in the computation of the uncertainty due to sampling variability. As noted in section 14.2.1, the jackknife estimate of the variability of a statistic based on one or more observed NAEP variables in the 1986 spiral sample requires computing the statistic 39 times. Because the cost of the full procedure may well prove prohibitive in many studies, an approximate procedure that can produce reasonable approximations at lower costs is provided in this section.

As indicated in section 14.2.1, it is inappropriate to estimate the sampling variability of any statistic based on the NAEP database by using simple random sampling (SRS) formulas. These formulas, which are the ones
used by most standard statistical software such as SPSS and SAS, will produce variance estimates that are generally much smaller than is warranted by the sample design.

It may be possible to account approximately for the effects of the sample design by using an inflation factor, the design effect, developed by Kish (1965) and extended by Kish and Frankel (1974). The design effect for a statistic is the ratio of the actual variance of the statistic (taking the sample design into account) to the conventional variance estimate based on the same number of elements. To avoid sources of bias due to improper representation, this conventional estimate must use the sampling weights. The design effect may be used to adjust error estimates based on simple random sampling assumptions to account approximately for the effect of the design. In practice, this is often accomplished by dividing the total sample size by the design effect and using this effective sample size in the computation of errors. Note that the value of the design effect depends on the type of statistic computed and the variables considered in a particular analysis as well as the clustering effects occurring among sampled elements.

Further discussions on the derivation and characteristics of design effects can be found in Kish (1965), Kish and Frankel (1974), and in Johnson (1987b).
A.: an example of the distribution of design effects to be expected from the 1985 NAEP data, we consider the design effect for the key statistic, \(P\), the est mated proportion of a specified subgroup of the population who would correstly respond to a given assessment exercise. This estimate, which is a weighted mean of the responses of individuals in the subgroup to the exercise (where an individual's response is either 0 or l), has a design effect of the form
\[
\operatorname{deff}(P)=\operatorname{Var}_{J K}(P) /(P(1-P) / N)
\]

In the above, \(N\) is the total number of individuals in the subgroup responding to the exercise, \(\operatorname{Var}_{J K}(P)\) is the jackknife variance of \(P\), and \(P(1-P) / N\) is the conventional variance estimate of \(P\). (The estimate \(P(1-P) / N\) has the same form as the simple random sampling estimator of the variance of \(P\). In fact, the sample weights have been taken into account via the weighted estimation of P.)

The distributions of design effects for proportions correct by grade and by demographic subgroup within grade across all cognitive reading items presented in the 1986 spiral assessment are indicated in Tables 14.2 through 14.4.

Table 14.2 addressts the distributions of the design effects for the 63 multiple-choice cognitive reading exercises presericed in 1986 to grade 3 students. These distributions are shown for the population as a whole ("total") as well as for a variety of demographic subgroups: sex; race/ethnicity (White, Black, Hispanic, other); age (less than modal age, modal age, greater than modal age); region (Northeast, Southeast, Central, West); Size and Type of Community (Rural, Low Metropolitan, High

Table 14.2
Distribution of Design Effects by Demographic Subgroup for the Cognitive Reading Items Given in 1986

Grade 3*
\begin{tabular}{llllll} 
Group & LoQ & Median & HiQ & Max & Mean \\
TOTAL & & & & & 1.75 \\
MALE & 1.40 & 1.73 & 2.06 & 3.15 & 1.73 \\
FEMALE & 1.18 & 1.63 & 2.01 & 2.94 & 1.49 \\
WHITE & 1.24 & 1.37 & 1.72 & 2.69 & 1.59 \\
BLACK & 1.10 & 1.48 & 1.91 & 3.01 & 1.47 \\
HISPANIC & 1.06 & 1.38 & 1.70 & 3.22 & 1.37 \\
OTHER & 1.76 & 1.38 & 1.59 & 2.32 & 2.56 \\
< AGE & 1.16 & 2.04 & 3.23 & 8.57 & 1.47 \\
= AGE & 1.33 & 1.46 & 1.71 & 2.63 & 1.73 \\
PAGE & 1.28 & 1.70 & 1.94 & 3.08 & 1.62 \\
NE & 0.94 & 1.59 & 1.91 & 2.95 & 1.66 \\
SE & 0.84 & 1.34 & 2.00 & 4.79 & 1.47 \\
CENTRAL & 1.05 & 1.36 & 1.96 & 3.36 & 1.53 \\
WEST & 1.19 & 1.34 & 2.00 & 4.70 & 2.16 \\
RURAL & 1.08 & 2.12 & 2.81 & 5.75 & 1.69 \\
LOW MET & 1.04 & 1.63 & 1.94 & 5.02 & 1.45 \\
HI MET & 1.10 & 1.40 & 1.77 & 3.22 & 1.42 \\
BIG CITY & 1.15 & 1.35 & 1.64 & 2.91 & 1.65 \\
FRINGE & 1.02 & 1.52 & 2.07 & 4.04 & 1.42 \\
MED CITY & 1.12 & 1.37 & 1.54 & 4.09 & 1.77 \\
SMALL PL & 1.16 & 1.69 & 2.37 & 4.18 & 1.70 \\
< H.S & 1.09 & 1.51 & 2.14 & 3.49 & 1.36 \\
GRAD HS & 1.05 & 1.36 & 1.59 & 2.30 & 1.45 \\
POST HS & 1.02 & 1.02 & 1.23 & 1.73 & 2.91
\end{tabular}
* Distributions based on 63 multiple-choice items

Table 14.3
Distribution of Design Effects by Demographic Subgroup
for the Cognitive Reading Items Given in 1986
Grade 7*
\begin{tabular}{lrrrrr} 
Group & LoQ & Median & HiQ & Max & Mean \\
TOTAL & & & & & \\
MALE & 1.22 & 1.51 & 1.80 & 3.42 & 1.56 \\
FEMALE & 1.21 & 1.49 & 1.73 & 3.39 & 1.58 \\
WHITE & 1.06 & 1.32 & 1.48 & 2.33 & 1.31 \\
BLACK & 1.12 & 1.40 & 1.72 & 3.54 & 1.46 \\
HISPANIC & 1.17 & 1.47 & 1.64 & 2.68 & 1.43 \\
OTHER & 1.19 & 1.57 & 1.92 & 2.96 & 1.60 \\
< AGE & 1.21 & 1.75 & 2.28 & 11.15 & 2.01 \\
C AGE & 1.07 & 1.27 & 1.50 & 2.32 & 1.31 \\
> AGE & 1.14 & 1.36 & 1.31 & 3.25 & 1.47 \\
NE & 1.19 & 1.34 & 1.56 & 2.94 & 1.40 \\
SE & 0.84 & 1.22 & 1.73 & 2.87 & 1.33 \\
CENTRAL & 0.92 & 1.21 & 1.58 & 2.67 & 1.26 \\
WEST & 0.80 & 1.52 & 2.20 & 5.26 & 1.70 \\
RURAL & 1.10 & 1.44 & 2.30 & 5.80 & 1.74 \\
LOW MET & 1.07 & 1.62 & 2.23 & 3.81 & 1.67 \\
HI MET & 1.19 & 1.54 & 1.99 & 4.54 & 1.65 \\
BIG GITY & 1.02 & 1.30 & 1.60 & 2.45 & 1.34 \\
FRINGE & 1.19 & 1.48 & 1.84 & 2.66 & 1.51 \\
MED CITY & 1.17 & 1.04 & 1.40 & 1.78 & 3.93 \\
SMALL PL & 0.94 & 1.34 & 1.83 & 3.95 & 1.56 \\
< H.S. & 1.20 & 1.14 & 1.77 & 3.77 & 1.37 \\
GRAD HS & 1.22 & 1.46 & 1.86 & 3.12 & 1.55 \\
POST HS & 0.94 & 1.45 & 1.84 & 3.42 & 1.53 \\
GRAD HS & 1.12 & 1.18 & 1.48 & 2.37 & 1.27 \\
UNKNOWN & 1.14 & 1.33 & 1.59 & 2.62 & 1.35 \\
\end{tabular}
* Distribution based on 65 multiple-choice items
-289-270

Table 14.4
Distribution of Design Effects by Demographic Subgroup for the Cognitive Reading Items Given in 1986

Grade 11*
\begin{tabular}{lrrlll} 
Group & LoQ & Median & HiQ & Max & Mean \\
TOTAL & & & & & \\
MALE & 1.35 & 1.68 & 2.07 & 3.82 & 1.78 \\
FEMALE & 1.22 & 1.59 & 1.99 & 3.50 & 1.71 \\
WHITE & 1.09 & 1.31 & 1.70 & 3.05 & 1.44 \\
BLACK & 1.28 & 1.57 & 1.97 & 4.32 & 1.76 \\
HISPANIC & 1.02 & 1.23 & 1.62 & 2.77 & 1.37 \\
OTHER & 1.17 & 1.35 & 1.58 & 2.18 & 1.37 \\
< AGE & 0.99 & 1.37 & 1.91 & 3.20 & 1.47 \\
- AGE & 1.06 & 1.27 & 1.54 & 2.85 & 1.30 \\
PAGE & 1.18 & 1.62 & 1.98 & 3.41 & 1.67 \\
NE & 1.14 & 1.33 & 1.61 & 2.49 & 1.39 \\
SE & 1.04 & 1.55 & 2.17 & 5.99 & 1.83 \\
CENTRAL & 0.76 & 1.36 & 1.83 & 3.33 & 1.40 \\
WEST & 1.07 & 1.71 & 2.55 & 6.13 & 2.05 \\
RURAL & 1.05 & 1.29 & 2.12 & 5.47 & 1.67 \\
LOW MET & 0.85 & 1.48 & 1.93 & 4.62 & 1.58 \\
HI MET & 1.14 & 1.46 & 1.90 & 4.94 & 1.65 \\
BIG CITY & 1.03 & 1.26 & 1.76 & 2.66 & 1.38 \\
FRINGE & 0.97 & 1.21 & 1.74 & 4.45 & 1.45 \\
MED CITY & 0.83 & 1.16 & 1.29 & 1.69 & 3.28 \\
SMALL PL & 1.13 & 1.50 & 2.18 & 4.17 & 1.41 \\
< H.S & 1.17 & 1.57 & 1.92 & 3.85 & 1.74 \\
GRAD HS & 1.12 & 1.33 & 1.60 & 3.09 & 1.61 \\
POST HS & 1.02 & 1.35 & 1.60 & 2.86 & 1.44 \\
GRAD COL & 1.24 & 1.26 & 1.64 & 2.66 & 1.41 \\
UNKNOWN & 1.03 & 1.58 & 1.97 & 3.77 & 1.69 \\
& 1.17 & 1.39 & 2.07 & 1.23
\end{tabular}
* Distributions based on 65 multiple-choice items

Metropolitan, Big City, Urban Fringe, Medium City, Small Place); and parental education (At Most High School, Graduated High School, Post-High School, Graduated College, Unknown). For each of these groupings of grade 3 students, Table 14.2 provides the lower quartile (LoQ), median, upper quartile (HiQ) and maximum design effect as well as the mean design effect.

Equivalent information on the distributions of design effects for the 65 multiple-choice cognitive reading exercises presented to grade 7 students appears as Table 14.3. The 65 multiple-choice cognitive reading items presented to grade 11 students are addressed by Table 14.4.

The particular demographic variables shown (sex, race/ethnicity, age, region, parental education, and size and type of community) were selected because (1) they are major variables in NAEP reports and (2) they reflect different types of divisions of the population that might have different levels of sampling variability.

The tables and figures show that the design effects are predominantly larger than 1 , indicating that standard variance estimation formulas will be generally too small, sometimes markedly so. Although the distributions of design effects appear somewhat different for certain subgroups of the population, they are, perhaps, similar enough (at least within a grade) to select an overall composite value that is adequate for most purposes. In choosing a composite design effect, some consideration must be made about the relative consequences of overestimating the variance as opposed to underestimating the variance. For example, adopting the position that an overestimate of the variance is as severe an error as an underestimate leads to using a composite that is near to the center of the distributions of the design effects. Possible composites of this type are the mean and median desjign effects. In the current data, the mean design effects are 1.8, 1.6 and 1.8 for the total populations in graues 3,7 and 11 , respectively. These are close to, but greater than, the median design effects: \(1.7,1.5\) and 1.7.

Alternatively, one can adopt the position that it is a graver error to underestimate the variability of a statistic than to overestimate it. For example, Johnson and King (1987) examine estimation of variances using design effects (among other techniques) under assumption that the consequences of an underestimate are three times as severe as those of an overestimate of the same magnitude. Assuming that the distribution of design effects is roughly independent of the jackknife variance, so that the size of a design effect does not depend on the size of the variance, and adopting a loss function that is a weighted sum of absolute values of the deviations of predicted from actual with underestimates receiving three times the weight of overestimates, produces the upper quartile of the design effects as the composite value. The values of this composite, for the total populations in grades 3, 7, and 11, respectively, are 2.1, 1.8, and 2.1.

\section*{PART III}

273
ERIC

\section*{CHAPTER 15}

Statistical Summary of the 1986 NAEP and Estimates of the Proficiency of American Students

\title{
STATISTICAL SUMMARY OF THE 1986 NAEP SAMPLE AND ESTIMATES OF THE PROFICIENCIES OF AMERICAN STUDENTS
}

Albert E. Beaton, David S. Freund, Bruce A. Kaplan, and Michael A. Narcowich

Educational Testing Service

This chapter presents a statistical summary of the NAEP 1986 sample and some selected results from the assessment.

This technical report so far has dealt primarily with the design of the 1986 National Assessment and the processes and procedures that were used in collecting and analyzing the data. Chapter 2 provides an overview of the 1986 NAEP design and summarizes how the students were selected, how they were assessed, and how their responses moved from assessment sessions to a carefully constructed database, ready for analysis. Chapter 7 summarizes the methods of data analysis, including scaling and parameter estimation. This chapter will assume a general familiarity with the structure of NAEP as summarized in those chapters.

In this chapter, three of the many types of NAEP results are presented:
- results of the instrument development process, including the sizes of the items pools and numbers of booklets;
- results of the sampling process, including the numbers of students in each sample by selected subgroups; and
- results of the parameter estimation process, including estimates of the proficiencies of several populations of students in reading, mathematics, and science.

This is a technical report and is not intended to be interpretive. Estimates are presented, but no attempt is made to explain or evaluate the stidents' performance. Interpretiva results are presented in NAEP reports such as Who Reads Best? (Applebee, Langer, \& Mullis, 1988) and The Mathematics Report Card: Are We Measuring Up? (Dossey, Mullis, Lindquist, \& Chambers, 1988). We will leave it to experts in the educational process to hypothesize why the results occurred. The public-use data tapes and user guide (Rogers, Kline, Norris, Johnson, Mislevy, Zwick, Barone, \& Kaplan, 1988) are available for those who wish to estimate other parameters of student performance from the NAEP data or to search for possible explanations for the population characteristics that are reported here.

Clearly, neither this report, nor any report, could present all of the population estimates that are made possible by the NAEP database. The
analysis of the 1986 NAEP data has resulted in the production of many thousands of tables containing estimates of the proficiency of students, and various subgroups of students, in American schools. We have selected a few basic tables for presentation here. The technical details of the estimation process that underlies these tables are covered in the previous parts of this report and not repeated here. A detailed discussion of how to read and use these tables is given by Zwick (1987b).

\subsection*{15.1 Measurement Instruments}

A total of 56 assessment booklets and questionnaires was printed for age class 9, 72 for age class 13 , and 97 for age class 17 . These booklets are enumerated by age level and by type of measurement instrument in Table 15.1. Some of the instruments were used at more than one age/grade level.

The item pool used to develop these booklets is described in Table 15.2. In general, t' are are two types of items, cognitive and noncognitive. The cognitive items are developed to measure proficiency in particular subject areas, such as reading and mathematics. Cognitive items may be open-ended or multiple-choice. Open-ended responses in reading and science were categorized according to guidelines and then the acceptable categories were combined for the purpose of scaling. The multiple-choice items were scored right or wrong. The noncognitive items are usually questions about the student's or teacher's backgrounds and attirudes but may also probe other areas such as school policies or teaching methods. Noncognitive items are not scored right or wrong. Many items were used at several age levels, and thus the total number of items in an item pool is not the sum of the item pools used for the three age classes.

All of the items in the subject area pools were used for the main NAEP assessment, but not all could be used for the Bridge A and Bridge \(B\) assessments. Table 15.3 shows the number cognitive items in each subject area that were used in the separate samples.

The pools of items were divided into subject area blocks. These blocks contain some cognitive and some noncognitive items from a single subject area. All subject area blocks within an age class were designed to take the same amount of time for a student to complete. The blocks for age class 9 were expected to take 13 minutes and the blocks for age classes 13 and 17 were expected to take 16 minutes for a student to complete.

The subject area blocks were then assigned to student assessment booklets. Each booklet for the main NAEP, Bridge A, Bridge B, and Language Minority Probe student samples contained four sections, including a common block and three variable subject area blocks. The common block contained only noncognitive items. The three variable blocks in a booklet might be all from a single subject area (e.g., reading) or from two or three different subject areas.

The other questionnaires (excluded student, teacher, school, and computer coordinator) contained only noncognitive questions. For the
\[
\text { -298- } \quad 25
\]
questionnaires, the number of items in the noncognitive pools are the same as the number of items in the questionnaires.

More information about the instruments that were developed is contained in Chapters 2 and 4 and in Appendix A. Tables A.l though A. 3 show how the variable blocks were assigned to booklets for the various age classes. Tables A. 4 through A. 6 depict the blocks with which each variable block was paired. Note that each block was paired with each other block within its subject area, but only with some blocks in the other subject areas. Tables A. 7 through A. 9 show how many cognitive and noncognitive items were in each block, as well as the number of open-ended items. Tables A. 10 through A. 12 show the booklets in which each subject area block was placed. Tables A. 13 through A. 25 list, by subject area, each cognitive and noncognitive item and the block in which it occurred.

\subsection*{15.2 Sample Characteristics}

In this section, the characteristics of the final NAEP sample will be described. The process by which the sample was selected is discussed in Chapter 3.

In the 1986 assessment, NAEP contacted 2,095 schools, of which 1,633 contributed data to the assessment. The disposition of these schools is shown in Table l5.4. Some of the schools were unwilling to cooperate and others were believed to be eligible from the sampling frame, but were not. The cooperation rate is calculated as the sum of cooperating school and the schools which were found to have no eligible students divided by the same sum plus the schools that refused or were from districts that refused to cooperate.

Table 15.4 also shows the number of schools in several categories: region of the country (northeast, southeast, central, west), school governance (public, private, Catholic, Bureau of Indian Affairs, Depactment of Defense), size and type of community, degree of urbanicity, grade span of school, number of teachers, and number of students.

The number of respondents to the teacher questionnaire is summarized in Table 15.5. The first column in this table includes the number of teachers who responded by age class and subject area. The second column contains the number of teachers for whom at least one student is available in the sample (see Chapter 4 for details of the administration of the teacher questionnaire). The final column contains the number of students whose teachers responded to the questionnaire.

NAEP is administered in units called assessment sessions. If the number of students attending an assessment session is less than a predetermined number (see Caldwell \& Slobasky, 1988), a makeup session is held to which the missing students are assigned and then assessed. Table 15.6 shows the number of regular and makeup sessions in 1986 NAEP by age class for the main NAEP and two bridge samples.

Altogether, 119,137 students were involved in 1986 NAEP, including excluded students. The breakdown by age class and by sample is shown in Table 15.7.

Tables 15.8 through 15.10 display the distribution of the students in several basic categories for the three age classes: sex, racial/ethnic grouping, region of the country, parental education, and size and type of community. These tables have four columns:
- eligible by age, which means that the students were in an apsropriate age group;
- eligible by grade, which means that the students were in an appropriate grade;
- eligible by age and by grade, which means that the students were of both an appropriate age and appropriate grade; and
- eligible by age or by grade, which is the total number of students whose data were collected.

Table 15.11 and 15.12 contain the distribution of students in the same categories by age class for the two bridge samples. Bridge sample students were sampled by age only.

Tables 15.13 through 15.15 contain the distribution of excluded students by age class. The first columns categorizes the excluded students in the Bridge A samples, which were age-only samples. The remaining four columns categorize the excluded students in both the main NAEP and the Bridge \(B\) samples. These student numbers are reported separately by age eligibility, grade eligibility, age-and-grade eligibility, and age-or-grade eligibility.

\subsection*{15.3 Population Estimates}

The 1986 NAEP samples were designed for estimating the size and certain attributes of a number of populations of students. The estimation procedures use sampling weights, developed by Westat, Inc., that are used in conjunction with the members of the sample (see Chapter 3). In this chapter, all estimates of population parameters use these sampling weights.

Table 15.16 shows the sizes of the various samples and the sums of their sampling weights by grade/age. The sums of the weights for the main NAEP samples, which are by far the largest, estimate the numbers of students who are in each grade/age and who would be assessable. The sum of the weights of the Bridge A and Bridge B samples estimate the number of assessable students in the various age-eligible populations. The sums of the weights of the excluded students estimate the rumbers of students in each age or grade/age combination who, in their schools' judgment, would not be assessabir. The
excluded students from the main NAEP and Bridge B samples are
indistinguishable, thus this group of excluded students can be combined with the either the main NAEP or Bridge B samples for total population estimation. Because of changes in age definitions and times of assessment, the Bridge A samples represent different populations.

In most cases, the number of students in a grade/age combination is not of interest; a researcher will be interested in estimating the number of students at either a grade or an age level. For the samples that contain both grade- and age-eligible students, an estimate of the number of students at an age level can be made by summing the weights of only the age-eligible students and adding the corresponding sample of age-eligible excluded students. An estimatc of the number of students in a grade sample can be made by summing the weights of grade-eligible students plus the weights of grade-eligible students from the appropriate excluded student sample.

From the main NAEP samples, the next tables estimate how many students are age-eligible and grade-eligible by age class. Tables 15.17 through 15.19 show how many students at a particular grade level are at, in, or above the modal age for that grade, and how many at a particular age level are at, in, or above the modal grade for that age. Along with the counts from these samples, the sum of the weights (Weighted N) for each category is presented, and these sums are estimates of the numbers of students in these categories in the population. The standard errors of these estimates and coefficients of variation are also given.

Tables 15.20 through 15.22 contain the same type of information for the several bridge booklets, by age level. Since the bridge sampies do not contain students who were not age-eligible, the sample is separated by below, at, or above modal grade. Note that booklets 1, 2, and 3 are from Bridge A samples and do not represent precisely the same populations as booklets 4 and 5, which were used in Bridge B samples.

The next tables show the sizes of the estimated populations of assessable students for various NAEP reporting categories. These categories include sex, racial/ethnic grouping, region of the country, parents' education, and size and type of community. The estimated subpopulation sizes for tha main NAEP samples are shown in Tables 15.23 through 15.25 , separately by age eligibility, grade eligibility, and grade/age eligibility. Tables \(15.26,15.27\), and 15.28 show the same information for the bridge samples, by booklet assignment.

Tables 15.29 to 15.31 show the estimation total population of excluded students by demographic suhgroup. The first column is from Bridge A, which sampled age-eligible students only. The next three columns are derived from main NAEP and Bridge B samples, and so separate age eligibles and grade eligibles.

The students in the main NAEP samples received only three assessment blocks, thus they could be assessed in one, two, or at most three of the assessment areas, but not all. Students were assigned proficiency values in a subject area only if they received at least one assessment block in that
\[
-301-255
\]
area, and thus the sample sizes of students who have proficiency values vary from one subject area to another. Tables 15.32 through Table 15.40 show the number of students with proficiency values in each subject are by age and grade combinations. Tables 15.41 and 15.42 show history and literature sample sizes for grade 11/age 17 (the only age class assessed in these subject areas).

Tables 15.43 to 15.51 contain population estimates of student proficiencies by grade and by subpopulations. The subpopulations are: the sexes, racial/ethnic groupings, ages, regions of the country, size and type of community, parental education, and type of school. For grade 11 students, the results are also presented by the type of high school program. The information about proficiency includes the mean and standard deviation of each subpopulation as well as the value of the 10 th , 25 th , 50 th (median), 75 th, and 90 th percentiles. Results are shown separately for reading, mathematics, and science. Only overall proficiency is shown for mathematics and science, although subscale estimates were computed for individuals. The standard errors of the estimates are included in parentheses.

Tables 15.52 through 15.114 contain results for more finely defined subpopulations. The major reporting variables (sex, race/ethnicity, parental education) are cross-classified with each other and with other reporting variables (region, articles in the home, and television watching) to define the subpopulations. For example, Table 15.58 cross-classifies sex, racial/ethnic grouping, and parental education with the hours that 3rd graders spend watching television each day. Information included about these subpopulations is the actual sample size, the estimated population size (and its relative variance), the proportion of students in each subpopulation (and its standaid error), and the average proficiency of the students (and its standard error).

Table 15.1
Measurement Instruments Developed for 1986 NAEP
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{------Age Class-----} \\
\hline & \(\underline{9}\) & \(\underline{13}\) & 17 \\
\hline MAIN NAEP BOOKLETS & 46 & 62 & 90 \\
\hline BRIDGE A BOOKLETS & 3 & 3 & 0 \\
\hline BRIDGE B BOOKLETS & 2 & 2 & 2 \\
\hline LANGUAGE MINORITY PROBE BOOKLETS & 1 & 1 & 1 \\
\hline EXCLUDED STUDENT QUESTIONNAIRES & 1 & 1 & 1 \\
\hline TEACHER QUESTIONNAIRES & 1 & 1 & 1 \\
\hline SCHOOL CHARACTERISTICS QUESTIONNAIRES & 1 & 1 & 1 \\
\hline COMPUTER COORDINATOR QUESTIONNAIRES & 1 & 1 & 1 \\
\hline - total - & 56 & 72 & 97 \\
\hline
\end{tabular}

Table 15.2
Number of Items Administered
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{--.--Age Class-.-.} \\
\hline COMMON BACKGROUND & 27 & 28 & 47 & 57 \\
\hline \multicolumn{5}{|l|}{READING} \\
\hline BACKGROUND AND ATTITUDE & 76 & 90 & 90 & 113 \\
\hline COGNITIVE & 69 & 73 & 73 & 119 \\
\hline \multicolumn{5}{|l|}{MATHEMATICS} \\
\hline BACKGROUND AND ATTITUDE & 39 & 119 & 148 & 195 \\
\hline COGNITIVE & 144 & 311 & 368 & 509 \\
\hline \multicolumn{5}{|l|}{SCIENCE} \\
\hline BACKGROUND AND ATTITUDE & 40 & 85 & 122 & 152 \\
\hline COGNITIVE & 121 & 191 & 238 & 436 \\
\hline \multicolumn{5}{|l|}{COMPUTER COMPETENCE} \\
\hline BACKGROUND AND ATTITUDE & 49 & 62 & 86 & 114 \\
\hline COGNITIVE & 59 & 136 & 126 & 212 \\
\hline \multicolumn{5}{|l|}{U.S. HISTORY} \\
\hline BACKGROUND AND ATTITUDE & 0 & 0 & 25 & 25 \\
\hline COGNITIVE & 0 & 0 & 141 & 141 \\
\hline \multicolumn{5}{|l|}{LITERATURE} \\
\hline BACKGROUND AND ATTITUDE & 0 & 0 & 43 & 43 \\
\hline COGNITIVE & 0 & 0 & 121 & 121 \\
\hline EXCLUDED STUDENTS & 68 & 68 & 68 & 68 \\
\hline \multicolumn{5}{|l|}{TEACHER} \\
\hline GENERAL & 154 & 150 & 150 & 173 \\
\hline ENGLISH & 0 & 13 & 49 & 49 \\
\hline MATHEMATICS & 0 & 60 & 31 & 71 \\
\hline SCIENCE & 0 & 85 & 28 & 96 \\
\hline U.S. HISTORY & 0 & 0 & 27 & 27 \\
\hline SCHOOL CHARACTERISTICS & 162 & 166 & 190 & 262 \\
\hline COMPUTER COORDINATOR & 166 & 166 & 166 & 166 \\
\hline -- TOTAL -- & 1174 & 1803 & 2337 & 3149 \\
\hline
\end{tabular}

Table 15.3
Number of Cognitive Items by Type of Administration
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{..----Age Class-..--} \\
\hline & \(\underline{9}\) & 13 & 17 \\
\hline \multicolumn{4}{|l|}{READING} \\
\hline MAIN NAEP & 69 & 73 & 73 \\
\hline BRIDGE A & 31 & 35 & 0 \\
\hline BRIDGE B & 0 & 0 & 0 \\
\hline \multicolumn{4}{|l|}{MATHEMATICS} \\
\hline MAIN NAEP & 144 & 311 & 368 \\
\hline BRIDGE A & 68 & 98 & 0 \\
\hline BRIDGE B & 68 & 98 & 94 \\
\hline \multicolumn{4}{|l|}{SCIENCE} \\
\hline MAIN NAEP & 121 & 191 & 238 \\
\hline BRIDGE A & 63 & 83 & 0 \\
\hline BRIDGE B & 63 & 83 & 82 \\
\hline \multicolumn{4}{|l|}{COMPUTER COMPETENCE} \\
\hline MAIN NAEP & 59 & 136 & 126 \\
\hline BRIDGE A & 0 & 0 & 0 \\
\hline BRIDGE B & 0 & 0 & 0 \\
\hline \multicolumn{4}{|l|}{U.S. HISTORY} \\
\hline MAIN NAEP & 0 & 0 & 141 \\
\hline BRIDGE A & 0 & 0 & 0 \\
\hline BRIDGE B & 0 & 0 & 0 \\
\hline \multicolumn{4}{|l|}{LIterature} \\
\hline MAIN NAEP & 0 & 0 & 121 \\
\hline BRIDGE A & 0 & 0 & 0 \\
\hline BRIDGE B & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 15.4
Characteristics of Schools in Main NAEP (Spiral) Sample
\begin{tabular}{|c|c|c|c|c|}
\hline & 9 & \[
\begin{aligned}
& \text { Class } \\
& 13
\end{aligned}
\] & 17 & Total \\
\hline TOTAL ORIGINAL SAMPLE & 697 & 732 & 554 & 1983 \\
\hline COOPERATING & 594 & 539 & 409 & 1542 \\
\hline OUT-OF RANGE OR CLOSED & 17 & 19 & 33 & 69 \\
\hline NO ELIfIBLES ENROLLED & 9 & 89 & 22 & 120 \\
\hline DISTRICT REFUSED & 46 & 48 & 45 & 139 \\
\hline SCHOOL REFUSED & 31 & 37 & 45 & 113 \\
\hline COOPERATION RATE & 88.7 & 88.1 & 82.7 & 86.8 \\
\hline REPIACEMENT FOR REFUSALS & 41 & 34 & 37 & 112 \\
\hline COOPERATING & 38 & 29 & 24 & 91 \\
\hline TOTAL COOPERATING SCHOOLS & 632 & 568 & 433 & 1633 \\
\hline TOTAL WITH COMPLETED QUESTIONNAIRES & 583 & 521 & 392 & 1496 \\
\hline \multicolumn{5}{|l|}{REGION} \\
\hline NORTHEAST & 142 & 121 & 79 & 342 \\
\hline SOUTHEAST & 139 & 130 & 101 & 370 \\
\hline CENTRAL & 165 & 152 & 121 & 438 \\
\hline WEST & 186 & 165 & 132 & 483 \\
\hline \multicolumn{5}{|l|}{SCHOOL TYPE} \\
\hline PUBLIC & 519 & 461 & 389 & 1369 \\
\hline PRIVATE & 46 & 36 & 23 & 105 \\
\hline CATHOLIC & 64 & 68 & 21 & 153 \\
\hline BIA & 2 & 3 & 0 & 5 \\
\hline DEPARTMENT OF DEFENSE & 1 & 0 & 0 & 1 \\
\hline \multicolumn{5}{|l|}{SIZE AND TYPE OF COMMUNITY} \\
\hline EXTREME RURAL & 60 & 57 & 49 & 166 \\
\hline LOW METROPOLITAN & 61 & 54 & 42 & 157 \\
\hline HIGY METROPOLITAN & 67 & 59 & 42 & 168 \\
\hline MAIN BIG CITY & 64 & 74 & 42 & 180 \\
\hline URBAN FRINGE & 76 & 58 & 47 & 181 \\
\hline MEDIUM CITY & 111 & 97 & 70 & 278 \\
\hline SMALL PLACE & 193 & 169 & 141 & 503 \\
\hline \multicolumn{5}{|l|}{URBANICITY} \\
\hline URBAN & 184 & 171 & 122 & 477 \\
\hline SUBURBAN & 252 & 222 & 171 & 645 \\
\hline RURAL & 196 & 175 & 140 & 511 \\
\hline
\end{tabular}

Table 15.4

\section*{(continued)}
GRADE SPAN
KINDERGARTEN TO GRADE 12
KINDERGARTEN TO GRADE 6
KINDERGARTEN TO GRADE 8
GRADE 6 OR 7 TO GRADE 8
GRADE 7 TO GRADE 9
GRADE 7 TO GRADE 12
GRADE 9 TO GRADE 12
GRADE 10 TO GRADE 12
KINDERGARTEN TO GRADE 3
NUMBER OF TEACHERS
\(1-4\)
\(5-9\)
\(10-19\)
\(20-49\)
\(50-74\)
\(75-99\)
\(100+\)

NUMBER OF STUDENTS
\begin{tabular}{lrrrr}
\(1-99\) & 20 & 14 & 20 & 54 \\
\(100-299\) & 206 & 143 & 67 & 416 \\
\(300-499\) & 236 & 144 & 50 & 430 \\
\(500-749\) & 126 & 139 & 50 & 315 \\
\(750-999\) & 28 & 67 & 49 & 144 \\
\(1000-1499\) & 12 & 46 & 86 & 144 \\
\(1500+\) & 3 & 15 & 111 & 129 \\
NO INFORMATION & 1 & 0 & 0 & 1
\end{tabular}

\section*{Table 15.5}

Number of Responses to Teacher Questionnaire

\author{
Teachers with Students with \\ Teachers Students in Sample Teachers in Sample
}
\begin{tabular}{lccc} 
Grade 3/Age 9 & & & \\
ENGLISH & 774 & 749 & 11222 \\
& & & \\
& & & \\
Grade 7/Age 13 & & & \\
ENGLISH & 270 & 250 & 6406 \\
MATHEMATICS & 263 & 239 & 6746 \\
SCIENCE & 251 & &
\end{tabular}
\begin{tabular}{llll} 
Grade 11/Age 17 & & & \\
& & & 5905 \\
ENGLISH & 315 & 307 & 4266 \\
MATHEMATICS & 362 & 346 & 4365 \\
SCIENCE & 307 & 299 & 5401
\end{tabular}

Table 15.6
Number of Assessmert Sessions by Type of Administration
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\underline{9}
\] & & 17 & Total \\
\hline \multicolumn{5}{|l|}{MAIN NAEP (Spiral)} \\
\hline REGULAR & 1006 & 1008 & 1243 & 3257 \\
\hline MAKE-UP & 5 & 10 & 80 & 95 \\
\hline \multicolumn{5}{|l|}{BRIDGE A} \\
\hline REGULAR & 484 & 291 & -- & 775 \\
\hline MAKE-UP & 5 & 12 & -- & 17 \\
\hline \multicolumn{5}{|l|}{BRTDGE B} \\
\hline REGULAR & 222 & 223 & 199 & 644 \\
\hline MAKE-UP & 1 & 0 & 29 & 30 \\
\hline TOTAL & 1723 & 1544 & 1551 & 4818 \\
\hline
\end{tabular}

Table 15.7
Number of Students Assessed and Excluded by Type of Administration
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & ---- & Class & & \\
\hline & \(\underline{9}\) & 13 & 17 & Total \\
\hline \multicolumn{5}{|l|}{ASSESSED} \\
\hline MAIN NAEP & 21287 & 27668 & 39753 & 88708 \\
\hline BRIDGE A & 6932 & 6200 & -- & 13132 \\
\hline BRIDGE B & 4042 & 4178 & 3868 & 12088 \\
\hline \multicolumn{5}{|l|}{EXCLUDED} \\
\hline MAIN AND BRIDGE B & 1133 & 1382 & 1965 & 4480 \\
\hline ERIDGE A & 343 & 386 & -- & 729 \\
\hline TOTAL & 33737 & 39814 & 45586 & 119137 \\
\hline
\end{tabular}

Table 15.8
Number of Students in the Main NAEP (Spiral) Sample
Grade 3/Age 9
\begin{tabular}{|c|c|c|c|c|}
\hline & Age & Grade & Eligible by Age \& Grade & Age or Grade \\
\hline TOTAL & 1663. & 18033 & 13378 & 21287 \\
\hline \multicolumn{5}{|l|}{SEX:} \\
\hline MALE & 8422 & 9124 & 6543 & 11003 \\
\hline FEMALE & 8210 & 8909 & 6835 & 10284 \\
\hline \multicolumn{5}{|l|}{RACE:} \\
\hline WHITE & 10323 & 10896 & 8585 & 12634 \\
\hline BLACK & 2966 & 3356 & 2287 & 4035 \\
\hline HISPANIC & 2696 & 3123 & 2033 & 3786 \\
\hline OTHER & 647 & 658 & 473 & 832 \\
\hline \multicolumn{5}{|l|}{REGION:} \\
\hline NORTHEAST & 3201 & 3396 & 2544 & 4053 \\
\hline SOUTHEAST & 4115 & 4647 & 3347 & 5415 \\
\hline CENTRAL & 3935 & 4152 & 3212 & 4875 \\
\hline WEST & 5672 & 6103 & 4462 & 7313 \\
\hline \multicolumn{5}{|l|}{PARENTS ED:} \\
\hline LESS THAN HIGH SCHOOL & 712 & 809 & 522 & 999 \\
\hline HIGH SCHOOL & 2131 & 2292 & 1670 & 2753 \\
\hline GREATER THAN HIGH SCHOOL & 876 & 9 j 1 & 707 & 1120 \\
\hline GRadUATED COLLEGE & 5124 & 5565 & 4316 & 6373 \\
\hline UNKNOWN & 7491 & 8143 & 5972 & 9662 \\
\hline \multicolumn{5}{|l|}{SIZE AND TYPE OF COMMUNITY:} \\
\hline RURAL & 1072 & 1137 & 866 & 1343 \\
\hline DISADVANTAGED URBAN & 2093 & 2343 & 1545 & 2891 \\
\hline ADVANTAGED URBAN & 2008 & 2138 & 1666 & 2480 \\
\hline BIG CITY & 2181 & 2363 & 1748 & 2796 \\
\hline FRINGE & 1888 & 1994 & 1520 & 2362 \\
\hline MEDIUM & 3106 & 3397 & 2502 & 4001 \\
\hline SMALL & 4284 & 4661 & 3531 & 5414 \\
\hline
\end{tabular}

Table 15.9
Number of Students in the Main NAEP (Spiral) Sample
Grade 7/Age 13
\begin{tabular}{|c|c|c|c|c|}
\hline & Age & Grade & Eligible by Age \& Grade & Age or Grade \\
\hline TOTAL & 20554 & 23527 & 16413 & 27668 \\
\hline \multicolumn{5}{|l|}{SEX:} \\
\hline MALE & 10232 & 11986 & 7923 & 14295 \\
\hline Female & 10322 & 11541 & 8490 & 13373 \\
\hline \multicolumn{5}{|l|}{RACE:} \\
\hline WHITE & 12460 & 13871 & 10263 & 16068 \\
\hline BLACK & 4018 & 4846 & 3079 & 5785 \\
\hline HISPANIC & 3339 & 3966 & 2506 & 4799 \\
\hline OTHER & 737 & 844 & 565 & 1016 \\
\hline \multicolumn{5}{|l|}{REGION:} \\
\hline NORTHEAST & 3451 & 4004 & 2634 & 4821 \\
\hline SOUTHEAST & 5658 & 6545 & 4583 & 7620 \\
\hline CENTRAL & 5154 & 5991 & 4315 & 6830 \\
\hline WEST & 6502 & 7254 & 5054 & 8702 \\
\hline \multicolumn{5}{|l|}{PARENTS ED:} \\
\hline LESS THAN HIGH SCHOOL & 1556 & 1998 & 1151 & 2403 \\
\hline HIGH SCHOOL & 5661 & 6549 & 4502 & 7708 \\
\hline GREATER THAN HIGH SCHOOL & 2962 & 3314 & 2439 & 3837 \\
\hline GRADUATED COLLEGE & 7410 & 8194 & 6158 & 9446 \\
\hline UNKNOWN & 2733 & 3176 & 1971 & 3938 \\
\hline \multicolumn{5}{|l|}{SIZE AND TYPE OF COMMUNITY:} \\
\hline RURAL & 1017 & 1161 & 819 & 1359 \\
\hline DISADVANTAGED URBAN & 2004 & 2632 & 1542 & 3094 \\
\hline ADVANTAGED URBAN & 1959 & 2055 & 1497 & 2517 \\
\hline BIG CITY & 3146 & 3619 & 2526 & 4239 \\
\hline FRINGE & 2885 & 3324 & 2315 & 3854 \\
\hline MEDIUM & 3414 & 3980 & 2812 & 4582 \\
\hline SMALL & 6129 & 6756 & 4902 & 7983 \\
\hline
\end{tabular}

202

Table 15.10
Number of Students in the Main NAEP (Spiral) Sample
Grade 11/Age 17
\begin{tabular}{|c|c|c|c|c|}
\hline & Age & Grade & Eligible by Age \& Grade & Age or Grade \\
\hline TOTAL & 31782 & 31938 & 23967 & 39753 \\
\hline \multicolumn{5}{|l|}{SEX:} \\
\hline MALE & 15828 & 15797 & 11452 & 20173 \\
\hline FEMALE & 15954 & 16141 & 12515 & 19580 \\
\hline \multicolumn{5}{|l|}{RACE:} \\
\hline WHITE & 22204 & 22603 & 17862 & 26945 \\
\hline BLACK & 5360 & 5230 & 3401 & 7189 \\
\hline HISPANIC & 3363 & 3170 & 2103 & 4430 \\
\hline OTHER & 855 & 935 & 601 & 1189 \\
\hline \multicolumn{5}{|l|}{REGION:} \\
\hline NORTHEAST & 6331 & 6599 & 4678 & 8252 \\
\hline SCUTHEAST & 8122 & 7988 & 5931 & 10179 \\
\hline CENTRAL & 8298 & 8215 & 6556 & 9957 \\
\hline WEST & 9163 & 9270 & 6887 & 11546 \\
\hline \multicolumn{5}{|l|}{PARENTS ED:} \\
\hline LESS THAN HIGH SCHOOL & 3050 & 2944 & 1916 & 4078 \\
\hline HIGH SCHOOL & 9004 & 8847 & 6585 & 11266 \\
\hline GREATER THAN HIGH SCHOOL & 6897 & 7021 & 5473 & 8445 \\
\hline GRADUATED COLLEGE & 11496 & 11865 & 9228 & 14133 \\
\hline UNKNOWN & 1189 & 1112 & 668 & 1633 \\
\hline \multicolumn{5}{|l|}{SIZE AND TYPE OF COMMUNITY:} \\
\hline RURAL & 1337 & 1349 & 991 & 1695 \\
\hline DISADVANTAGED URBAN & 2336 & 2083 & 1300 & 3119 \\
\hline ADVANTAGED URBAN & 3600 & 3791 & 2920 & 4471 \\
\hline BIG CITY & 3567 & 3348 & 2366 & 4549 \\
\hline FRINGE & 4331 & 4394 & 3369 & 5356 \\
\hline MEDIUM & 6258 & 6351 & 4922 & 7687 \\
\hline SMALL & 10353 & 10622 & 8099 & 12876 \\
\hline
\end{tabular}

Table 15.11
Number of Students in the Bridge A Sample
\begin{tabular}{|c|c|c|c|}
\hline & Age 9 & Age 13 & Age 17 \\
\hline TOTAL & 6932 & 6200 & 0 \\
\hline \multicolumn{4}{|l|}{SEX:} \\
\hline MALE & 3487 & 3102 & 0 \\
\hline female & 3445 & 3096 & 0 \\
\hline \multicolumn{4}{|l|}{RACE:} \\
\hline WHITE & 4534 & 3667 & 0 \\
\hline BLACK & 851 & 1462 & 0 \\
\hline HISPANIC & 1022 & 868 & 0 \\
\hline OTHER & 525 & 203 & 0 \\
\hline \multicolumn{4}{|l|}{REGION:} \\
\hline NORTHEAST & 1708 & 1485 & 0 \\
\hline SOUTHEAST & 1583 & 1418 & 0 \\
\hline CENTRAL & 1714 & 1613 & 0 \\
\hline WEST & 1937 & 1788 & 0 \\
\hline \multicolumn{4}{|l|}{PARENTS ED:} \\
\hline LESS THAN HIGH SCHOOL & 292 & 502 & 0 \\
\hline HIGH SCHOOL & 1057 & 1795 & 0 \\
\hline GREATER THAN HIGH SCHOOL & 466 & 923 & 0 \\
\hline GRADUETED COLLEGE & 2659 & 2311 & 0 \\
\hline UNKNOWN & 2445 & 561 & 0 \\
\hline \multicolumn{4}{|l|}{SIZE AND TYPE OF COMMUNITY:} \\
\hline RURAL & 260 & 232 & 0 \\
\hline DISADVANTAGED URBAN & 513 & 886 & 0 \\
\hline ADVANTAGED URBAN & 1043 & 692 & 0 \\
\hline BIG CITY & 693 & 788 & 0 \\
\hline FRINGE & 1016 & 580 & 0 \\
\hline MEDIUM. & 1249 & 1318 & 0 \\
\hline SMALL & 2158 & 1704 & 0 \\
\hline
\end{tabular}

Table 15.12
Number of Students in the Bridge B Sample
\begin{tabular}{lrrr} 
& Age 9 & Age 13 & Age 17 \\
TOTAL & & & \\
SEX: & & & \\
MALE & & 4178 & 3868 \\
FEMALE & 2014 & 2063 & 1870 \\
RACE: & 2028 & 2115 & 1998 \\
WHITE & & & \\
BLACK & 2539 & 2628 & 2670 \\
HISPANIC & 648 & 670 & 630 \\
OTHER & 682 & 695 & 429 \\
& 173 & 185 & 139 \\
REGION: & & & \\
NORTHEAST & 812 & 772 & 746 \\
SOUTHEAST & 999 & 1120 & 1081 \\
CENTRAL & 943 & 956 & 910 \\
WEST & 1316 & 1346 & 1145 \\
PARENTS ED: & & & \\
LESS THAN HIGH SCH0OL & 209 & 342 & 382 \\
HIGH SCHOOL & 586 & 1145 & 1074 \\
GREATER THAN HIGH SCHOOL & 229 & 612 & 902 \\
GRADUATED COLLEGE & 1331 & 1588 & 1378 \\
UNKNOWN & 1656 & 471 & 116 \\
SIZE AND TYPE OF COMMUNITY: & & & \\
RURAL & & & \\
DISADVANTAGED URBAN & 287 & 250 & 145 \\
ADVANTAGED URBAN & 437 & 364 & 308 \\
BIG CITY & 400 & 345 & 410 \\
FRINGE & 411 & 582 & 427 \\
MEDIUM & 489 & 513 & 598 \\
SMALL & 821 & 684 & 739 \\
& 1197 & 1440 & 1241
\end{tabular}

\section*{Table 15.13}

Excluded Student Sample by Demographic Characteristics
\[
\text { Grade } 3 / \text { Age } 9
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Bridge A } \\
\text { Age }
\end{gathered}
\] & \multicolumn{4}{|l|}{Main NAEP and Bridge B-......... Age Grade Age and Grade Age or Grade} \\
\hline TOTAL & 343 & 802 & 767 & 436 & 1133 \\
\hline \multicolumn{6}{|l|}{SEX:} \\
\hline MALE & 229 & 498 & 465 & 250 & 713 \\
\hline FEMALE & 114 & 304 & 302 & 186 & 420 \\
\hline \multicolumn{6}{|l|}{RACE:} \\
\hline White & 172 & 284 & 255 & 137 & 402 \\
\hline BLACK & 59 & 152 & 133 & 64 & 221 \\
\hline HISPANIC & 92 & 305 & 323 & 201 & 427 \\
\hline OTHER & 20 & 61 & 56 & 34 & 83 \\
\hline \multicolumn{6}{|l|}{REGION:} \\
\hline NORTHEAST & 80 & 136 & 120 & 80 & 176 \\
\hline SOUTHEAST & 79 & 132 & 127 & 53 & 206 \\
\hline CENTRAL & 54 & 104 & 94 & 39 & 159 \\
\hline WEST & 130 & 430 & 426 & 264 & 592 \\
\hline
\end{tabular}

Table 15.14

\section*{Excluded Student Sanple by Demographic Characteristics}

Grade 7/Age 13
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Bridge A } \\
\text { Age }
\end{gathered}
\] & & \[
\begin{aligned}
& -- \text { Ma } \\
& \text { Grade }
\end{aligned}
\] & NAEP and Bri Age and Grade & \begin{tabular}{l}
ge B-------- \\
Age or Grade
\end{tabular} \\
\hline TOTAL & 386. & 773 & 1052 & 443 & 1382 \\
\hline \multicolumn{6}{|l|}{SEX:} \\
\hline Male & 243 & 495 & 686 & 277 & 904 \\
\hline FEMALE & 143 & 278 & 366 & 166 & 478 \\
\hline \multicolumn{6}{|l|}{RACE:} \\
\hline WHITE & 126 & 294 & 452 & 156 & 590 \\
\hline BLACK & 96 & 193 & 271 & 116 & 348 \\
\hline HISPANIC & 122 & 230 & 267 & 141 & 356 \\
\hline OTHER & 42 & 56 & 62 & 30 & 88 \\
\hline \multicolumn{6}{|l|}{REGION:} \\
\hline NORTHEAST & 138 & 77 & 125 & 47 & 155 \\
\hline SOUTHEAST & 67 & 181 & 307 & 122 & 366 \\
\hline CENTRAL & 66 & 143 & 144 & 49 & 238 \\
\hline WEST & 115 & 372 & 476 & 225 & 623 \\
\hline
\end{tabular}

Table 15.15
Excluded Student Sample by Demographic Characteristics Grade 11/Age 17
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Bridge A } \\
\text { Age }
\end{gathered}
\] & & \[
\begin{aligned}
& - \text { - -Mai } \\
& \text { Grade }
\end{aligned}
\] & NAEP and Brid Age and Grade & ge B-----.-. Age or Grade \\
\hline TOTAL & 0 & 1368 & 1150 & 553 & 1965 \\
\hline SEX: & & & & & \\
\hline MALE & 0 & 827 & 718 & 330 & 1215 \\
\hline female & 0 & 530 & 416 & 213 & 733 \\
\hline RACE: & & & & & \\
\hline WHITE & 0 & 588 & 510 & 245 & 853 \\
\hline BLACK & 0 & 404 & 329 & 162 & 571 \\
\hline HISPANIC & 0 & 281 & 210 & 110 & 381 \\
\hline OTHER & 0 & 95 & 101 & 36 & 160 \\
\hline REGION: & & & & & \\
\hline NORTHEAST & 0 & 222 & 189 & 100 & 311 \\
\hline SOUTHEAST & 0 & 342 & 271 & 130 & 483 \\
\hline CENTRAL & 0 & 288 & 261 & 109 & 440 \\
\hline WEST & 0 & 516 & 429 & 214 & 731 \\
\hline
\end{tabular}

Table 15.16
Number of Students by Grade／Age and Type of Assessment
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { ASSESSMENT } \\
& \quad \text { TYPE } \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{GRADE 3／AGE 9} & \multicolumn{2}{|l|}{GRADE 7／AGE 13} & \multicolumn{2}{|l|}{GRADE 11／AGE 17} \\
\hline & & Sum of & & Sum of & & Sur：of \\
\hline & Total & Weights & Total & Weights & Total & Weights \\
\hline Spiral \({ }^{+}\) & 21287 & 3931992 & 27668 & 4007907 & 39753 & 4136965 \\
\hline Bridge B－－Booklet \(4^{*}\) & 1994 & 3151352 & 2032 & 3008026 & 1934 & 3240017 \\
\hline Bridge B－－Booklet \(5^{*}\) & 2048 & 3121844 & 2146 & 3028806 & 1934 & 3252949 \\
\hline \begin{tabular}{l}
Excluded Students．－ \\
Combined Spiral and
\end{tabular} & & & & & & \\
\hline Bridge B Samples & 1133 & 137280 & 1382 & 143847 & 1965 & 120169 \\
\hline Bridge A－－Booklet \(1_{* *}^{* *}\) & 2315 & 3098639 & 2075 & 2937402 & & \\
\hline Bridge A－－Booklet \(2_{* *}^{* *}\) & 2361 & 3104555 & 2054 & 2950983 & －－ & \\
\hline Bridge A－－Booklet \(3^{* *}\) & 2256 & 3112834 & 2071 & 2943837 & －－ & \\
\hline Excluded Students－－ & & & & & & \\
\hline Bridge A Samples & 343 & 131664 & 386 & 148916 & －－ & －－ \\
\hline
\end{tabular}

\footnotetext{
\({ }_{*}^{+}\)Sample for both age and grade using new age definitions ＊S⿹弋工 Sample for age only using old age definitions
}

Table 15.17
Number of Spiral Students, Grade 3/Age 9 (Booklets 6 - 51)
\begin{tabular}{|c|c|c|c|c|}
\hline & < 9 & - 9 & > 9 & TOTAL \\
\hline \multicolumn{5}{|l|}{GRADE < 3} \\
\hline UNWEIGHTED N & 0 & 2342 & 0 & 2342 \\
\hline WEIGHTED N & 0 & 432377 & 0 & 432377 \\
\hline STANDARD ERROR & - & 19486 & - & 19486 \\
\hline COEFF. OF VAR. & - & 4.51 & - & 4.51 \\
\hline \multicolumn{5}{|l|}{GRADE \(=3\)} \\
\hline UNWEIGHTED N & 1236 & 13378 & 3419 & 18033 \\
\hline WEIGHTED N & 208510 & 2530844 & 581923 & 3321278 \\
\hline STANDARD ERROR & 15176 & 9749 & 15623 & 14611 \\
\hline COEFF. OF VAR. & 7.28 & 0.39 & 2.68 & 0.44 \\
\hline \multicolumn{5}{|l|}{GRADE > 3} \\
\hline UNWEIGHTED N & 0 & 912 & 0 & 912 \\
\hline WEIGHTED N & 0 & 178337 & 0 & 178337 \\
\hline STANDARD ERROR & - & 18177 & - & 18177 \\
\hline COEFF. OF VAR. & - & 10.19 & - & 10.19 \\
\hline
\end{tabular}

GRADE TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 1236 & 16632 & 3419 & 21287 \\
WEIGHTED N & 208510 & 3141559 & 581923 & 3931992 \\
STANDARD ERROR & 15176 & 13874 & 15623 & 18966 \\
COEFF. OF VAR. & 7.28 & 0.44 & 2.68 & 0.48
\end{tabular}
-320-

Table 15.18
Number of Spiral Students, Grade 7/Age 13 (Booklets 6 - 67)

GRADE < 7
 WEIGHTED N STANDARD ERROR COEFF. OF VAR.

GRADE \(=7\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 1751 & 16413 & 5363 & 23527 \\
WEIGHTED N & 257520 & 2062373 & 759124 & 3079017 \\
STANDARD ERROR & 16768 & 3873 & 16735 & 10959 \\
COEFF. OF VAR. & 6.51 & 0.19 & 2.20 & 0.36
\end{tabular}

GRADE > 7
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 0 & 1366 & 0 & 1366 \\
WEIGHTED N & 0 & 282386 & 0 & 282386 \\
STANDARD ERROR & - & 22763 & - & 22763 \\
COEFF OF VAR. & - & 8.06 & - & 8.06
\end{tabular}

GRADE TOTAL
\begin{tabular}{lrrrr} 
UNWEICHTED N & 1751 & 20554 & 5363 & 27668 \\
WEIGHTED N & 257520 & 2991263 & 759124 & 4007907 \\
STANDARD ERROR & 16768 & 12922 & 16735 & 16317 \\
COEFF. OF VAR. & 6.51 & 0.43 & 2.20 & 0.41
\end{tabular}
-321-

Table 15.19
Number of Spiral Students, Grade 11/Age 17
(Booklets 6-95)

GRADE < 11
UNWEIGHTED N 0

AGE
< 17
\(=17\)
\(>17\)
TOTAL WEIGHTED N STANDARD ERROR

0
5613
0
5613
692940
0
692940

COEFF. OF VAR.
-
16672
16672

GRADE \(=11\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 3264 & 23967 & 4707 & 31938 \\
WEIGHTED N & 356364 & 2270022 & 561849 & 3188235 \\
STANDARD ERROR & 17845 & 3696 & 16124 & 8536 \\
COEFF. OF VAR. & 5.01 & 0.16 & 2.87 & 0.27
\end{tabular}

GRADE > 11
\begin{tabular}{llrrr} 
UNWEIGHTED N & 0 & 2202 & 0 & 2202 \\
WEIGHTED N & 0 & 255790 & 0 & 255790 \\
STANDARD ERROR & - & 17040 & - & 17040 \\
COEFF. OF VAR. & - & 6.66 & - & 6.66
\end{tabular}

GRADE TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 3264 & 31782 & 4707 & 39753 \\
WEIGHTED N & 356364 & 3218752 & 561849 & 4136965 \\
STANDARD ERROR & 17845 & 8501 & 16124 & 13025 \\
COEFF. OF VAR. & 5.01 & 0.26 & 2.87 & 0.31
\end{tabular}
-322-

Table 15.20
Number of Bridge Students, Age 9
(Booklets I - 5)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1* & 2* & dge Boo & 4** & 5** \\
\hline \multicolumn{6}{|l|}{< MODAL GRADE 2* 3* 4** 5**} \\
\hline UNWEIGHTED N & 825 & 795 & 758 & 280 & 280 \\
\hline WEIGHTED N & 1064. 18 & 1013447 & 1084801 & 385478 & 430998 \\
\hline STANDARD ERROR & 55927 & 53245 & 62079 & 33886 & 36675 \\
\hline COEFF. OF VAR. & 5.25 & 5.25 & 5.72 & 8.79 & 8.51 \\
\hline \multicolumn{6}{|l|}{- MODAL C. ADE} \\
\hline UNWEIGHTED N & 1482 & 1559 & 1491 & 1610 & 1667 \\
\hline WEIGHTED N & 2023333 & 2083592 & 2020543 & 2604318 & 2554347 \\
\hline STANDARD ERROR & 54618 & 63036 & 62539 & 48797 & 41097 \\
\hline COEFF. OF VAR. & 2.70 & 3.03 & 3.10 & 1.87 & 1.61 \\
\hline \multicolumn{6}{|l|}{> MODAL GRADE} \\
\hline UNWEIGHTED N & 8 & 7 & 7 & 104 & 101 \\
\hline WEIGHTED N & 10988 & 7515 & 7489 & 161557 & 136499 \\
\hline STANDARD ERROR & 3597 & 2793 & 2521 & 56003 & 17635 \\
\hline COEFF. OF VAR. & 33.64 & 37.16 & 33.66 & 34.66 & 12.92 \\
\hline \multicolumn{6}{|l|}{TOTAL} \\
\hline UNWEIGHTED N & 2315 & 2361 & 2256 & 1994 & 2048 \\
\hline WEIGHTED N & 3098639 & 3104555 & 3112834 & 3151352 & 3121844 \\
\hline STANDARD ERROR & 16593 & 20282 & 14390 & 20051 & 26874 \\
\hline COEFF. OF VAR. & 0.54 & 0.65 & 0.46 & 0.64 & 0.86 \\
\hline
\end{tabular}
*Students who took these booklets have reading, mathematics, and science plausible values; modal grade is grade 4.
**Students who took these booklets have mathematics and science plausible values; modal grade is grade 3.

Table 15.21
Number of Bridge Students, Age 13
(Booklets 1 - 5)

< MODAL GRADE
\begin{tabular}{lrrrrr} 
UNWEIGHTED N & 693 & 651 & 655 & 248 & 260 \\
WEIGHTED N & 1000038 & 975363 & 915681 & 409390 & 452561 \\
STANDARD ERROR & 74097 & 68626 & 49935 & 74647 & 137092 \\
COEFF. OF VAR. & 7.41 & 7.04 & 5.45 & 18.23 & 30.29
\end{tabular}
= MODAL GRADE
\begin{tabular}{lrrrrr} 
UNWEIGHTED N & 1372 & 1390 & 1403 & 1642 & 1743 \\
WEIGHTED N & 1928568 & 1958298 & 2014274 & 2404636 & 2395404 \\
STANDARD ERROR & 77648 & 79717 & 51542 & 93872 & 126803 \\
COEFF. OF VAR. & 4.03 & 4.07 & 2.56 & 3.90 & 5.29
\end{tabular}
\(>\) MODAL GRADE
\begin{tabular}{lrrrrr} 
UNWEIGHTED N & 10 & 13 & 13 & 142 & 143 \\
WEIGHTED N & 8796 & 17322 & 13882 & 194000 & 180841 \\
STANDARD ERROR & 6317 & 6447 & 7946 & 32980 & 22955 \\
COEFF. OF VAR. & 71.82 & 37.22 & 57.24 & 17.00 & 12.69
\end{tabular}

TOTAL
\begin{tabular}{lrrrrr} 
UNWEIGHTED N & 2075 & 2054 & 2071 & 2032 & 2146 \\
WEIGHTED N & 2937402 & 2950983 & 2943837 & 3008026 & 3028806 \\
STANDARD ERROR & 21332 & 24449 & 21182 & 22738 & 15282 \\
COEFF. OF VAR. & 0.73 & 0.83 & 0.72 & 0.76 & 0.50
\end{tabular}
*Students who took these booklets have reading, mathematics, and science plausible values; modal grade is grade 8.
**Students who took these booklets have mathematics and science plausible values; modal grade is grade 7.

Table 15.22
Number of Bridge Students, Age 17
(Booklets 4 - 5)

< MODAL GRADE
\begin{tabular}{llllrr} 
UNWEIGHTED N & 0 & 0 & 0 & 358 & 332 \\
WEIGHTED N & 0 & 0 & 0 & 521912 & 569292 \\
STANDARD ERROR & - & - & - & 47386 & 47724 \\
COEFF. OF VAR. & - & - & - & 9.08 & 8.38
\end{tabular}
- MODAL GRADE
\begin{tabular}{ccccrr} 
UNWEIGHTED N & 0 & 0 & 0 & 1415 & 1473 \\
WEIGHTED N & 0 & 0 & 0 & 2406593 & 2484713 \\
STANDARD ERROR & - & - & - & 52550 & 52069 \\
COEFF. OF VAR. & - & - & - & 2.18 & 2.10
\end{tabular}

MODAL GRADE
\begin{tabular}{llllrr} 
UNWEIGHTED N & 0 & 0 & 0 & 161 & 129 \\
WEIGHTED N & 0 & 0 & 0 & 311511 & 198945 \\
STANDARD ERROR & - & - & - & 32298 & 21398 \\
COEFF. OF VAR. & - & - & - & 10.37 & 10.76
\end{tabular}

TOTAL
\begin{tabular}{llllrr} 
UNWEIGHTED N & 0 & 0 & 0 & 1934 & 1934 \\
WEIGHTED N & 0 & 0 & 0 & 3240017 & 3252949 \\
STANDARD ERROR & - & - & - & 13772 & 10159 \\
COEFF. OF VAR. & - & - & - & 0.43 & 0.31
\end{tabular}
*Students who took these booklets have mathematics and science plausible
values; modal grade is grade 11 .

Table 15.23
Estimated Total Number of Students in the Population Eligible for Spiral Assessment

Grade 3/Age 9, Weighted
\begin{tabular}{lrrr} 
TCTAL & 3141559 & 3321278 & 3931992 \\
SEX: & & & \\
MALE & 1567321 & 1658242 & 2010984 \\
FEMALE & 1574237 & 1663035 & 1921008 \\
RACE: & & & \\
WHITE & 2271105 & 2377130 & 2773153 \\
BLACK & 441950 & 475627 & 580336 \\
HISPANIC & 316905 & 352624 & 436379 \\
OTHER & 111598 & 115897 & 142124 \\
& & & \\
REGION: & & & \\
NORTHEAST & 657236 & 681455 & 817351 \\
SOUTHEAST & 699613 & 752156 & 890668 \\
CENTRAL & 923216 & 965033 & 1137030 \\
WEST & 908020 & 963708 & 1146791 \\
PARENTS ED: & & & \\
< HIGH SCHOOL & 131316 & 141487 & 176436 \\
HIGH SCHOOL & 416636 & 432832 & 520793 \\
> HIGH SCHOOL & 166727 & 177790 & 208244 \\
GRADUATED COLLEGE & 968207 & 1034473 & 1186181 \\
UNKNOWN & 1411270 & 1492215 & 1778771 \\
SIZE AND TYPE OF COMMUNITY: & & & \\
RURAL & 293166 & 302728 & 359727 \\
DISADVANTAGED URBAN & 258954 & 282235 & 352024 \\
ADVANTAGED URBAN & 381331 & 405166 & 467861 \\
BIG CITY & 297740 & 311031 & 373471 \\
FRINGE & 364431 & 375428 & 467383 \\
MEDIUM & 535302 & 565747 & 675622 \\
SMALL & 1010635 & 1078942 & 1256904
\end{tabular}

Table 15.24
Estimated Total Number of Students in the Population Eligible for Spiral Assessment

Grade 7/Age 13, Weighted
\begin{tabular}{|c|c|c|c|}
\hline & Age & \[
\begin{gathered}
\text { ligible } \\
\text { Grade }
\end{gathered}
\] & Grade/Age \\
\hline TOTAL & 2991263 & 3079017 & 4007907 \\
\hline \multicolumn{4}{|l|}{SEX:} \\
\hline MALE & 1541750 & 1593965 & 2128490 \\
\hline Female & 1449513 & 1485052 & 1879417 \\
\hline \multicolumn{4}{|l|}{RACE:} \\
\hline WHITE & 2145908 & 2178573 & 2781946 \\
\hline BLACK & 436915 & 460779 & 636841 \\
\hline HISPANIC & 296344 & 323566 & 431632 \\
\hline OTHER & 112096 & 116099 & 157488 \\
\hline \multicolumn{4}{|l|}{REGION:} \\
\hline NORTHEAST & 610242 & 638455 & 830292 \\
\hline SOUTHEAST & 687441 & 705074 & 936310 \\
\hline CENTRAL & 816427 & 849132 & 1085672 \\
\hline WEST & 898675 & 908956 & 1187272 \\
\hline \multicolumn{4}{|l|}{PARENTS ED:} \\
\hline < HIGH SCHOOL & 217746 & 245840 & 334210 \\
\hline HIGH SCHOOL & 821310 & 867910 & 1122312 \\
\hline > HIGH SCHOOL & 444494 & 454059 & 573892 \\
\hline GRADUATED COLLEGE & 1100343 & 1109545 & 1402384 \\
\hline UNKNOWN & 382989 & 374855 & 539028 \\
\hline \multicolumn{4}{|l|}{SIZE AND TYPE OF COMMUNITY:} \\
\hline RURAL & 184026 & 198493 & 249876 \\
\hline DISADVANTAGED URBAN & 212154 & 250926 & 328053 \\
\hline ADVANTAGED URBAN & 335761 & 326645 & 435215 \\
\hline BIG CITY & 342193 & 361595 & 459189 \\
\hline FRINGE & 355191 & 366450 & 478791 \\
\hline MEDIUM & 451977 & 472968 & 604822 \\
\hline SMALL & 1109961 & 1101941 & 1451962 \\
\hline
\end{tabular}

Table 15.25
Estimated Total Number of Students in the Population Eligible for Spiral Assessment

Grade 11/Age 17, Weighted
\begin{tabular}{lrrr} 
TOTAL & 3218752 & 3188235 & 4136965 \\
SEX: & & & \\
MALE & 1637504 & 1605264 & 2146872 \\
FEMALE & 1581248 & 1582971 & 1990093 \\
RACE: & & & \\
WHITE & 2454103 & 2429584 & 3053113 \\
BLACK & 425180 & 420955 & 599499 \\
HISPANIC & 239970 & 231839 & 342771 \\
OTHER & 99499 & 105858 & 141581 \\
& & & \\
REGION: & 760527 & & \\
NORTHEAST & 679527 & 660859 & 997946 \\
SOUTHEAST & 936492 & 917117 & 11599342 \\
CENTRAL & 857844 & 852943 & 1103710 \\
WEST & & & \\
PARENTS ED: & 286613 & 266033 & 394278 \\
< HIGH SCHOOL & 901963 & 867463 & 1162109 \\
HIGH SCHOOL & 686664 & 695486 & 855573 \\
> HIGH SCHOOL & 1214724 & 1237960 & 1532637 \\
GRADUATED COLLEGE & 111782 & 103724 & 158414 \\
UNKNOWN & & & \\
& & & \\
SIZE AND TYPE OF COMMUNITY: & 140537 & 139899 & 178611 \\
RURAL & 192108 & 168539 & 271577 \\
DISADVANTAGED URBAN & 404668 & 437120 & 527094 \\
ADVANTAGED URBAN & 273140 & 255547 & 363232 \\
BIG CITY & 496195 & 496725 & 631919 \\
FRINGE & 504865 & 503134 & 638491 \\
MEDIUM & 1207238 & 1187271 & 1526041 \\
SMALL & & & \\
& & & \\
\hline
\end{tabular}

Table 15.26
Estimated Total Number of Students Eligible for Assessment by Bridge Sample

Age 9, Weighted
\begin{tabular}{ccccc} 
BOOKLET 1 & BOOKLET 2 & BOOKLET 3 & BOOKLET 4 & BOOKLET 5 \\
& & & & \\
3098639 & 3104555 & 3112834 & 3151352 & 3121844 \\
& & & & \\
1513328 & 1528517 & 1614911 & 1586069 & 1558197 \\
1585312 & 1576038 & 1497923 & 1565283 & 1563647
\end{tabular}

RACE:
WHIT
BLACK
HISPANIC
2239076
\(\begin{array}{rr}2245501 & 2251748 \\ 432972 & 429194 \\ 309898 & 315744 \\ 116184 & 116147\end{array}\)
\begin{tabular}{rr}
2281491 & 2246936 \\
444069 & 438022 \\
312820 & 323488 \\
112972 & 113397
\end{tabular}

REGION:
NORTHEAST
SOUTHEAST
647611
673694646732
\(\begin{array}{ll}700123 & 706970 \\ 667800 & 704131 \\ 992571 & 879846 \\ 836375 & 837373\end{array}\)
WEST
894822
851126
\begin{tabular}{ll}
683262 & 708425 \\
897240 & 884580 \\
851944 & 880282
\end{tabular}

PARENTS ED:
< HIGH SCHOO
- HIGH SCHOOL

129664
133526
130625
\(\begin{array}{rr}148026 & 172975 \\ 407702 & 475574 \\ 202829 & 143644 \\ 1060530 & 1075184 \\ 1280633 & 1247992\end{array}\)
SIZE AND TYPE
OF COMMUNITY:
\begin{tabular}{lrrrrr} 
RURAL & 131748 & 157369 & 153949 & 362786 & 193753 \\
DISADVANTAGED URBAN & 183010 & 177983 & 194386 & 317002 & 232967 \\
ADVANTAGED URBAN & 517107 & 513362 & 534404 & 360928 & 372294 \\
BIG CITY & 251498 & 272930 & 266679 & 316439 & 172480 \\
FRINGE & 410427 & 424339 & 384390 & 337960 & 603800 \\
MEDIUM & 482355 & 455960 & 426875 & 587028 & 441577 \\
SMALL & 1122495 & 1102612 & 1152150 & 869208 & 1104973
\end{tabular}
\[
-329-3!3
\]

Table 15.27
Estimated Total Number of Students Eligible for Assessment by Bridge Sample

Age 13, Weighted

BRIDGE A
…-. BRIDGE
B --.-

BOOKLET 1 BOOKLET 2 BOOKLET 3
BOOKLET 4 BOOKLET 5
\begin{tabular}{|c|c|c|c|c|c|}
\hline TOTAL & 2937402 & 2950983 & 2943837 & 3008026 & 3028806 \\
\hline \multicolumn{6}{|l|}{SEX:} \\
\hline MALE & 1467700 & 1465382 & 1464555 & 1496077 & 1518031 \\
\hline FEMALE & 1.469456 & 1485600 & 1479088 & 1511950 & 1510774 \\
\hline \multicolumn{6}{|l|}{RACE:} \\
\hline WHITE & 2126752 & 2141182 & 2125403 & 2154960 & 2169537 \\
\hline BLACK & 430424 & 428826 & 440654 & 441065 & 449180 \\
\hline HISPANIC & 287880 & 271851 & 276136 & 292548 & 299453 \\
\hline OTHER & 92346 & 109124 & 101645 & 119453 & 110635 \\
\hline \multicolumn{6}{|l|}{REGION:} \\
\hline NORTHEAST & 653213 & 663776 & 661239 & 597610 & 582830 \\
\hline SOUTHEAST & 714405 & 736100 & 735176 & 697252 & 745166 \\
\hline CENTRAL & 782547 & 766492 & 767112 & 844402 & 851214 \\
\hline WEST & 828271 & 824659 & 820122 & 871474 & 859251 \\
\hline \multicolumn{6}{|l|}{PARENTS ED:} \\
\hline < HIGH SCHOOL & 247165 & 233860 & 209186 & 208139 & 225451 \\
\hline \(=\) HIGH SCHOOL & 866426 & 887299 & 943903 & 803110 & 855055 \\
\hline \(>\) HIGH SCHOOL & 493495 & 435220 & 427030 & 472907 & 426546 \\
\hline GRADUATED COLLEGE & 1044757 & 1136582 & 1085363 & 1203210 & 1178812 \\
\hline UNKNOWN & 243633 & 216447 & 236035 & 315897 & 328894 \\
\hline \multicolumn{6}{|l|}{SIZE AND TYPE} \\
\hline OF COMMUNITY: & & & & & \\
\hline RURAL & 181662 & 162410 & 186124 & 192069 & 218660 \\
\hline DISADVANTAGED URBAN & 273163 & 232200 & 278075 & 227973 & 176697 \\
\hline ADVANTAGED URBAN & 336985 & 340383 & 336147 & 192679 & 357848 \\
\hline BIG CITY & 343696 & 327501 & 337060 & 479026 & 365954 \\
\hline FRINGE & 252105 & 258556 & 255761 & 384401 & 373994 \\
\hline MEDIUM & 466608 & 482638 & 477884 & 374746 & 397159 \\
\hline SMALL & 1083183 & 1147294 & 1072786 & 1157132 & 1138494 \\
\hline
\end{tabular}

Table 15.28
Estimated Total Number of Students Eligible for Assessment by Bridge Sample

Age 17, Weighted


5
\begin{tabular}{|c|c|c|c|c|c|}
\hline TOTAL & 0 & 0 & 0 & 3240017 & 3252949 \\
\hline \multicolumn{6}{|l|}{SEX:} \\
\hline MALE & 0 & 0 & 0 & 1552203 & 1626960 \\
\hline FEMALE & 0 & 0 & 0 & 1687814 & 1625989 \\
\hline \multicolumn{6}{|l|}{RACE:} \\
\hline WHITE & 0 & 0 & 0 & 2465764 & 2468639 \\
\hline BLACK & 0 & 0 & 0 & 430391 & 429952 \\
\hline HISPANIC & 0 & 0 & 0 & 241481 & 248189 \\
\hline OTHER & 0 & 0 & 0 & 102381 & 106169 \\
\hline \multicolumn{6}{|l|}{REGION:} \\
\hline NORTHEAST & 0 & 0 & 0 & 799647 & 737680 \\
\hline SOUTHEAST & 0 & 0 & 0 & 783775 & 700061 \\
\hline CENTRAL & 0 & 0 & 0 & 843631 & 983235 \\
\hline WEST & 0 & 0 & 0 & 824428 & 847085 \\
\hline \multicolumn{6}{|l|}{PARENTS ED:} \\
\hline < HIGH SCHOOL & 0 & 0 & 0 & 271395 & 262663 \\
\hline \(=\) HIGH SCHOOL & 0 & 0 & 0 & 882974 & 920148 \\
\hline > HIGH SCHOOL & 0 & 0 & 0 & 810293 & 748687 \\
\hline GRADUATED COLLEGE & 0 & 0 & 0 & 1165164 & 1218276 \\
\hline UNKNOWN & 0 & 0 & 0 & 96000 & 88064 \\
\hline \multicolumn{6}{|l|}{SIZE AND TYPE} \\
\hline \multicolumn{6}{|l|}{OF COMMUNITY:} \\
\hline RURAL & 0 & 0 & 0 & 43064 & 158648 \\
\hline DISADVANTAGED URBAN & 0 & 0 & 0 & 280426 & 125606 \\
\hline ADVANTAGED URBAN & 0 & 0 & 0 & 348843 & 472761 \\
\hline BIG CITY & 0 & 0 & 0 & 253271 & 321808 \\
\hline FRINGE & 0 & 0 & 0 & 566581 & 601024 \\
\hline MEDIUM & 0 & 0 & 0 & 647123 & 448500 \\
\hline SMALL & 0 & 0 & 0 & 1100710 & 1124602 \\
\hline
\end{tabular}

Table 15.29
Estimated Total Population of Excluded Students
Grade 3/Age 9, Weighted
\begin{tabular}{lrrrr} 
TOTAL & 131664 & 89319 & 94135 & 137280 \\
SEX: & & & & \\
\(\quad\) MALE & 86979 & 58325 & 59065 & 89291 \\
\(\quad\) FEMALE & 44685 & 30994 & 35070 & 47989 \\
RACE: & 66692 & 40510 & 41773 & 62623 \\
WHITE & 21760 & 15508 & 15614 & 24279 \\
BLACK & 33896 & 23836 & 26445 & 36280 \\
HISPANIC & 9316 & 9464 & 10303 & 14097 \\
\(\quad\) OTHER & & & & \\
REGION: & 28164 & 19264 & 18377 & 25983 \\
\(\quad\) NORTHEAST & 29640 & 15469 & 17669 & 26944 \\
SOUTHEAST & 22779 & 15823 & 17440 & 26875 \\
CENTRAL & 51081 & 38762 & 40649 & 57477
\end{tabular}

313

Table 15.30

\section*{Estimated Total Population of Excluded Students}

Grade 7/Age 13, Weighted

TOTAL

SEX:
MALE
FEMALE
\begin{tabular}{cccc}
\begin{tabular}{c} 
Bridge A \\
Age
\end{tabular} & \begin{tabular}{c} 
Age
\end{tabular} & \begin{tabular}{c} 
Grade \\
Grad
\end{tabular} & \begin{tabular}{c} 
Bridge B \\
Age or Grade
\end{tabular} \\
148916 & 77668 & 105840 & 143847 \\
& & & \\
96477 & 49596 & 68928 & 94201 \\
52440 & 28072 & 36912 & 49646
\end{tabular}

RACE:
WHITE
BLACK
HISPANIC
OTHER
\(57522 \quad 35017 \quad 53700 \quad 72270\)
\(3425316896 \quad 2253310430\)
\(4170416827 \quad 20431 \quad 27444\)
\(\begin{array}{llll}15438 & 8928 & 176 & 13704\end{array}\)
REGION:
NORTHEAST
\(\begin{array}{rrrr}53251 & 7374 & 13202 & 16685 \\ 28983 & 19519 & 31800 & 39609 \\ 26243 & 17326 & 18437 & 29979 \\ 40440 & 33449 & 42401 & 57574\end{array}\)

Table 15.31
Estimated Total Population of Excluded Students
Grade 11/Age 17, Weighted
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Bridge A } \\
& \text { Age }
\end{aligned}
\] & \[
\begin{gathered}
---\quad . \\
\text { Age }
\end{gathered}
\] & in and Grade & Bridge B-.-. Age or Grade \\
\hline TOTAL & 0 & 79149 & 72744 & 120169 \\
\hline \multicolumn{5}{|l|}{SEX:} \\
\hline MALE & 0 & 48103 & 45950 & 74512 \\
\hline FEMALE & 0 & 30659 & 26208 & 45039 \\
\hline \multicolumn{5}{|l|}{RACE:} \\
\hline WHITE & 0 & 37956 & 35561 & 57498 \\
\hline BLACK & 0 & 19937 & 17309 & 29513 \\
\hline HISPANIC & 0 & 13786 & 9655 & 18292 \\
\hline OTHER & 0 & 7469 & 10219 & 14867 \\
\hline \multicolumn{5}{|l|}{REGION:} \\
\hline NORTHEAST & 0 & 12914 & 12638 & 19656 \\
\hline SOUTHEAST & 0 & 17536 & 15369 & 26199 \\
\hline CENTRAL & 0 & 19676 & 19391 & 31156 \\
\hline WEST & 0 & 29024 & 25346 & 43157 \\
\hline
\end{tabular}

Table 15.32
Spiral Sample Students Who Have Reading Scale Scores (Variables REDVAL1 to REDVAL5)

Grade 3/Age 9

GRADE < 3
\begin{tabular}{llrlr} 
UNWEIGHTED N & 0 & 1281 & 0 & 1281 \\
WEIGHTED N & 0 & 238526 & 0 & 238526 \\
STANDARD ERROR & - & 12042 & - & 12042 \\
COEFF. OF VAR. & - & 5.05 & - & 5.05
\end{tabular}

GRADE \(=3\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 663 & 7289 & 1841 & 9793 \\
WEIGHTED N & 111321 & 1386813 & 314145 & 1812279 \\
STANDARD ERROR & 9060 & 8288 & 9237 & 9488 \\
COEFF. OF VAR. & 8.14 & 0.60 & 2.94 & 0.52
\end{tabular}

GRADE > 3
\begin{tabular}{llrlr} 
UNWEIGHTED N & 0 & 501 & 0 & 501 \\
WEIGHTED N & 0 & 99616 & 0 & 99616 \\
STANDARD ERROR & - & 11672 & - & 11672 \\
COEFF. OF VAR. & - & 11.72 & - & 11.72
\end{tabular}

TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 663 & 9071 & 1841 & 11575 \\
WEIGHTED N & 111321 & 1724955 & 314145 & 2150421 \\
STANDARD ERROR & 9060 & 9982 & 9237 & 11533 \\
COEFF. OF VAR. & 8.14 & 0.58 & 2.94 & 0.54
\end{tabular}

Spiral Sample Students Who Have Reading Scale Scores (Variables REDVAL1 to REDVAL5)

Grade 7/Age 13
\begin{tabular}{|c|c|c|c|c|}
\hline & \(<13\) & - 13 & > 13 & TOTAL \\
\hline \multicolumn{5}{|l|}{GRADE < 7} \\
\hline UNWEIGHTED N & 0 & 1130 & 0 & 1130 \\
\hline WEIGHTED N & 0 & 270315 & 0 & 270315 \\
\hline STANDARD ERROR & - & 12485 & - & 12485 \\
\hline COEFF. OF VAR. & - & 4.62 & - & 4.62 \\
\hline \multicolumn{5}{|l|}{GRADE \(=7\)} \\
\hline UNWEIGHTED N & 713 & 6638 & 2162 & 9513 \\
\hline WEIGHTED N & 107052 & 835432 & 303535 & 1246019 \\
\hline STANDARD ERROR & 7977 & 6210 & 9439 & 6893 \\
\hline COEFF. OF VAR. & 7.45 & 0.74 & 3.11 & 0.55 \\
\hline \multicolumn{5}{|l|}{GRADE > 7} \\
\hline UNWEIGHTED N & 0 & 528 & 0 & 528 \\
\hline WEIGHTED N & 0 & 111168 & 0 & 111168 \\
\hline STANDARD ERROR & - & 9560 & - & 9560 \\
\hline COEFF. OF VAR. & - & 8.60 & - & 8.60 \\
\hline
\end{tabular}

TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 713 & 8296 & 2162 & 11171 \\
WEIGHTED N & 107052 & 1216915 & 303535 & 1627503 \\
STANDARD ERROR & 7977 & 11441 & 9439 & 11292 \\
COEFF. OF VAR. & 7.45 & 0.94 & 3.11 & 0.69
\end{tabular}

Table 15.34
Spiral Sample Students Who Have Reading Scale Scores (Variables REDVAL1 to REDVAL5)

Grade 11/Age 17

GRADE < 11
\begin{tabular}{llrlr} 
UNWEIGHTED N & 0 & 2889 & 0 & 2889 \\
WEIGHTED N & 0 & 361108 & 0 & 361108 \\
STANDARD ERROR & - & 9755 & - & 9755 \\
COEFF. OF VAR. & - & 2.70 & - & 2.70
\end{tabular}

GRADE - 11
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 1703 & 12393 & 2414 & 16510 \\
WEIGHTED N & 187073 & 1165375 & 285703 & 1638151 \\
STANDARD ERROR & 10196 & 6762 & 9868 & 7343 \\
COEFF. OF VAR. & 5.45 & 0.58 & 3.45 & 0.45
\end{tabular}

GRADE > 11
\begin{tabular}{llrlr} 
UNWEIGHTED N & 0 & 1136 & 0 & 1136 \\
WEIGHTED N & 0 & 130446 & 0 & 130446 \\
STANDARD ERROR & - & 8579 & - & 8579 \\
COEFF. OF VAR. & - & 6.58 & - & 6.58
\end{tabular}

TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 1703 & 16418 & 2414 & 20535 \\
WEIGHTED N & 187073 & 1656930 & 285703 & 2129706 \\
STANDARD ERROR & 10196 & 7643 & 9868 & 8340 \\
COEFF. OF VAR. & 5.45 & 0.46 & 3.45 & 0.39
\end{tabular}

Table 15.35
Spiral Sample Students Who Have Mathematics Scale Scores (Variables MRPCMP1 to MRPCMP5)

\section*{Grade \(3 /\) Age 9}
\begin{tabular}{|c|c|c|c|c|}
\hline & \(<9\) & - 9 & > 9 & TOTAL \\
\hline \multicolumn{5}{|l|}{GRADE < 3} \\
\hline UNWEIGHTED N & 0 & 1462 & 0 & 1462 \\
\hline WEIGHTED N & 0 & 271299 & 0 & 271299 \\
\hline STANDARD ERROR & - & 15134 & - & 15134 \\
\hline COEFF. OF VAR. & - & 5.58 & - & 5.58 \\
\hline
\end{tabular}

GRADE \(=3\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 769 & 8102 & 2074 & 10945 \\
WEIGHTED N & 132771 & 1530675 & 354866 & 2018312 \\
STANDARD ERROR & 10248 & 10781 & 10279 & 15656 \\
COEFF. OF VAR. & 7.72 & 0.70 & 2.90 & 0.78
\end{tabular}

GRADE \(>3\)
\begin{tabular}{llrlr} 
UNWEIGHTED N & 0 & 527 & 0 & 527 \\
WEIGHTED N & 0 & 102306 & 0 & 102306 \\
STANDARD ERROR & - & 10523 & - & 10523 \\
COEFF. OF VAR. & - & 10.29 & - & 10.29
\end{tabular}

TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 769 & 10091 & 2074 & 12934 \\
WEIGHTED N & 132771 & 1904280 & 354866 & 2391917 \\
STANDARD ERROR & 10248 & 14811 & 10279 & 18054 \\
COEFF. OF VAR. & 7.72 & 0.78 & 2.90 & 0.75
\end{tabular}

Table 15.36
Spiral Sample Students Who Have Mathematics Scale Scores (Variables MRPCMP1 to MRPCMP5)

Grade 7/Age 13

GRADE \(<7\)
\begin{tabular}{llrrr} 
UNWEIGHTED N & 0 & 1448 & 0 & 1448 \\
WEIGHTED N & 0 & 333080 & 0 & 333080 \\
STANDARD ERROR & - & 15348 & - & 15348 \\
COEFF, OF VAR. & - & 4.61 & - & 4.61
\end{tabular}

GRADE \(=7\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 911 & 8462 & 2812 & 12185 \\
WEIGHTED N & 134283 & 1063563 & 398199 & 1596045 \\
STANDARD ERROR & 10060 & 8324 & 8856 & 10692 \\
COEFF. OF VAR. & 7.49 & 0.78 & 2.22 & 0.67
\end{tabular}

GRADE > 7
\begin{tabular}{llrlr} 
UNWEIGHTED N & 0 & 692 & 0 & 692 \\
WEIGHTED N & 0 & 142784 & 0 & 142784 \\
STANDARD ERROR & - & 12783 & - & 12783 \\
COEFF. OF VAR. & - & 8.95 & - & 8.95
\end{tabular}

TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 911 & 10602 & 2812 & 14325 \\
WEIGHTED N & 134283 & 1539427 & 398199 & 2071909 \\
STANDARD ERROR & 10060 & 12874 & 8856 & 14557 \\
COEFF. OF VAR. & 7.49 & 0.84 & 2.22 & 0.70
\end{tabular}

Table 15.37
Spiral Sample Students Who Have Mathematics Scale Scores (Variables MRPCMP1 to MRPCMP5)

Grade 11/Age 17


GRADE < 11
\begin{tabular}{llrlr} 
UNWEIGHTED N & 0 & 2011 & 0 & 2011 \\
WEIGHTED N & 0 & 245638 & 0 & 245638 \\
STANDARD ERROR & - & 8513 & - & 8513 \\
COEFF. OF VAR. & - & 3.47 & - & 3.47
\end{tabular}

GRADE \(=11\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 1157 & 8850 & 1843 & 11850 \\
WEIGHTED N & 125937 & 842302 & 222496 & 1190734 \\
STANDARD ERROR & 7688 & 6889 & 8002 & 9237 \\
COEFF. OF VAR. & 6.10 & 0.82 & 3.60 & 0.78
\end{tabular}

\section*{GRADE > 11}
\begin{tabular}{llrlr} 
UNWEIGHTED N & 0 & 799 & 0 & 799 \\
WEIGHTED N & 0 & 94768 & 0 & 94768 \\
STANDARD ERROR & - & 7425 & - & 7425 \\
COEFF. OF VAR. & - & 7.84 & - & 7.84
\end{tabular}

TOTAL
UNWEIGHTED N
WEIGHTED N
STANDARD ERROR
COEFF. OF VAR.
\begin{tabular}{rrrr}
1157 & 11660 & 1843 & 14660 \\
125937 & 1182708 & 222496 & 1531141 \\
7688 & 6612 & 8002 & 9626 \\
6.10 & 0.56 & 3.60 & 0.63
\end{tabular}

Table 15.38
Spiral Sample Students Who Have Science Scale Scores (Variables SRPCMP1 to SRPCMP5)

Grade 3/Age 9

GRADE < 3
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 0 & 1420 & 0 & 1420 \\
WEIGHTED N & 0 & 264118 & 0 & 264118 \\
STANDARD ERROR & - & 13164 & - & 13164 \\
COEFF. OF VAR. & - & 4.98 & - & 4.98
\end{tabular}

GRADE \(=3\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 743 & 8140 & 2163 & 1.1046 \\
WEIGHTED N & 124264 & 1535163 & 368634 & 2028061 \\
STANDARD ERROR & 9532 & 11748 & 10176 & 13289 \\
COEFF. OF VAR. & 7.67 & 0.77 & 2.76 & 0.66
\end{tabular}

GRADE > 3
\begin{tabular}{llrrr} 
UNWEIGHTED N & 0 & 520 & 0 & 520 \\
WEIGHTED N & 0 & 105268 & 0 & 105268 \\
STANDARD ERROR & - & 11319 & - & 11319 \\
COEFF. OF VAR. & - & 10.75 & - & 10.75
\end{tabular}

TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 743 & 10080 & 2163 & 12986 \\
WEIGHTED N & 124264 & 1904549 & 368634 & 2397447 \\
STANDARD ERROR & 9532 & 11629 & 10176 & 14036 \\
COEFF. OF VAR. & 7.67 & 0.61 & 2.76 & 0.59
\end{tabular}

Table 15.39
Spiral Sample Students Who Have Science Scale Scores (Variables SRPCMP1 to SRPCMP5)

Grade 7/Age 13
\begin{tabular}{|c|c|c|c|c|}
\hline & < 13 & \(=13\) & > 13 & TOTAL \\
\hline \multicolumn{5}{|l|}{GRADE < 7} \\
\hline UNWEIGHTED N & 0 & 1442 & 0 & 1442 \\
\hline WEIGHTED N & 0 & 327397 & 0 & 327397 \\
\hline STANDARD ERROR & - & 14965 & - & 14965 \\
\hline COEFF. OF VAR. & - & 4.57 & - & 4.57 \\
\hline \multicolumn{5}{|l|}{GRADE \(=7\)} \\
\hline UNWEIGHTED N & 923 & 8473 & 2746 & 12142 \\
\hline WEIGHTED N & 133754 & 1068670 & 388401 & 1590825 \\
\hline STANDARD ERROR & 9247 & 8333 & 11362 & 11054 \\
\hline COEFF. OF VAR. & 6.91 & 0.78 & 2.93 & 0.69 \\
\hline \multicolumn{5}{|l|}{GRADE > 7} \\
\hline UNWEIGHTED N & 0 & 692 & 0 & 692 \\
\hline WEIGHTED N & 0 & 145400 & 0 & 145400 \\
\hline STANDARD ERROR & - & 13434 & - & 13434 \\
\hline COEFF. OF VAR. & - & 9.24 & - & 9.24 \\
\hline \multicolumn{5}{|l|}{TOTAL} \\
\hline UNWEIGHTED N & 923 & 10607 & 2746 & 14276 \\
\hline WEIGHTED N & 133754 & 1541468 & 388401 & 2063623 \\
\hline STANDARD ERROR & 9247 & 12429 & 11362 & 15009 \\
\hline COEFF. OF VAR. & 6.91 & 0.81 & 2.93 & 0.73 \\
\hline
\end{tabular}

Table 15.40
Spiral Sample Students Who Have Science Scale Scores (Variables SRPCMP1 to SRPCMP5)

Grade 11/Age 17

GRADE < 11
\begin{tabular}{llrrr} 
UNWEIGHTED N & 0 & 2079 & 0 & 2079 \\
WEIGHTED N & 0 & 254934 & 0 & 254934 \\
STANDARD ERROR & - & 7272 & - & 7272 \\
COEFF. OF VAR. & - & 2.85 & - & 2.85
\end{tabular}

GRADE \(=11\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 1172 & 8878 & 1694 & 11744 \\
WEIGHTED N & 127558 & 845271 & 201564 & 1174394 \\
STANDARD ERROR & 6689 & 6818 & 6903 & 8186 \\
COEFF. OF VAR. & 5.24 & 0.81 & 3.42 & 0.70
\end{tabular}

GRADE > 11
\begin{tabular}{llrrr} 
UNWEIGHTED N & 0 & 851 & 0 & 851 \\
WEIGHTED N & 0 & 101266 & 0 & 101266 \\
STANDARD ERROR & - & 7975 & - & 7975 \\
COEFF. OF VAR. & - & 7.88 & - & 7.88
\end{tabular}

TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 1172 & 11808 & 1694 & 14674 \\
WEIGHTED N & 127558 & 1201472 & 201564 & 1530594 \\
STANDARD ERROR & 6689 & 9570 & 6903 & 10636 \\
COEFF. OF VAR. & 5.24 & 0.80 & 3.42 & 0.69
\end{tabular}
\[
{ }^{-343-} 32 \div
\]

Table 15.41
Spiral Sample Students Who Have History Scale Scores (Variable HISVAL)

Grade 11/Age 17
\(<17\)
\(=17\)
TOTAL

GRADE < 11
\begin{tabular}{lllll} 
UNWEIGHTED N & 0 & 0 & 0 & 0 \\
WEIGHTED N & 0 & 0 & 0 & 0 \\
STANDARD ERROR & - & - & - & - \\
COEFF. OF VAR. & - & - & - & -
\end{tabular}
vRADE \(=11\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 819 & 5862 & 1131 & 7812 \\
WFIGHTED N & 87824 & 548766 & 135695 & 772285 \\
STAN ARD ERROR & 4649 & 5386 & 5106 & 7030 \\
UC OFF OF VAR. & 5.29 & 0.98 & 3.76 & 0.91
\end{tabular}

GRADE ; 11
\begin{tabular}{lllll} 
UNWE ICHTED N & 0 & 0 & 0 & 0 \\
WEIGHTED N & 0 & 0 & 0 & 0 \\
STANDARD ERROR & - & - & - & - \\
COEFF. OF VAR. & - & - & - & -
\end{tabular}

TOTAL
\begin{tabular}{lrrrr} 
& 819 & 5862 & 1131 & 7812 \\
UNWEIGHTED N & 819 & 135695 & 772285 \\
WEIGHTED N & 87824 & 548766 & 5386 & 5106 \\
STANDARD ERROR & 4649 & 7030 \\
COEFF. OF VAR. & 5.29 & 0.98 & 3.76 & 0.91
\end{tabular}

Table 15.42
Spiral Sample Students Who Have Literature Scale Scores (Variable LITVAL)

Grade 11/Age 17

GRADE < 11
\begin{tabular}{lllll} 
UNWEIGHTED N & 0 & 0 & 0 & 0 \\
WEIGHTED N & 0 & 0 & 0 & 0 \\
STANDARD ERROR & - & - & - & - \\
COEFF. OF VAR. & - & - & - & -
\end{tabular}

GRADE \(=11\)
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 819 & 5862 & 1131 & 7812 \\
WEIGHTED N & 87824 & 548766 & 135695 & 772285 \\
STANDARD ERROR & 4649 & 5386 & 5106 & 7030 \\
COEFF. OF VAR. & 5.29 & 0.98 & 3.76 & 0.91
\end{tabular}

GRADE > 11
\begin{tabular}{lllll} 
UNWEIGHTED N & 0 & 0 & 0 & 0 \\
WEIGHTED N & 0 & 0 & 0 & 0 \\
STANDARD ERROR & - & - & - & - \\
COEFF. OF VAR. & - & - & - & -
\end{tabular}

TOTAL
\begin{tabular}{lrrrr} 
UNWEIGHTED N & 819 & 5862 & 1131 & 7812 \\
WEIGHTED N & 87824 & 548766 & 135695 & 772285 \\
STANDARD ERROR & 4649 & 5386 & 5106 & 7030 \\
COEFF. OF VAR. & 5.29 & 0.98 & 3.76 & 0.91
\end{tabular}

Table 15.44
Weighted Means, Standard Deviations ( \(N-1\) ), and Percentilas for Reporting Groups
\(\begin{array}{rccc} & \text { MEAN } & \text { ST. [IEV. } \\ \text { WEIGED N } & & \end{array}\)
Mathematics, Grade 3
2,018,311( 1\%)
1,018,660( \(2 \%\) )
1,001,651( 2\%)






\(344,818(14 \%)\)
\(651,546(9 \%)\)

\((x Z \tau) 50 Z^{\prime} 90 Z\)
\((x \tau) 90 \tau\) '2T8'土





ETHNICITY/RACE
SIZE/TYPE OF COMMUNITY
EXTREME RURAL
LOW METROPOLIT
HIGE METROPOLITAN
BIG CITY
URBAN FRINGE
MEDIUM CITY
SMALL PLACE

\footnotetext{
parental education
GRADUATED H.S.
SOME EDUC AFTER H.S
GRADUATED COLLEGE UNKNOWN

TYPE OF SCBOOL
PUBIIC
NON-PUBLIC
}


\section*{けन○

}

－
\begin{tabular}{|c|c|c|}
\hline  &  & の¢ \\
\hline のNーmNN & ทペー & N \\
\hline こここここご & とここご & \\
\hline \(\bigcirc 0.000\) & ツツ．NO & \\
\hline がonn on &  & N \\
\hline NNNNNN & NNNN & N \\
\hline のつののへの & － & \\
\hline のง๒Nペ๓ & Nサいのロ & \\
\hline ナNNHmNN & のツNr & － \\
\hline ごここごご & こここご & \\
\hline  &  & \(\cdots \%\) \\
\hline －小n & \(\rightarrow \infty<\infty\) & － \\
\hline NかNNMN & －\({ }_{\text {N }}^{\sim}\) & N \\
\hline & & \\
\hline へへへスコこへ & すおのかの & \(\bigcirc 6\) \\
\hline けヘヘべゥゥ &  & － \\
\hline ーソーここここ & こソことい & \\
\hline กかNmemo & \(\infty\) ¢ットワ & \(\cdots \cdot\) \\
\hline 0 NNN0 ¢ ¢ & \(\bigcirc\)－ \(0 \infty\) & ヘ \\
\hline  & \(\cdots\)－N N & N \\
\hline へへへへへ & へのへの & ค \\
\hline  & \(\because \infty\) & \\
\hline ざツのmNN & のートr－ & \\
\hline こここここご & ここごー & \\
\hline －On¢6Nヶ． & ONN゚「． & \\
\hline  & ○－¢ & \\
\hline  & － & \(\stackrel{\infty}{\sim}\) \\
\hline へへへへへへ & へのへのへ & \\
\hline  & \(\cdots \cdots \cdot\) & \\
\hline いNいmmNN & さめNの & \\
\hline  & ごいごって & \\
\hline ¢． &  & \\
\hline  & Oon \({ }_{0}\) & \(5 \sim\) \\
\hline  & けッ゙ッツ & \(\rightarrow\) \\
\hline へへへへへへべ & － & \\
\hline กNJーNの．． & \(\infty\) O\％ 0 & mN \\
\hline － & ートOOO & \(\bigcirc\) \\
\hline & こ & \\
\hline  & ¢． & \\
\hline ¢－ & ○が心が & \({ }_{0}^{\infty}\) \\
\hline
\end{tabular}













 N
N
n
\(\vdots\)
N
N



\(\infty\)
-
0
0
\(N\)
\(N\) \((\varepsilon \cdot \tau) \neq \cdot O L \tau\)
\((\tau \cdot \tau) \varepsilon \cdot \varepsilon 6 \tau\)
（ \(8^{\circ}\) 2
\((ヶ \cdot \tau) 5 \cdot \varepsilon 8 I\)
\(\approx\)



N
\begin{tabular}{ll}
0 & 0 \\
\(n\) & \multirow{4}{n}{} \\
\(n\) &
\end{tabular}


ふふえ
ぶァ
WEIGETED N
\(2,028,061(1 \%)\)


\begin{tabular}{|c|}
\hline ↔ゥळの \\
\hline べ～～0 \\
\hline ごごこ \\
\hline \\
\hline ¢ON№ \\
\hline HNNNN \\
\hline
\end{tabular}
 Re
0
0
-1
-1
人
0
0
\(\infty\)
0
0
0
0
N
N
 （ \(x\) OT）\(\angle S T\)＇ss 9
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{rexer いぃいलN} \\
\hline \\
\hline ここーレー \\
\hline へッ．0 \\
\hline －om \\
\hline がロが \\
\hline  \\
\hline N－10 \\
\hline
\end{tabular}






\begin{tabular}{l}
\(\circ\) \\
\hline 0 \\
\(\circ\) \\
\hline 8 \\
0 \\
\hline 1
\end{tabular}
＜MODAL AGE
＝MODAL AGE
\(>\) MODAL AGE
REGION
NORTEEAST
SOUTEEAST
CENTRAL
WEST
XIINกWトOD コO ヨむXI／ヨZIS EXTREME RURAL
LOW METROPOLITAN LOW METROPOLITAN
URBAN FRINGE
URBAN FRINGE
MEDIUM CITY SMALL PLACE

\section*{PARENTAL EDUCATION}
GRADUATED E．S．
SOME EDUC AFTER 日．S． GRADUATED COLLEGE UNKNOWN
TYPE OF SCHOOL
\(\left(5^{\circ} 0\right) 2.5 S\)
\((\varepsilon .0) 8.09\)
\((5.0) 6.65\)
\((\varepsilon .0) \tau . \angle S\)
\((8.0) 8.75\)

N
0.
0
0
ज
ज 0
0
0
\(\sim\)
\(\infty\)
\(\infty\)
0
\(\sim\)



\(\begin{array}{llll}\infty & \infty & n \\ \infty & \infty \\ \infty & \infty \\ n & 0 \\ n & 0 & 0\end{array}\)
713
6638
2162

\begin{tabular}{l}
0 \\
\hline 0 \\
0 \\
0 \\
0 \\
0
\end{tabular} \(n\)
0
0
0
0
0
0


MEAN
\(267.1(0.6)\)
\(266.6(0.6)\)
\(267.6(0.7)\)
\(274.0(0.6)\)
\(\left.\left(8^{\circ} 0\right)\right)^{\circ} ら ヶ て\)








\(297.3(0.9)\)
\(287.2(1.0)\)




 ت
－
N
N
0
0
\(N\)

AN
\(\cdots\)
\(\cdots\)
\(\infty\)
\(\infty\)
\(\cdots\)
\(\infty\)
\(\infty\)
 0
0
0
0
0


ふかのぶへの
 N
－
\(\cdots\)
\(\cdots\)
\(\infty\)
\(\infty\) \(\infty\)
\(\infty\)
0
0
\(\sim\)
\(\sim\)
\(N\)
\(N\)
\(N\)
\(N\)

かへのかへ

 246.2

 ST．DEV．
\(-10-\)
\(203.0(1.2)\)

206．2（ 1．4）
（ \(8 \cdot 0\) ） \(8 \cdot 6\) TZ
（I「））「08I
\(186.5(2.7)\)
\(198.4(5.9)\)

186．6（ 2．2）


197．9（ 2．3）
ふめめスのふの

 Standard errors are poorly estimated．
\(\begin{array}{ll}(\varepsilon \cdot 0 & ) \\ (G \cdot 0 & ) 8 \cdot 99\end{array}\)


\section*{}
on
0
0
0
\(\sim\)
\(\sim\)




ल๓
\(\begin{array}{lll}0 & 0 & 0 \\ \infty & 0 \\ \infty & 0 \\ \infty & 0 & \vdots\end{array}\)

\section*{WEIGETED N}

16510 1，638，151（0z）
\(829,034(2 \%)\)
\(809,117(1 \%)\)


\((\varepsilon\)
\((\%\)
\(\circ\)
0
0
ッケッ
in
\((z \cdot 0) \tau \cdot 6\)
\((\tau \cdot 0) z \cdot 6\)
\((Z \cdot 0)\)
กักส
\begin{tabular}{rcc}
000 \\
\hdashline\(-\infty\) & 0
\end{tabular}
ふ் ふ்



\begin{tabular}{|c|c|c|}
\hline กิलへิ & ละ & ๗ละ \\
\hline \(\bigcirc 0000\) & \(00^{\circ}\) & － \\
\hline そこころった & ソー & \\
\hline ¢¢○の． & N． & \\
\hline  & N6 & かん 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline へへへへへへ & ๓กฏのか & ¢ & องก \\
\hline \(\bigcirc 0^{\circ}\) & ๗ल๓ツの & ¢ & セN゚ \\
\hline －00000 & 0 & 00 & 000 \\
\hline  & あぁ心のあ & ¢\％ & ○○う \\
\hline べが心ம &  & \(0{ }^{\circ}\) & \\
\hline  & らが尔 & \(\stackrel{0}{\sim}\) & がn \\
\hline
\end{tabular}


\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\stackrel{m}{N} \stackrel{+}{N} \stackrel{0}{\sim}
\]} \\
\hline \\
\hline ¢ニッ \\
\hline ¢ \\
\hline \\
\hline ธ¢๓． \\
\hline \\
\hline \\
\hline Nos \\
\hline
\end{tabular}




○おふえへ



\begin{tabular}{|c|}
\hline \multirow{8}{*}{} \\
\hline \end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline のかめめのた & ○のへべ & ¢ \(\infty\) & O \\
\hline － & －0． & \(\bigcirc\) & \\
\hline  & ¢ べっち． & ご & くご \\
\hline  &  & \[
\stackrel{\sim}{\sim} \stackrel{0}{0}
\] & No \\
\hline へへのめのごか & のかへのス & －\％ & กลิง \\
\hline งヘベゥベ & No：\(\because\) & \(\bigcirc\) & \\
\hline 戸ッがあった & ๒๕゙けスへ & －フ & このす \\
\hline No io &  & － & N－0．0 \\
\hline ○へペล๐ふ & ○○ここの & －Э & へละ \\
\hline かへへべ入入入 & － & \(0 \cdot\) & \\
\hline あちうちごくへ & のニこへニ & ごっ & が○ス \\
\hline －inNosinios & 二iosiog & ¢ ¢ & ○゙゚ \\
\hline  & NNNN & \(\stackrel{\sim}{\sim}\) & N \({ }_{\sim}^{\infty}\) \\
\hline ミのスのスヘ & ○ころへへ & すか & ぶふ \\
\hline \(\bigcirc 0000\) & －ioior & \(\bigcirc\) & \\
\hline めんこごっこ & ずいご & － & ¢べ \\
\hline へへ入入 & \(\dot{\sim}\) & \(\bigcirc \stackrel{0}{\circ}\) & \(\cdots\) \\
\hline
\end{tabular} N～～










 ～2



 278.8 （ 1.2 ）
278．8（ 1．2）
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& 52,361(34 x) \\
& 64,847(20 \%)
\end{aligned}
\] \\
\hline 160，362（16x） \\
\hline 93．680（20\％） \\
\hline 184，134（14x） \\
\hline 189，034（14x） \\
\hline 446，313（ 9\％） \\
\hline 99，782（ 5\％） \\
\hline 323，606（ 3\％） \\
\hline 259，825（ 3\％） \\
\hline 463，731（ 4\％） \\
\hline 36，893（ 6\％） \\
\hline 1，078，031（ 2\％） \\
\hline 112，703（15\％） \\
\hline 443．025（ 3x） \\
\hline 619．158（ 2\％） \\
\hline 116，234（ 7\％） \\
\hline ERRORS ARE POO \\
\hline
\end{tabular}

ERRORS ARE POORLY ESTIMATED．
N

～ 6n

\(\infty\)
\(\cdots\)
\(\cdots\)
\(\cdots\)
0
\(\cdots\)
\(\cdots\)
\(\cdots\)
\(m\)



 6）

 かんたへへの

\(\left(I^{\circ} Z\right) 0^{\circ} Z Z E\)
\(\left(9^{\circ} \tau\right) 9^{\circ} 90 \varepsilon\)
 ゥ


\(\begin{array}{ll}\infty & 0 \\ \cdots & 0 \\ \sim & 0 \\ v & 0 \\ \cdots & 0 \\ \cdots & 0\end{array}\)
앙
\[
\begin{aligned}
& \begin{array}{l}
\text { ges and General Reading Proficiency Means, Grade } 3 \\
\text { Total Sample }
\end{array} \\
& \text { MISSING } \\
& 0 \\
& \begin{array}{ll}
0 & 0 \\
0 & 0
\end{array} \\
& \begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array} \\
& \stackrel{0}{0} \\
& \begin{array}{c}
\text { TOTAL } \\
100.0(0.0) \\
38.0(0.2)
\end{array} \\
& \begin{array}{r}
100.0(0.0) \\
37.2(0.2) \\
100.0(0.0) \\
38.8(0.2)
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{r}
100.0(0.0) \\
34.3(0.5) \\
100.0(0.0) \\
36.6(0.4)
\end{array} \\
& \begin{array}{l}
\circ \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1
\end{array} \\
& \begin{array}{c}
n \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\infty
\end{array} \\
& \begin{array}{r}
100.0(0.0) \\
40.1(0.3)
\end{array} \\
& \begin{array}{r}
100.0(0.0) \\
37.4(0.2)
\end{array} \\
& \begin{array}{r}
\text { WEIGRTED N } \\
1,812,279(17)
\end{array} \\
& \begin{array}{l}
\text { ( } x \text { ) } E \angle O^{\prime} z \tau 6 \\
(x \tau) S O Z^{\prime} 006
\end{array} \\
& \begin{array}{l}
(z Z)+8 Z^{\prime} 6 ร z \\
(\% \tau) 9 z \text { ' }^{\prime} 85 Z^{\prime} \tau
\end{array} \\
& (x \varepsilon)<8 L^{\prime} 065 \\
& \begin{array}{l}
2 \\
x \\
- \\
\sim \\
\infty \\
0 \\
0 \\
0
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \text { 230,851(5\%) } \\
& \begin{array}{l}
97,670(6 \%) \\
565,470(2 x)
\end{array} \\
& \begin{array}{l}
565,470(2 x) \\
822,202(2 x)
\end{array} \\
& =\begin{array}{l}
m \\
\vdots \\
\hline
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{ll}
\text { 오 } & \text { N } \\
\text { N } \\
\text { O } & \infty \\
n & -1
\end{array} \\
& \begin{array}{l}
n \\
\infty \\
\infty \\
- \\
-
\end{array} \\
& \begin{array}{l}
n \\
\infty
\end{array} \\
& \begin{array}{r}
512 \\
3029
\end{array} \\
& \begin{array}{l}
10 \\
0 \\
\vdots \\
\hline
\end{array}
\end{aligned}
\] TOTAL --
MALE
FEMALE
ETHNICITY/RACE
WHITE
BLACK
bispanic
OTHER
parental education
LESS THAN H.S.
GRADUATED H.S.
SOME EDUC AFTER H.S.
GRADUATED COLLEGE
Heighted Response Percentages and General Reading Proficiency Means，Grade 3
by Sex of Subject
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 0 \\
& \text { O } \\
& \text { H } \\
& 0 \\
& 0 \\
& \mathbf{N}
\end{aligned}
\] & \[
0
\] & \[
0
\] & \[
0
\] & \[
0
\] & \[
0
\] & \[
0
\] & \[
0
\] & \[
0 .
\] & \[
\begin{aligned}
& \circ \\
& 0
\end{aligned}
\] & \[
0
\] & \[
0
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] \\
\hline \(\omega\) & \[
\approx \mathbb{N}
\] & \[
\hat{O} \hat{O}
\] & \[
\widehat{O}
\] & \[
\widehat{\sigma} \widehat{\omega}
\] &  &  & \[
\begin{aligned}
& n \underset{n}{n} \\
& m i
\end{aligned}
\] & \[
\begin{array}{ll}
\infty \\
\text { N } \\
\text { NO }
\end{array}
\] & \[
\begin{aligned}
& n \\
& i 0 \\
& i 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { 人 } \\
& \dot{\sigma} \\
& \dot{N}
\end{aligned}
\] & \[
\begin{aligned}
& \text { or } \\
& 0 \\
& 0
\end{aligned}
\] & \[
\stackrel{\sim}{\pi}
\] \\
\hline \[
\underset{\substack{\underset{N}{2} \\ \multirow{2}{|c}{\hline}\\ \hline}}{ }
\] & \[
\begin{aligned}
& \sim \infty \\
& \dot{\circ} \infty \\
& 0 \\
& n
\end{aligned}
\] &  &  & \[
\begin{aligned}
& \text { No } \\
& \dot{\circ} \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ־~ } \\
& \text { ? } \\
& \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \sim \sim \\
& 0 . \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \sim \\
& \text { N } \\
& \text { w }
\end{aligned}
\] & \[
\begin{aligned}
& \text { m } \\
& \text { mi } \\
& \text { in m }
\end{aligned}
\] &  &  & \[
\] & \[
\begin{aligned}
& \approx \sim \\
& \sim \text { No } \\
& \text { Ni }
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \pi \\
& 0 \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& \hat{N} \\
& 00 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 00 \\
& 00 \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& 00 \\
& 00
\end{aligned}
\] & \[
\begin{gathered}
\pi \\
\\
\sim 0
\end{gathered}
\] & \[
\begin{aligned}
& \infty \\
& \infty \\
& \text {-i }
\end{aligned}
\] & \[
\begin{aligned}
& \hat{n} \\
& \dot{\infty} \\
& \text { mo }
\end{aligned}
\] & \[
\begin{aligned}
& \hat{\sim} \\
& \underset{\sim}{n} \\
& \text { No }
\end{aligned}
\] & nin &  & \[
\begin{aligned}
& \text { ब̃ } \\
& 00
\end{aligned}
\] &  \\
\hline \[
\stackrel{4}{4}
\] & \[
\begin{aligned}
& \sim \\
& N \\
& \dot{N} \\
& \cdots
\end{aligned}
\] & \[
\begin{aligned}
& \text { ON } \\
& \dot{0} \underset{\sim}{\circ} \\
& 0
\end{aligned}
\] & － &  & \[
\] & \[
\begin{aligned}
& \text { ǒ } \\
& \text { GN } \\
& \text { जN }
\end{aligned}
\] & \[
\begin{aligned}
& \sim \\
& \infty \\
& \dot{n} \\
& \dot{N}
\end{aligned}
\] & \[
\begin{aligned}
& \approx= \\
& \\
& \dot{\sim} \dot{\sim}
\end{aligned}
\] & \[
\begin{aligned}
& \text { n } \\
& \text { n } \\
& \text { in } \\
& n
\end{aligned}
\] & \[
\begin{aligned}
& \because \\
& \text { ry } \\
& \text { nin }
\end{aligned}
\] & \[
\begin{aligned}
& \sim \\
& \text { N } \\
& \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ־ } \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline z & \[
\underset{\sim}{\mathrm{H}}
\] & \[
\underset{\substack{e x}}{\substack{e \\ \hline}}
\] & \[
\underset{\sim}{\mathrm{K}}
\] & \[
\underset{\sim}{n}
\] & \[
\underset{N}{N}
\] & \[
\underset{\sim}{x}
\] & rer & \[
\mathfrak{N}
\] & \[
\underset{8}{8}
\] & \[
\underset{i}{2}
\] & \[
\underset{N}{\mathcal{N}}
\] & \[
\underset{N}{x}
\] \\
\hline  &  & \[
\begin{aligned}
& \text { n } \\
& \text { N } \\
& \text { N } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  & \[
\begin{aligned}
& \sim \\
& \underset{N}{n} \\
& \sim \\
& \infty \\
& \infty \\
& N \\
& N \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \infty \\
& N \\
& \sim \\
& \text { on } \\
& N
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { N } \\
& \infty \\
& 0 \\
& 0 \\
& \text { © }
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \infty \\
& N \\
& N \\
& n \\
& n
\end{aligned}
\] & \[
\begin{aligned}
& \sim \\
& n \\
& \infty \\
& 0 \\
& 0 \\
& N
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { O } \\
& \text { o } \\
& \text { in } \\
& 0 \\
& 0
\end{aligned}
\] & N
N
N
N
N \\
\hline \％ & \[
\begin{aligned}
& \text { か } \\
& \text { か } \\
& \text { か }
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{2} \\
& \mathbf{\sigma}
\end{aligned}
\] & \[
\] & \[
\begin{aligned}
& \text { O} \\
& \text { N } \\
& \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\underset{\sim}{\boldsymbol{N}} \\
\boldsymbol{N}
\end{gathered}
\] & \[
\begin{aligned}
& \text { N } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { n } \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& J \\
& J
\end{aligned}
\] & \[
\begin{aligned}
& n \\
& \underset{\sim}{N} \\
& \underset{\sim}{n}
\end{aligned}
\] & \[
\underset{\sim}{N}
\] & \[
\begin{aligned}
& \text { on } \\
& \mathbf{N} \\
& \text { n }
\end{aligned}
\] & \begin{tabular}{l}
6 \\
0 \\
+ \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\(20.5(0.3)\) & \(22.8(1.7)\) & \(27.8(1.7)\) & \(28.8(0.6)\) \\
\(39.1(0.3)\) & \(37.2(0.3)\) & \(39.2(0.4)\) & \(36.8(0.4)\) \\
& & & & \\
& & & \\
\(21.0(0.6)\) & \(22.1(1.8)\) & \(27.9(1.9)\) & \(28.9(0.6)\) \\
\(38.5(0.6)\) & \(36.1(0.4)\) & \(38.3(0.4)\) & \(36.0(0.4)\) \\
\(20.0(0.6)\) & \(23.6(1.7)\) & \(27.6(1.6)\) & \(28.8(0.8)\) \\
\(39.7(0.3)\) & \(38.1(0.4)\) & \(40.0(0.5)\) & \(37.7(0.5)\)
\end{tabular}
\(37.7(0.5)\)



\(58.5(6.8)\)
\(35.1(1.3)\)




of
io
-
in
in
Fo
No
No
Mo
Mo


Fo
\(\vdots i\)
in
m
0
0
0


N
NO
N
No
NO

\(11.7(2.3)\)
\(31.1(1.0)\)





\(900,205(1 Y)\)
\(912,073(12)\)



\(=\stackrel{\stackrel{9}{5}}{\stackrel{\circ}{6}}\)
\(\stackrel{\sim}{\infty} \underset{\sim}{\infty}\) 웅
\begin{tabular}{lll}
\(\vec{N}\) & \multirow{6}{\infty}{} & \(\tilde{\sim}\) \\
-1 & \(\underset{\sim}{\infty}\) & \\
\end{tabular}
\(\stackrel{\rightharpoonup}{v}\)
1235
512
\begin{tabular}{cc}
\(\underset{\sim}{0}\) & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & 0 & \(\bigcirc\) & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) \\
\hline \({ }_{H}\) & . & - & - & . & - & & - & & & & & - \\
\hline ¢ & 0 & 0 & \(\bigcirc\) & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & \(\bigcirc\) & 0 \\
\hline \(\omega\) & & & & & & & & & & & & \\
\hline \(\underset{\sim}{8}\) & & & & & & & & & & & & \\
\hline
\end{tabular}


\title{
N agiegiam \\ (zT) 6くて'2T8'
}

\begin{tabular}{|c|c|c|c|}
\hline - & 0 & - & \(\sim\) \\
\hline \(\cdots\) & N & \(\stackrel{N}{\infty}\) & * \\
\hline \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline \(\stackrel{\sim}{\sim}\) & \(\pm\) & \(\underset{\infty}{\infty}\) & N \\
\hline n & \(\sim\) & \(\stackrel{\sim}{0}\) & \(\infty\) \\
\hline \(\infty\) & os & 0 & ¢ \\
\hline \% & \(\stackrel{\sim}{\sim}\) & \(\stackrel{\square}{-1}\) & \(\bigcirc\) \\
\hline
\end{tabular}



Weighted Response Percentages and General Reading Proficiency Means，Grade 3


\(48.9(1.2)\)
\(38.0(0.3)\)

\(44.6(1.5)\)


\(0.0(0.0)\)
\(\star \star \star \star \star(0.0)\)
\(0.0(0.0)\)
\(* * * *(0.0)\)
\(0.0(0.0)\)
\(* * * * *(0.0)\)
-
0
0
0
0
\(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)
TOD ave UNKNOWN
（6．0）6．5ヶ（8．0）9＇โを
\(40.1(0.3) \quad 37.4(0.2)\)
 \((\varepsilon \cdot 0) z \cdot \tau 力\)
\((0 \cdot \tau) \varepsilon \cdot 6 z\)
 NT
NO
N
No



\(0.0(0.0)\)
\(* * * * *(0.0)\) 0
0
0
0
0 0.0
0.0
0
0
0
0 \begin{tabular}{l}
0 \\
0 \\
0 \\
0 \\
\(\vdots\) \\
\(\vdots\) \\
\hline-
\end{tabular} o
0
0
\(\vdots\)
\(\vdots\)
0
 0
0
\(*\)
\(*\)
\(*\)
\(*\)


in
\(\therefore 0\)
ni
io



00
0.0
0.0
0.
0
0
0
\(\left.\begin{array}{rr}0.0( & 0.0\end{array}\right)\)
6
0
0
0
0
0
0
0
0
0
\(0.0(0.0)\)
\(* * * *(0.0)\)
0.0
00
\(0-\)
0
0
0
0

\begin{tabular}{l}
- \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\(\vdots\) \\
0 \\
0 \\
0 \\
\hline-
\end{tabular}
\(100.0(0.0) \quad * * * * *(0.0)\)
\(34.3(0.5)\)

0
0
0
0
0
0

\(\left.\begin{array}{r}0.0\left(\begin{array}{ll}0 & 0\end{array}\right) \\ * * * *\left(\begin{array}{l}0\end{array}\right. \\ 0.0\end{array}\right)\)
10
0.0
00
0
0
0
0
0

\(0.0(0.0)\)
\(* * * * *(0.0)\)
\(0.0(0.0)\)
\(0.0(0.0)\)
\(* * * *(0.0)\)


9596
N
9656
4861
4795
（xI ）zヶ8＇98て＇し


\(\begin{array}{ll}\vec{n} & \stackrel{\rightharpoonup}{\infty} \\ \stackrel{\sim}{\sim}\end{array}\)


\(62,263(5 x)\)
\(75,738(7 x)\) \(230.851(5 \%)\)
\(97.670(6 z)\) \(230.851(5 z)\)
\(97.670(6 z)\) \(230.851(5 z)\)
\(97.670(6 z)\)




Table 15.57
Weighted Response Percentages and General Reading Proficiency Means, Grade 3 MISSING
n
\(\stackrel{\rightharpoonup}{i}\)
\(\stackrel{N}{\sim}\)

\(\begin{array}{lllll}0 & 0 & N & \ddot{0} & N \\ 0 & 0 & 0 & 0 & 0\end{array}\)

Weighted Reaponse Percentagea and General Reading Proficiency Means, Grade 3 MISSING \(\begin{array}{lll}-i & m & 0 \\ -i & -i & i\end{array}\) \(\overrightarrow{-i} \quad \overrightarrow{~-~}\) \(\stackrel{\infty}{\circ}\) \begin{tabular}{lllll}
\multirow{1}{*}{} & \(\vdots\) & \(\dot{0}\) & \(N\) & \(n\) \\
0 & 0 & 0 & 0 & 0
\end{tabular}


\((2.0) s \cdot 5 \varepsilon \quad(2.0) 5 \cdot 6 \varepsilon \quad(\varepsilon \cdot 0) \varepsilon \cdot 6 \varepsilon\)

 io ( \(0^{\circ} 10\) ) 8.82
\(n\)
\(-i\)
-
\(i\)
\(i\)







\(35.7(2.2)\)
\(35.8(0.7)\) \begin{tabular}{c}
0 \\
\(\dot{o}\) \\
\(\dot{0}\) \\
0 \\
\(\vdots\) \\
0 \\
\hline
\end{tabular} 36.8( 0.4 )

Ne
nio
n
in
in กลง ニn กn
\begin{tabular}{ll}
\(28.5(1.2)\) & \(35.7(1.1)\) \\
\(38.6(0.4)\) & \(38.7(0.3)\) \\
\(34.1(1.2)\) & \(33.7(0.7)\) \\
\(39.9(0.3)\) & \(40.4(0.3)\)
\end{tabular}

\(\infty\)
\begin{tabular}{ll}
\(28.0(3.5)\) & \(28.3(2.8)\) \\
\(34.9(1.1)\) & \(35.5(0.7)\) \\
\(29.3(2.2)\) & \(34.3(1.7)\) \\
\(37.5(0.6)\) & \(38.2(0.5)\) \\
\(31.2(2.9)\) & \(33.2(2.7)\) \\
\(39.1(0.8)\) & \(40.7(0.9)\) \\
\(32.7(1.4)\) & \(36.6(1.3)\) \\
\(42.0(0.4)\) & \(41.2(0.3)\) \\
\(31.3(1.1)\) & \(34.2(0.7)\) \\
\(38.2(0.4)\) & \(38.8(0.2)\)
\end{tabular}
\(33.5(1.3)\)
\(40.7(0.3)\)
\(21.9(1.4)\)
\(34.3(0.7)\)
\(29.4(2.2)\)
\(33.8(0.4)\)
\(31.3(4.0)\)
\(37.3(1.1)\)
\(28.0(3.5)\)
\(34.9(1.1)\)
\(29.3(2.2)\)

\(32.7(1.4)\)
न-
-io
m
लi
m

WEIGETED N

(2I) 085'888
-
(xT)216'z06
1,284.355(12)
(xع ) 9عz'88I
(xz )0<L'ssz

63.141(47)

229.80\% (5x)

97,305(6\%)
564.592(2\%)

\(\infty\)
\(\stackrel{\infty}{\infty}\)
\(\infty\)
998ヶ
4802


N \(\begin{gathered}\text { N } \\ \text { N }\end{gathered}\)
\(\infty\)
\(\infty\)
\(\infty\)
\(\begin{array}{ll}\text { N } \\ \text { N } \\ \text { N } & \text { J }\end{array}\)

> Grade 3

Table 15.59
Weighted Response Percentages and General Mathematics Proficiency Means,
Total Sample
ONISSIW
0 \(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\)


 \(\begin{array}{ll}\infty \\ \underset{\sim}{\infty} & \stackrel{n}{n} \\ i\end{array}\) 5357会 \(\begin{array}{ll}\text { n } \\ \text { 莫 } \\ 0 & \text { N }\end{array}\)
 \(\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}\) \(\stackrel{m}{\underset{j}{*}} \stackrel{\infty}{\infty}\) N N \(\begin{array}{ll}\infty & 0 \\ & 0 \\ m & 0\end{array}\)
                    -- TVLOI









Weighted Response Percentages and General Mathematics Proficiency Means, Grade 3


\section*{Table 15.61}
Weighted Response Percentases and General Mathematics Proficiency Means, Grade 3




WEIGHTED N
\(2,018,312(1 \%)\)

ع єpex
\[
\text { Table } 15.63
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{N} & \multirow[t]{2}{*}{WEIGHTED} & \multirow[t]{2}{*}{} & \multicolumn{5}{|l|}{by Level of Parents' Education} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{GRAD COL}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{UNKNOWN}} \\
\hline & & & NOT & HS & GRAD & & POST HS & & & & \\
\hline \multirow[t]{2}{*}{10771} & 1,990,867( & & 4.14 & \(0.2)\) & 13.06 & 0.7) & 5.5 ( 0.3) & \(31.7(\) & 0.9) & 45.8 ( & 0.9) \\
\hline & & & 195.36 & 2.0) & 205.56 & 1.2) & 217.8(1.9) & 221.31 & 0.9) & 209.0 ( & 0.7) \\
\hline \multirow[t]{2}{*}{5493} & 1,001,8706 & & 3.81 & 0.3) & 13.7 ( & 0.8) & 5.8( 0.4 ) & \(33.7(\) & 1.1) & 42.91 & 1.0) \\
\hline & & & 195.16 & 2.3) & 205.0\% & 1.6) & 216.9(2.5) & 221.9( & 1.1) & 209.2( & 1.0) \\
\hline \multirow[t]{2}{*}{5278} & 988,997( & & 4.4 ( & 0.3) & 12.35 & 0.8) & \(5.1(0.4)\) & 29.51 & 1.0) & 48.71 & 1.1) \\
\hline & & & 195.46 & 3.0) & 206.06 & 1.4) & 218.8( 2.8 ) & 220.6( & 1.1) & 208.8( & 1.1) \\
\hline \multirow[t]{2}{*}{6567} & 1,433,4246 & & 3.81 & 0.3) & 12.71 & 0.8) & 5.5(0.3) & 32.51 & 1.1) & 45.51 & 1.0) \\
\hline & & & 201.86 & 3.0) & 213.51 & 1.2) & 226.7(2.2) & 229.2( & 0.8) & 215.80 & 0.9) \\
\hline \multirow[t]{2}{*}{2008} & 284,850( & & 5.16 & 0.7) & 12.85 & 1.0) & \(5.3(0.5)\) & \(31.2(\) & 1.4) & 45.6( & 1.9) \\
\hline & & & 181.86 & 3.1) & 181.36 & 2.2) & 190.4: 3.3) & 192.9 ( & 1.5) & 186.7 ( & 1.8) \\
\hline \multirow[t]{2}{*}{1820} & 20E,320 & 3x) & 5.66 & 0.6) & 15.21 & 1.1) & 5.5 ( 0.7 ) & 25.8( & 1.7) & 46.91 & 2.0) \\
\hline & & & 182.96 & 4.7) & 190.6( & 2.5) & 199.8(4.4) & 202.0 ( & 3.3) & 193.26 & 1.5) \\
\hline \multirow[t]{2}{*}{376} & 66.273 & & 2.36 & 0.8) & 11.97 & 2.0) & 3.4(1.1) & 33.8 ( & 3.2) & 48.76 & 4.1) \\
\hline & & & 185.66 & 8.9) & 191.3 ( & 4.9) & 198.0(13.1) & 216.4 ( & 3.7) & 207.51 & 3.1) \\
\hline \multirow[t]{2}{*}{473} & 81,939( & 5\%) & 10C.0 & 0.0) & 0.02 & \(0.0)\) & \(0.0(0.0)\) & 0.01 & 0.0) & 0.01 & 0.0) \\
\hline & & & 195.36 & 2.0) & ***** & \(0.0)\) & ***** (0.0) & ***** & 0.0) & ***** & 0.0) \\
\hline \multirow[t]{2}{*}{1383} & 258,258( & & 0.06 & 0.0) & 100.0 ( & 0.0) & \(0.0(0.0)\) & 0.01 & 0.0) & 0.06 & 0.0) \\
\hline & & & ***** & 0.0) & 205.5( & 1.2) & ***** ( 0.0) & ***** & 0.0) & ***** & 0.0) \\
\hline \multirow[t]{2}{*}{572} & 108.824 & 5x) & 0.06 & 0.0) & 0.01 & 0.0) & 100.0( 0.0) & 0.01 & 0.0) & 0.01 & 0.0) \\
\hline & & & ***** & 0.0) & *****( & \(0.0)\) & 217.8( 1.9) & ***** & 0.0) & *****( & 0.0) \\
\hline \multirow[t]{2}{*}{3379} & 630,423 & 3x) & 0.06 & 0.0) & 0.01 & \(0.0)\) & \(0.0(0.0)\) & 100.0 ( & 0.0) & 0.00 & 0.0) \\
\hline & & & ***** & 0.0) & ***** & \(0.0)\) & ***** ( 0.0) & 221.3 ( & 0.9) & ***** & 0.0) \\
\hline \multirow[t]{2}{*}{4964} & 911.423( & 2x) & 0.01 & 0.0) & 0.01 & \(0.0)\) & \(0.0(0.0)\) & 0.01 & 0.0) & 100.0 ( & 0.0) \\
\hline & & & ***** & 0.0) & *****( & 0.0) & ***** ( 0.0) & ***** & 0.0) & 209.0 ( & 0.7) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline &  & \[
\stackrel{n}{\sim}
\] & \[
\stackrel{n}{n}
\] & \[
\underset{i}{7}
\] & \[
\underset{\sim}{N}
\] & \[
\stackrel{\infty}{\sim}
\] & \[
\stackrel{\circ}{\infty}
\] & \[
\stackrel{\oplus}{i}
\] & \[
\stackrel{\omega}{0}
\] & \[
\begin{aligned}
& \stackrel{\bullet}{\circ} \\
& \stackrel{1}{2}
\end{aligned}
\] & \(\stackrel{\sim}{0}\) & \(\cdots\) & \(\stackrel{3}{3}\) \\
\hline & & \[
\begin{aligned}
& \sigma \\
& 0 . \\
& \div 0 .
\end{aligned}
\] & \[
\begin{aligned}
& 6 \widehat{\infty} . \\
& \dot{\circ} .
\end{aligned}
\] & \[
\begin{gathered}
\hat{i} \\
\underset{\sim}{i}
\end{gathered}
\] &  & \[
\begin{gathered}
\hat{O} \mathrm{O} \\
-\mathrm{N}
\end{gathered}
\] & \[
\begin{aligned}
& \underset{\sim}{n} \\
& \underset{\sim}{2}
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \infty \\
& \dot{\sim} \stackrel{\sigma}{\circ}
\end{aligned}
\] & \[
\underset{\sim}{\sim} \underset{\sim}{\sim}
\] & \[
\begin{gathered}
\mathcal{F} \\
\underset{\sim}{i}
\end{gathered}
\] & \[
\] & \[
\begin{gathered}
\hat{\sim} \\
\underset{\sim}{\circ}
\end{gathered}
\] & \[
0 .
\] \\
\hline \(\stackrel{\circ}{8}\) & \(\cdots\) & \[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{~N} \\
& \mathrm{~N} \\
& \mathrm{~N}
\end{aligned}
\] & \[
\begin{aligned}
& \approx \infty \\
& \underset{N}{n} \underset{N}{n}
\end{aligned}
\] &  &  & \[
\begin{aligned}
& \text { on } \\
& \text { on } \\
& \text { or }
\end{aligned}
\] & \[
\begin{aligned}
& \text { い } \\
& \underset{\sim}{\infty} \\
& \underset{\sim}{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& -\infty \\
& \infty \\
& \infty \\
& \sim
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \infty=\underset{\sim}{\infty} \underset{\sim}{-}
\end{aligned}
\] & \[
\begin{aligned}
& \check{o} \\
& \underset{\sim}{\circ} \\
& \dot{N}
\end{aligned}
\] &  &  &  \\
\hline ¢
+
－ & & \[
\begin{aligned}
& n \\
& \vdots 0 \\
& 0 \\
& 0
\end{aligned}
\] & 6ヘ & ¢ & ¢0． &  &  &  & 示 & \[
\begin{gathered}
\sigma \\
\underset{\sim}{N} \\
\underset{N}{N}
\end{gathered}
\] & \[
\stackrel{n}{\sim} \underset{\sim}{N}
\] & on & へ0． \\
\hline  & \(\checkmark\) & \[
\begin{aligned}
& \sim \\
& N \\
& \text { in } \\
&
\end{aligned}
\] & \[
\begin{aligned}
& \text { m. } \\
& \dot{0} . \\
& \text { in }
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { へ } \\
& \dot{\sim} \underset{\sim}{N} \\
& \text { NN }
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { ־. } \\
& \dot{n} \underset{\sim}{n} \\
& \text { No }
\end{aligned}
\] & \[
\begin{aligned}
& \check{\sim} \\
& \underset{\sim}{\infty} \underset{\sim}{\sim} \\
& \underset{\sim}{n}
\end{aligned}
\] & \[
\begin{aligned}
& \text { m. } \\
& \text { ñ } \\
& \text { No }
\end{aligned}
\] &  &  &  & \[
\begin{aligned}
& \because \underset{~-~}{n} \\
& \text { Ni } \\
& \text { Ni }
\end{aligned}
\] \\
\hline ิ & & \[
\begin{aligned}
& \infty \\
& \infty \\
& \dot{\infty} \dot{0}
\end{aligned}
\] & \[
\stackrel{\leftrightarrow}{\circ} \underset{\sim}{\circ}
\] & \[
\begin{gathered}
\underset{\sim}{\infty} \\
\therefore \dot{0}
\end{gathered}
\] &  & \[
\begin{gathered}
\underset{\sim}{~} 0 \\
i
\end{gathered}
\] & \[
\begin{aligned}
& \infty \hat{N} \\
& \dot{\sim}-\dot{N}
\end{aligned}
\] & \[
\begin{aligned}
& \equiv n \\
& m i
\end{aligned}
\] & \[
\begin{aligned}
& \text { No } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& i \\
& i
\end{aligned}
\] & \[
\begin{gathered}
\hat{N} \\
\text { No }
\end{gathered}
\] & \[
\underset{\infty}{\infty} \underset{\sim}{\sim}
\] & へ－ \\
\hline & 10 &  & \[
\begin{aligned}
& \text { ov } \\
& \text { o } \\
& \text { ó } \\
& \text { No }
\end{aligned}
\] &  &  &  &  & \[
\begin{aligned}
& \sim \\
& \stackrel{y}{*} \\
& \dot{\sim} \dot{0} \\
& \text { No }
\end{aligned}
\] &  & \[
\begin{aligned}
& \infty \\
& \infty \\
& \stackrel{\infty}{\infty} \\
& \stackrel{\sim}{\omega}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{\infty} \\
& \dot{\omega} \\
& \dot{\sim} \dot{\sim} \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { F } \\
& \stackrel{N}{\infty} \\
& \stackrel{\infty}{\infty} \\
& \sim N
\end{aligned}
\] &  \\
\hline & 2 & 品 & 感 & 水 & \[
\underset{\sim}{\sim}
\] & ～ & \(\stackrel{\sim}{*}\) & \[
\widetilde{\sim}
\] & Ki & \[
\underset{n}{2}
\] & \[
\frac{2}{n}
\] & \[
\underset{\infty}{\stackrel{N}{\infty}}
\] & Nis \\
\hline &  & \[
\begin{aligned}
& - \\
& \stackrel{-}{1} \\
& \underset{\sim}{\infty} \\
& \infty \\
& \infty \\
& -i
\end{aligned}
\] &  &  &  & \[
\begin{aligned}
& \breve{r} \\
& \underset{\sim}{0} \\
& \dot{+} \\
& \underset{\sim}{\infty}
\end{aligned}
\] &  & \[
\begin{aligned}
& \sim \\
& \sim \\
& N \\
& \vdots \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& \breve{n} \\
& \underset{y}{n} \\
& -i
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \text { No }
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{n} \\
& \stackrel{1}{n} \\
& \infty \\
& \stackrel{\rightharpoonup}{-}
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { in } \\
& \text { No }
\end{aligned}
\] & \[
\begin{aligned}
& \text { n } \\
& \text { N } \\
& \text { N } \\
& \text { o } \\
& \hline 8
\end{aligned}
\] \\
\hline & \(z\) & \[
\begin{aligned}
& \text { in } \\
& \stackrel{i}{0}
\end{aligned}
\] & \[
\begin{aligned}
& \hat{\infty} \\
& \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\circ}{\circ} \\
& \stackrel{\sim}{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N } \\
& 0
\end{aligned}
\] & \[
\hat{\mathrm{N}}
\] & \[
\underset{-1}{-\underset{\sim}{-1}}
\] & \[
\stackrel{\varrho}{i}
\] & \[
\begin{aligned}
& \text { o } \\
& \hline \mathbf{0}
\end{aligned}
\] & \[
\underset{\sim}{n}
\] & \[
\stackrel{\circ}{n}
\] & \[
\stackrel{\rightharpoonup}{\stackrel{N}{\infty}}
\] & \[
\begin{aligned}
& \text { oi } \\
& \stackrel{8}{\sigma}
\end{aligned}
\] \\
\hline
\end{tabular}


Neighted Response Percentages and General Science Proficiency Means, Grade 3 Totai Sample TOTAL MISSING
\(0 \quad 0\)
\(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\)
\(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\)
Weighted Response Percentages and General Science Proficiency Means, Grade 3
-
0
2
-1
0
0
0
\(\Delta\)
by Sex of Subject
\begin{tabular}{cr} 
MALE & \multicolumn{1}{c}{ FEMALE } \\
& \\
\(49.8(0.6)\) & \(50.2(0.6)\) \\
\(212.0(0.9)\) & \(212.2(0.8)\) \\
& \\
& \\
\(100.0(0.0)\) & \(0.0(0.0)\) \\
\(212.0(0.9)\) & \(\star \star * * *(0.0)\) \\
\(0.0(0.0)\) & \(100.0(0.0)\) \\
\(\star \star \star \star *(0.0)\) & \(212.2(0.8)\)
\end{tabular}


ल̈
-i
-
i
n

\(\left(0^{\circ} \%\right) 0^{\circ} 50 Z\)
\(\left(9^{\circ} \varepsilon\right)\)





Table 15.67
WEIGHIED N
\(2,028,061(1 z)\)
\(1,009,292(1 z)\)
\(1,018,770(2 \%)\)



\(n\)
\(n\)
\(n\)
\(n\)
\(\infty\)
\(\infty\)
\(\cdots\)
\(\infty\)
\(\infty\)
0
\(\begin{array}{cc}n & 0 \\ n & 0 \\ \approx & - \\ n & 0 \\ 0 & 0 \\ \infty & n \\ \infty & n \\ & n\end{array}\)

\(110,858(5 \%)\)
\(643,297(3 \%)\)

\(z\)

\section*{\(9 ヶ 0\) IL}
\(9<75\)
\(0<55\)
\begin{tabular}{ll}
\(n\) & \(\vec{N}\) \\
0 & N \\
\multirow{1}{n}{} & N
\end{tabular}
\(\begin{array}{ll}\vec{N} & \overrightarrow{~ r} \\ \text { N } \\ \text { N }\end{array}\)
\(\begin{array}{ll}-\quad & \stackrel{\infty}{\sigma} \\ \vec{\sigma} & \infty \\ \underset{\sim}{\sigma} & \end{array}\)
\begin{tabular}{l}
\(\infty\) \\
0 \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\infty\) \\
\(\infty\) \\
\multirow{4}{\sim}{} \\
\(\sim\)
\end{tabular}
\(\infty\)
\(\infty\)
\(n\)
3442
\begin{tabular}{c}
\(\pm\) \\
\multirow{2}{*}{} \\
\(\rightarrow+\)
\end{tabular}

\section*{-- TVIOI}

\section*{ETHNicity/Race}

FEMALE
BLACK
HISPANIC
OTHER
PARENTAL EDUCATION
LESS THAN H.S.
GRADUATED H.S.
SOME EDUC AFTER H.S.
GRADUATED COLLEGE
UNKNOWN
\(C: E\)
\[
\text { Table } 15.68
\]
Weighted Response Percentages and General Science Proficiency Means, Grade 3 by Region of Country
\begin{tabular}{lllllllllll}
0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(H\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}


970 亿
N
\begin{tabular}{|c|c|}
\hline \(\omega\) & \(\bigcirc\) \\
\hline \(\stackrel{7}{0}\) & N \\
\hline - & \(n\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(n\) & \multicolumn{1}{r}{} \\
0 & 0 \\
0 & 0 \\
0 & \(N\)
\end{tabular}

\section*{TT6T}
396
86\%
1366
588
3442
5
0
0
\(\vdots\)

Weighted Response Percentages and General Science Proficiency Means, Grade 3

WEIGHTED N
(xI) 10T•000'z
\((6.0) 5.40 z\)
\((6.0) 2.5 \%\)
\(42.0(1.1)\) 207.2(1.1)

\(\begin{array}{rr}33.7(1.3) & 44.2(1.1) \\ 233.6(1.0) & 217.8(1.0)\end{array}\)
6
-
\(=2\)
\(=0\)
0
\(\vdots\)



(0.0) 0.0 O

\(0.0(0.0)\)
\(* * * * *(0.0)\)
\(0.0(0.0)\) *****( 0.0 )

\((0.0) 5.602\)
\(995,136(1 \%)\)
\(1,004,965(2 \%)\)
 \(\qquad\)

天
N
N
-
\(\underset{\sim}{-}\)
\(\underset{\sim}{-}\)
 6
0
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
0 \((x 9) 706 \times \varepsilon \varsigma z\)
\((x \varsigma) 500 \cdot 88\)



\section*{聿} 89801

\(\begin{array}{ll}\underset{\sim}{\boldsymbol{-}} & \stackrel{\circ}{\boldsymbol{\circ}} \\ \stackrel{\circ}{\boldsymbol{\circ}}\end{array}\)
\(\stackrel{\infty}{\stackrel{\infty}{\#}} \stackrel{\stackrel{\circ}{*}}{\sim}\)
\(\begin{array}{ll}\infty & \infty \\ \stackrel{\infty}{-} & \infty \\ \sim & \sim\end{array}\)
\(\stackrel{\rightharpoonup}{\circ}\)
-. TVIOI

*
Weighted Response Percentages and General Science Proficiency Means，Grade 3
Table 15.71
MISSING
by Articles in the Home
\(\begin{array}{lll}\infty & \infty & n \\ i & -i & i\end{array}\)
\(\begin{array}{cccc}\oplus & 0 & \dot{N} & \dot{N} \\ \cdots & \dot{N} & \dot{N}\end{array}\)
\(\begin{array}{lllll}n & \infty & H & \ddots & N \\ 0 & 0 & 0 & 0 & 0\end{array}\)

\begin{tabular}{rr}
\(199.2(1.0)\) & \(216.8(1.0)\) \\
\(39.3(1.1)\) & \(31.2(0.5)\) \\
\(197.4(1.3)\) & \(217.7(1.3)\) \\
\(40.7(1.0)\) & \(32.8(0.9)\) \\
\(200.9(1.0)\) & \(215.9(1.1)\)
\end{tabular}
\(\hat{0}\)
\(\dot{0}\)
-
\(\stackrel{0}{m}\)
\(\stackrel{m}{m}\)
N
i
N
N
n
\(\vdots\)
－
on
\(\infty\)
\(\infty\)


Ñ
N
かの



N
N
\(\vdots\)
0
in
\(\infty\)
\(\cdots\)
\(\cdots\)
0
\(\infty\)
\(\infty\)
\(\infty\)
\(\infty\)
\(\infty\)
\(43.5(1.9)\)
\(195.8(2.1)\)
\(32.9(2.5)\)
\(203.8(3.7)\)
N
\(\cdots\)
\(\cdots\)
\(N\)
\(\cdots\)
\(N\)


WEIGETED N
\(1,996,563(12)\)
\(993,168(1 \%)\)
\(1,003,398(2 \%)\)


 \(87,589(5 \%)\)
\(251,812(6 \%)\)

\begin{tabular}{l} 
H \\
n \\
\multirow{2}{*}{} \\
0 \\
0 \\
0 \\
-
\end{tabular}

\(=\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & -1\end{aligned}\)
\(m\)
0
5
5
5386
\(\begin{array}{ll}m & n \\ 0 & \text { n } \\ 0 & 0 \\ 0 & \text { न } \\ 0 & \end{array}\)
\begin{tabular}{l}
\(\infty\) \\
\(\infty\) \\
\multirow{1}{\infty}{} \\
\(\underset{\sim}{1}\)
\end{tabular}
\(n\)
\(\infty\)
\(\infty\)
\(\infty\)
\(n\)
0
0
\(\begin{array}{ll}n \\ & \text { n } \\ & \\ \end{array}\)
\(\infty\)
\(\stackrel{\infty}{*}\)
\(\stackrel{1}{0}\)
\begin{tabular}{l}
0 \\
0 \\
\hline \\
\hline
\end{tabular}
Male
female
ETENICITY／RACE
WEITE
Black
PARENTAL EDUCATION
LESS THAN H．S．
GRADUATED 日．S．
SOME EDUC AFTER H．S．
GRADUATED COLLEGE
Weighted Response Percentages and General Science Proficiency Means, Grade 3

Weighted Response Percentages and General Reading Proficiency Means, Grade 7
Total Sample

HEIGHTED N
\(1,246,018(1 \%)\)
\(643,531(1 \%)\)
\(602,488(1 \%)\)
2
-1
\(\infty\)
\(\infty\)
0
0
0
0
0
\(n\)
\(\sim\)
\(\sim\)
-
0
1
\(\infty\)
-
-
\(\infty\)
\(\infty\)
\(\infty\)
\(N\)
\(\sim\)
0
0
\(\infty\)
0
\(\infty\)
\(\infty\)
0
M
N
\(\sim\)
\(n\)
0
0
-
\(\cdots\)
\(\cdots\)
\begin{tabular}{l}
0 \\
0 \\
0 \\
0 \\
\(\infty\) \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular}

\(179,733(2 \%)\)
\(452,980(3 X)\)


\(\begin{array}{ll}n & \infty \\ N & \infty \\ \infty & 0 \\ \infty & 0\end{array}\)
\(\begin{array}{llll}N & \infty & n & \infty \\ \infty & \infty & 0 & 0 \\ n & 0 & 0 & 0 \\ n & -1 & -1 & \end{array}\)
\begin{tabular}{c} 
N \\
\multirow{1}{N}{} \\
\\
\end{tabular}
\(\underset{\substack{\mathrm{N} \\ \mathrm{N} \\ \underset{\sim}{-1} \\ \hline}}{ }\)
\(\begin{array}{ll}\text { N } & \text { J } \\ \text { N } \\ \text { N } & \text { N్- }\end{array}\)
male

\section*{female}
ETHNICITY/RACE
WEITE
BLACK
hispanic
OTEER
parental education
less than a.s.
-S'H yadiv mas akos
graduated coleege
\(3 i 1\)

ERIC

Table 15.75
Weighted Response Percentages and ieneral Reading Proficiency Means, Grade 7
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{7}{|l|}{Weishted Response Percentages and ieneral Readin by Region of Country} \\
\hline & \multirow[t]{2}{*}{N} & \multirow[t]{2}{*}{WEIGHTED N} & \multirow[t]{2}{*}{\(\mathrm{N}-\mathrm{EAST}\)} & \multirow[t]{2}{*}{S-EAST} & \multirow[t]{2}{*}{CENTRAL} & \multirow[t]{2}{*}{WEST} & \multirow[t]{2}{*}{MISSING} \\
\hline & & & & & & & \\
\hline -- TOTAL -- & 9513 & 1,246,019(1\%) & \[
20.7(0.5)
\] & \[
22.8(1.5)
\] & \[
26.9(1.8)
\] & \[
29.5(0.7)
\] & 0.0 \\
\hline & & & \[
50.5(0.4)
\] & \[
48.1(0.2)
\] & \[
49.0(0.2)
\] & \[
48.0(0.4)
\] & \\
\hline \multicolumn{8}{|l|}{SEX} \\
\hline \multirow[t]{2}{*}{MALE} & 4825 & 643,531( 1\%) & 19.7(0.8) & \[
22.6(1.5)
\] & & & 0.0 \\
\hline & & & 49.1( 0.4 ) & \[
46.6(0.3)
\] & \[
47.7(0.3)
\] & \[
46.9(0.5)
\] & \\
\hline \multirow[t]{2}{*}{female} & 4688 & 602,488( 12) & \(21.8(0.5)\) & 23.1( 1.7) & 26.8( 1.9) & 28.4(0.7) & 0.0 \\
\hline & & & \(52.0(0.4)\) & 49.5(0.3) & 50.4(0.2) & 49.3(0.3) & \\
\hline \multicolumn{8}{|l|}{ETHNICITY/RACE} \\
\hline \multirow[t]{2}{*}{WHITE} & 5582 & 881,376(12) & \[
22.5(0.3)
\] & \[
21.2(2.2)
\] & 31.5(2.2) & \(24.9(0.4)\) & 0.0 \\
\hline & & & \[
51.6(0.4)
\] & \[
49.6(0.3)
\] & 49.9(0.3) & 50.1(0.3) & \\
\hline \multirow[t]{2}{*}{BLACK} & 1988 & 186,850(2\%) & 19.8(0.9) & \(42.9(0.9)\) & 18.7(3.6) & 18.6(3.1) & 0.0 \\
\hline & & & \(46.2(0.9)\) & \(45.2(0.4)\) & \(44.8(0.4)\) & 44.4(1.0) & \\
\hline \multirow[t]{2}{*}{HISPANIC} & 1605 & 131,095( 2\%) & 10.8(2.0) & 10.9(1.8) & 11.6(2.1) & \(66.7(0.9)\) & 0.0 \\
\hline & & & 45.6(1.2) & \(43.7(0.8)\) & 44.6(0.8) & \(44.3(0.6)\) & \\
\hline \multirow[t]{2}{*}{OTHER} & 338 & 46,698( 6\%) & 18.0 ( 5.9) & \[
7.8(2.8)
\] & \[
17.4(4.8)
\] & \[
56.8(7.8)
\] & 0.0 \\
\hline & & & 52.0(1.8) & \[
48.5(2.2)
\] & \[
46.6(1.4)
\] & \[
48.2(1.3)
\] & \\
\hline \multicolumn{8}{|l|}{Parental education} \\
\hline \multirow[t]{2}{*}{LESS THAN H.S.} & 773 & 93,940( 6\%) & 17.3(2.4) & 28.6( 3.7 ) & 20.9(3.3) & \(33.2(2.7)\) & 0.0 \\
\hline & & & 46.9(0.9) & \(45.8(0.4)\) & \(45.6(1.0)\) & \(45.2(0.6)\) & \\
\hline \multirow[t]{2}{*}{GRADUATED E.S.} & 2662 & 354,369(3\%) & 17.6( 0.8\()\) & 26.1( 2.0 ) & 30.6(2.3) & 25.7(1.0) & 0.0 \\
\hline & & & 49.1( 0.7\()\) & \(47.1(0.4)\) & \(47.9(0.4)\) & \(46.9(0.4)\) & \\
\hline \multirow[t]{2}{*}{SOME EDUC AFTER H.S.} & 1321 & 179,733( 22) & 19.6( 1.3) & 20.0( 1.8) & 29.7(2.2) & \(30.8(1.5)\) & 0.0 \\
\hline & & & 51.8(0.6) & \(50.0(0.4)\) & 50.6(0.5) & 49.5 ( 0.8) & \\
\hline \multirow[t]{2}{*}{GRADUATED COLLEGE} & 3342 & 452,980(3x) & 23.9(1.3) & 21.2( 1.7) & 26.1( 1.8) & 28.8( 1.4) & 0.0 \\
\hline & & & 52.4(0.4) & \(49.9(0.5)\) & \(50.9(0.4)\) & 50.4(0.5) & \\
\hline \multirow[t]{2}{*}{UNKNOWN} & 1294 & 153,622(4x) & 20.9(1.6) & 18.7(2.4) & 22.1( 2.5) & 38.3 ( 2.1) & 0.0 \\
\hline & & & \(47.8(0.5)\) & \(45.0(0.6)\) & \(45.7(0.6)\) & 44.7(0.6) & \\
\hline
\end{tabular}
Weighted Response Percentages and General Reading Proficiency Means, Grade 7
\begin{tabular}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\(\Delta\) \\
\hline \\
\hline \\
0 \\
0 \\
0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline N & WEIGHTED N & WHITE & BLACK & HISPANIC & ASIAN & AMER & AMER & IND & UNCLASS \\
\hline 9513 & 1,246,019(1\%) & \[
\begin{aligned}
& 70.7(0.4) \\
& 50.3(0.2)
\end{aligned}
\] & \[
\begin{aligned}
& 15.0(0.3) \\
& 45.2(0.3)
\end{aligned}
\] & \[
\begin{array}{ll}
10.5(0.2) \\
44.4(0.4)
\end{array}
\] & \[
\begin{array}{r}
1.8( \\
51.8(
\end{array}
\] & \[
\begin{aligned}
& 0.4) \\
& 1.0)
\end{aligned}
\] & & & \[
\begin{array}{rr}
0.2( & 0.2) \\
48.4( & 0.8)
\end{array}
\] \\
\hline 4825 & 643,531( 1\%) & \[
\begin{aligned}
& 70.6(0.6) \\
& 49.0(0.2)
\end{aligned}
\] & \[
\begin{aligned}
& 14.5(0.4) \\
& 43.7(0.3)
\end{aligned}
\] & \[
\begin{aligned}
& 10.9(0.4) \\
& 43.1(0.5)
\end{aligned}
\] & \[
\begin{array}{r}
1.8( \\
50.0 ?
\end{array}
\] & \[
\begin{aligned}
& 0.4) \\
& 1.4)
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3) \\
& 1.5)
\end{aligned}
\] & \[
\begin{array}{r}
0.3(0.2) \\
47.0(0.8)
\end{array}
\] \\
\hline 4E88 & 602,488( 17) & \[
\begin{aligned}
& 70.9(0.6) \\
& 51.6(0.2)
\end{aligned}
\] & \[
\begin{aligned}
& 15.5(0.5) \\
& 46.6(0.4)
\end{aligned}
\] & \[
\begin{aligned}
& 10.1(0.4) \\
& 45.9(0.5)
\end{aligned}
\] & & & \[
\begin{array}{r}
1.41 \\
45.76
\end{array}
\] & \[
\begin{aligned}
& 0.3) \\
& 1.2)
\end{aligned}
\] & \[
\begin{array}{r}
0.2(0.2) \\
50.3(1.3)
\end{array}
\] \\
\hline 5582 & 881,376( 1\%) & \[
\begin{array}{r}
100.0(0.0) \\
50.3(0.2)
\end{array}
\] & \[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\] & \[
\begin{array}{r}
0.0(0.0) \\
* * * * *(0.0)
\end{array}
\] & \[
\begin{array}{r}
0.07 \\
* * * * ?
\end{array}
\] & \[
\begin{aligned}
& 0.0) \\
& 0.0)
\end{aligned}
\] & 0.0( & \[
\begin{aligned}
& 0.0) \\
& 0.0)
\end{aligned}
\] & \[
\begin{array}{r}
0.0(0.0) \\
* * * *\left(\begin{array}{l}
0.0)
\end{array}\right)
\end{array}
\] \\
\hline 1988 & 186,850( 2\%) & \[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\] & \[
\begin{gathered}
100.0(0.0) \\
45.0(0.3)
\end{gathered}
\] & \[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\] & \[
\begin{array}{r}
0.01 \\
\star \star \star \star *
\end{array}
\] & \[
\begin{aligned}
& 0.0) \\
& 0.0)
\end{aligned}
\] & \[
\begin{array}{r}
0.0( \\
* * * \# \#(
\end{array}
\] & \[
\begin{aligned}
& 0.0) \\
& 0.0)
\end{aligned}
\] & \[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\] \\
\hline 1605 & 131.095 ( 2\%) & \[
\begin{array}{r}
0.0\left(\begin{array}{l}
0.0) \\
* * * *( \\
0.0)
\end{array}\right)
\end{array}
\] & \[
\begin{array}{r}
0.0(0.0) \\
\star \star * *(0.0)
\end{array}
\] & \[
\begin{array}{r}
100.0(0.0) \\
44.4(0.4)
\end{array}
\] & \[
\begin{array}{r}
0.0( \\
* * * * *
\end{array}
\] & \[
\begin{aligned}
& 0.0) \\
& 0.0)
\end{aligned}
\] & \[
\begin{array}{r}
0.01 \\
* * * *!
\end{array}
\] & \[
\begin{aligned}
& 0.0) \\
& 0.0)
\end{aligned}
\] & \[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\] \\
\hline 338 & 46,698( 6\%) & \[
\begin{array}{r}
0.0(0.0) \\
\star \star \star * *(0.0)
\end{array}
\] & \[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\] & \[
\begin{array}{r}
0.0(0.0) \\
\star \star \star \star *(0.0)
\end{array}
\] & \[
\begin{aligned}
& 48.31 \\
& 51.81
\end{aligned}
\] & \[
\begin{aligned}
& 8.0) \\
& 1.0)
\end{aligned}
\] & \[
\begin{aligned}
& 45.41 \\
& 45.36
\end{aligned}
\] & \[
\begin{aligned}
& 8.5) \\
& 1.1)
\end{aligned}
\] & \[
\begin{array}{r}
6.3(5.2) \\
48.4(0.8)
\end{array}
\] \\
\hline 773 & 93,940( 6\%) & \[
\begin{aligned}
& 59.1(2.7) \\
& 46.9(0.4)
\end{aligned}
\] & \[
\begin{aligned}
& 12.4(1.3) \\
& 44.4(0.9)
\end{aligned}
\] & \[
\begin{aligned}
& 24.5(2.5) \\
& 44.2(0.7)
\end{aligned}
\] & \[
\begin{array}{r}
0.71 \\
45.36
\end{array}
\] & \[
\begin{aligned}
& 0.3) \\
& 2.8)
\end{aligned}
\] & \[
\begin{array}{r}
3.46 \\
42.86
\end{array}
\] & \[
\begin{aligned}
& 1.5) \\
& 2.6)
\end{aligned}
\] & \[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\] \\
\hline 2662 & 354,369(3\%) & \[
\begin{aligned}
& 72.2(0.9) \\
& 48.9(0.3)
\end{aligned}
\] & \[
\begin{aligned}
& 15.6(0.7) \\
& 44.8(0.4)
\end{aligned}
\] & \[
\begin{array}{r}
9.5(0.5) \\
43.6(0.6)
\end{array}
\] & 0.81
46.9 & 0.3) & 1.96
44.4 & 0.6) & \[
\begin{array}{r}
0.0(0.0) \\
\star \star * * *(0.0)
\end{array}
\] \\
\hline 1321 & 179,733( 2\%) & \[
\begin{aligned}
& 75.0(1.3) \\
& 51.6(0.3)
\end{aligned}
\] & \[
\begin{aligned}
& 15.0(1.1) \\
& 47.3(0.7)
\end{aligned}
\] & \[
\begin{array}{r}
7.0(0.6) \\
45.1(1.0)
\end{array}
\] & \[
\begin{array}{r}
0.76 \\
47.76
\end{array}
\] & \[
\begin{aligned}
& 0.3) \\
& 3.0)
\end{aligned}
\] & 2.26
46.01 & 0.7) & \[
\begin{array}{r}
0.0(0.0) \\
* * * *\left(\begin{array}{l}
0.0
\end{array}\right)
\end{array}
\] \\
\hline 3342 & 452,980(3\%) & \[
\begin{aligned}
& 75.7(0.9) \\
& 52.2(0.2)
\end{aligned}
\] & \[
\begin{aligned}
& 14.6(0.7) \\
& 45.3(0.4)
\end{aligned}
\] & \[
\begin{array}{r}
6.2(0.5) \\
46.6(0.6)
\end{array}
\] & 2.56 & \(0.6)\)
1.3 & 1.01
49.0 & 0.2) & \[
\begin{array}{r}
0.0(0.0) \\
49.9(4.7)
\end{array}
\] \\
\hline 1294 & 153.622(4\%) & \[
\begin{aligned}
& 55.0(2.1) \\
& 46.9(0.4)
\end{aligned}
\] & \[
\begin{aligned}
& 17.1(1.2) \\
& 43.8(0.6)
\end{aligned}
\] & \[
\begin{aligned}
& 21.9(1.5) \\
& 43.2(0.5)
\end{aligned}
\] & 4.21
48.9 & 1.3) & 1.81
43.7 & 0.5) & \[
0.0(0.1)
\] \\
\hline
\end{tabular}


 ñ
0
-
in 0
0
0
0
\(\dot{0}\)
\(\dot{0}\) \begin{tabular}{l} 
J. \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular}







Weightad Response Percentages and General Mathematics Proficiency Means, Grade 7 Total Sample
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{N} & \multirow[t]{2}{*}{WEIGHTED} & & \multicolumn{2}{|l|}{TOTAL} & MISSING \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{12185} & 1,596,045 & 12) & 100.0( & \(0.0)\) & 0.0 \\
\hline & & & 267.11 & 0.6) & \\
\hline \multirow[t]{2}{*}{6144} & 810,412 & 1\%) & 100.00 & 0.0) & 0.0 \\
\hline & & & 286.6 ( & 0.6) & \\
\hline \multirow[t]{2}{*}{6041} & 785,6336 & 1\%) & 100.00 & 0.0) & 0.0 \\
\hline & & & 267.61 & 0.7) & \\
\hline \multirow[t]{2}{*}{7180} & 1,130,448 & 12) & 100.00 & 0.0) & 0.0 \\
\hline & & & 274.01 & 0.6) & \\
\hline \multirow[t]{2}{*}{2526} & 239,0236 & 2\%) & 100.06 & 0.0) & 0.0 \\
\hline & & & 245.4 ( & 0.8) & \\
\hline \multirow[t]{2}{*}{2027} & 166,266( & 12) & 100.00 & 0.0) & 0.0 \\
\hline & & & 251.3 ( & 1.1) & \\
\hline \multirow[t]{2}{*}{452} & 60,3086 & 4\%) & 100.01 & 0.0) & 0.0 \\
\hline & & & 269.0 ( & 7.2) & \\
\hline \multirow[t]{2}{*}{1031} & 125,3416 & 4\%) & 100.0\% & 0.0) & 0.0 \\
\hline & & & 249.4 ( & 0.8) & \\
\hline \multirow[t]{2}{*}{3358} & 448,040 & 3\%) & 100.0 ( & 0.0) & 0.0 \\
\hline & & & 260.51 & 0.6) & \\
\hline \multirow[t]{2}{*}{1696} & 231,446( & 32) & 100.0( & 0.0) & 0.0 \\
\hline & & & 275.0 ( & 0.7) & \\
\hline \multirow[t]{2}{*}{4275} & 580,293( & 3\%) & 100.0! & 0.0) & 0.0 \\
\hline & & & 278.51 & 0.9) & \\
\hline \multirow[t]{2}{*}{1664} & 196,042( & 4X) & 100.01 & \(0.0)\) & 0.0 \\
\hline & & & 251.4 ( & 1.0) & \\
\hline
\end{tabular}
,
Weighted Response Percentagea and General Mathematics Proficiency Means, Grade 7
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{N} & & & & Sex of Subj & \\
\hline & \multirow[t]{2}{*}{WEIGRTED} & \multirow[t]{2}{*}{} & MALE & \multirow[t]{2}{*}{female} & \multirow[t]{2}{*}{MISSING} \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{12185} & 1,596,045 & 12) & \(50.8(0.4)\) & 49.2( 0.4 ) & 0.0 \\
\hline & & & 266.6(0.6) & 267.6(0.7) & \\
\hline \multirow[t]{2}{*}{6144} & 810,412 & 12) & 100.0(0.0) & \(0.0(0.0)\) & 0.0 \\
\hline & & & 266.6(0.6) & ***** ( 0.0) & \\
\hline \multirow[t]{2}{*}{6041} & 785,633 & 1\%) & \(0.0(0.0)\) & 100.0(0.0) & 0.0 \\
\hline & & & ***** ( 0.0) & 267.6(0.7) & \\
\hline \multirow[t]{2}{*}{7180} & 1,130,448 & 1\%) & 50.8( 0.5) & \(49.2(0.5)\) & 0.0 \\
\hline & & & \(273.1(0.7)\) & 274.8(0.8) & \\
\hline \multirow[t]{2}{*}{2526} & 239,023 & 2\%) & \(48.7(1.0)\) & 51.3 ( 1.0) & 0.0 \\
\hline & & & 245.4(0.9) & 245.4(1.1) & \\
\hline \multirow[t]{2}{*}{2027} & 166,2666 & 1\%) & \(53.6(1.2)\) & 46.4(1.2) & 0.0 \\
\hline & & & 251.8(1.4) & 250.8( 1.3) & \\
\hline \multirow[t]{2}{*}{452} & 60,308 & 4x) & \(50.1(2.7)\) & \(49.9(2.7)\) & 0.0 \\
\hline & & & 269.0( 7.3) & 269.1(7.4) & \\
\hline \multirow[t]{2}{*}{1031} & 125,341( & 4x) & \(41.1(2.2)\) & 58.9(2.2) & 0.0 \\
\hline & & & 249.8(1.4) & 249.2(1.4) & \\
\hline \multirow[t]{2}{*}{3358} & 448,040 & 32) & \(49.6(0.9)\) & 50.4(0.9) & 0.0 \\
\hline & & & 259.3(0.8) & 261.8( 0.7 ) & \\
\hline \multirow[t]{2}{*}{1696} & 231.446 & 37) & \(47.5(1.6)\) & 52.5 ( 1.6) & 0.0 \\
\hline & & & \(274.0(1.2)\) & \(275.8(1.1)\) & \\
\hline \multirow[t]{2}{*}{4275} & 580,293 & 3\%) & 53.3(0.8) & 46.7(0.8) & 0.0 \\
\hline & & & 277.6(1.0) & \(279.5(1.0)\) & \\
\hline \multirow[t]{2}{*}{1664} & 196,042 & 4x) & 55.7(2.6) & 44.3(1.6) & 0.0 \\
\hline & & & 251.9(0.9) & 250.8( 1.7) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{0.0} & （6．t ）6．8ヵz & （6．1 ）0＇rsz & （ \(\varepsilon \cdot z) \varepsilon \cdot \varsigma ヶ z\) & （L＇t ）e＇osz \\
\hline & （ヶ＊ 2 ）9•6ع & （I＇z）9＇tz & （6．t ）t＇0z &  \\
\hline &  &  & （ \({ }^{\circ} \mathrm{z}\) ）9＇t＜z & （8．t ）9＇ヶ8Z \\
\hline \multirow[t]{2}{*}{0.0} & （ \(\varepsilon \cdot \tau\) ） \(6 \cdot 8\) \％ & （ \(0 \cdot z\) ）s．sz & （ぐ「）リ「と & （z＇t ）s．ヶて \\
\hline & （9．1） \(6.0<2\) &  &  & （ヶ＊）0．08z \\
\hline \multirow[t]{2}{*}{\(0 \%\)} & （ \(\varepsilon^{\prime}\) I ）9＊8Z & （ \(\chi^{\prime}\) Z ）9•0¢ & （L．1 ）8．0z & （z＇t ）0＇0z \\
\hline & （t「T）¢＇ssz & （8．1 ）ヶ＊¢9Z &  & （ \(\varepsilon \cdot \tau) 0\)－892 \\
\hline \multirow[t]{2}{*}{0.0} & （0．t ）5． 58 & （ヶ゚て）く 0 ¢ & （t「て）ヶ「ヶて &  \\
\hline &  & （ \(\llcorner\) I ）＜¢ ¢ ¢ & （9「I） \(2 \cdot \angle ヶ Z\) &  \\
\hline \multirow[t]{2}{*}{0.0} & （ \(6 \cdot 2\) ） \(9^{\prime} ¢ \varepsilon\) & （9｀z ）\％OZ & （ \(¢\) ¢ ）\(\varepsilon\)＇โ \(\varepsilon\) & （ヶ＇I） \(6^{\circ}\) 亿 \\
\hline &  &  & （ \(5 \cdot 8)(\cdot \square<2\) &  \\
\hline \multirow[t]{2}{*}{0.0} & （ \(\varepsilon \cdot 6\) ）\(\varepsilon \cdot 8 \varsigma\) & （ \(L \cdot \varepsilon\) ） \(8 \cdot \varepsilon \tau\) & （ \(9^{\prime} z\) ）s．or &  \\
\hline & （9•1 ）z－osz & （ \(6 \cdot \tau) \varepsilon^{\prime}\) ¢ \(¢ \tau\) & \((z \cdot z)<\cdot \angle 力 z\) & （0． \(\mathcal{*})\) ）．09z \\
\hline \multirow[t]{2}{*}{0.0} & （8．0） \(8^{\circ} \mathrm{C9}\) & （6．t ）9＇โT & （c＇t ）9＊ot & （く「1 ）T－OT \\
\hline & （s・て）9「ヶヶて & （8＇I）¢•عヶて &  & （s＇z ）T－0sz \\
\hline \multirow[t]{2}{*}{0.0} & （て＇と ）8＊8t & （ \(\varepsilon \cdot \varepsilon\) ）\(\chi^{*} 8 \tau\) & （6．0）く「で & （9．0 ）\＆．0z \\
\hline & （ \(\angle .0\) ）6．0Lz & \((z \cdot \underline{)}\) ）\(\cdot \dagger \angle Z\) &  & \((\varepsilon \cdot \underline{)}\) ） \(008 z\) \\
\hline \multirow[t]{2}{*}{0.0} & （ヶ゚0）8＊ヶて & （2＇z）¢ โ ¢ & （I＇z ）\％\(\ddagger\) \％ & （ \(\varepsilon \cdot 0\) ）s＇zz \\
\hline & （ \(\left.s^{\prime} \tau\right) z^{\prime} \varepsilon 9 z\) &  & （ \(\varepsilon \cdot \tau) 8 \cdot 19 \%\) & （4．1） \(0 \cdot 912\) \\
\hline \multirow[t]{2}{*}{0.0} & （8．0） 6.68 & （ \(8^{\circ} \mathrm{l}\) ）L＇sz &  & （5．0）6．0z \\
\hline & （ \(\tau^{\prime}\) ¢ ）\(s^{\prime} \mathrm{zaz}\) & （0．1） 8.692 & （ヶ・「）く－09z & （z＇L）\()^{*}+\) Lz \\
\hline \multirow[t]{2}{*}{0.0} &  & （8．1） \(\mathrm{S}^{\circ} \mathrm{LZ}\) &  & （9．0）く＇0z \\
\hline & \((\varepsilon \cdot \tau) 8 \cdot z 9 z\)
\((8 \cdot 0) 9.6 z\) & \((2.1) 9002\)
\((8.1)<0 \%\) & \((\varepsilon \cdot \tau) \varepsilon^{\prime} \tau 9 z\)
\((\varsigma \cdot \tau) 8 \cdot z z\) & \[
\begin{aligned}
& (z \cdot \tau) \varepsilon \cdot s \angle z \\
& (4 \cdot 0) 8 \cdot 0 z
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{SNISSIW} & ISIM & TVYIN土 & ISva－S & ISVI－N \\
\hline & \multicolumn{4}{|l|}{Kxzunoj jo urfiey Kq} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline WEIGETED \\
\hline 586，045（ 1\％） \\
\hline 810，412（ 1\％） \\
\hline 785，633（1x） \\
\hline ，130，448（ 12 ） \\
\hline 239．023（ 2\％） \\
\hline 166，266（ 1\％） \\
\hline 60，308（ 4\％） \\
\hline 125，341（4\％） \\
\hline 448，040（ 3\％） \\
\hline 231，446（3x） \\
\hline 580．293（ 3 （ ） \\
\hline 6，042（ 42 ） \\
\hline
\end{tabular}
 \(=\begin{aligned} & n \\ & \text { n } \\ & -1\end{aligned}\)

0
0
00
\(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline （6．0T）ヶ＊てとて & （I•6）ヶ・9とて & （ \(1 \cdot \varepsilon\) ） \(0 \cdot L \angle Z\) &  &  & （T＇T）6． 25 \％ & & \\
\hline  & （ \(\varepsilon \cdot \tau)<\cdot \tau\) & （8．0）\({ }^{(1)} \mathrm{Z}\) & （z＇t ）¢＇tz & （ \(6 \cdot 0\) ）T 4 L & （ \(5 \cdot 1\) ） 8.55 &  & \＃991 \\
\hline （ \(1 \cdot \varepsilon \tau\) ） \(8 \cdot 18 \tau\) & （ \(5 \cdot 9\) ）s． 25 ？ & （ \(2 \cdot \varepsilon\) ） \(8 \cdot z 0 \varepsilon\) &  & （5．t） 0 －8ヶて & （8．0） \(0 \cdot 582\) & & \\
\hline （0）0） 0 \％ & （z＇0）\(\chi^{\prime}\) L & （ \(9 \cdot 0\) ）く＇z & （ \(\quad \cdot 0\) ）L＇s & （ 600 ）8．グ & （t＇t ）S＇SL & （\％ع ） 26 \％＇08s & Sくで \\
\hline （＊＊＊＊）T．992 &  & （ \(1 \cdot 9\) ）8． 282 & （ \(L^{\prime}\) z ）0．092 & （L＇T）9＊95z & （8．0）9．6LZ & & \\
\hline （0．0） \(0 \cdot 0\) & （ \(\varepsilon^{\circ} 0\) ） \(0^{\circ} \mathrm{L}\) & （ \(\varepsilon .0\) ）6．0 & （ 6.0 ）\％＊ & （6．0）S．EI &  & （xモ）9ヶク「とを & 9691 \\
\hline  &  & （ \(\varepsilon \cdot 9\) ） \(6 \cdot 25 z\) & （て「し）カ・6ヵて &  &  & & \\
\hline （0．0） \(0 \cdot 0\) & （6．0） \(0^{\circ} \mathrm{Z}\) & （ \(8 \cdot 0\) ）6．0 & （r＊0）て「ot & （9＊0）E．st & （「「1 ）9＊LL & （xع） 070 －8クカ & 8¢ع£ \\
\hline \((0.0) * * * * *\) & （ 8.5 ）0． \(5 ¢ \%\) & （2．8）0．992 &  & \((\varepsilon \cdot \tau)<-s \varepsilon z\) & （ \(\varepsilon\) • ）¢＇rsz & & \\
\hline （0．0） 0 \％ & （8．0）\({ }^{\circ} \mathrm{E}\) & （\％＊0） \(0^{\circ} \mathrm{I}\) &  & （て「し） & （ \(\varepsilon \cdot \tau) 8.65\) & （\％力） & IEOI \\
\hline （ \(8 \cdot \varepsilon\) ） \(1 \cdot 0 \angle Z\) & （ \(¢ \cdot 8\) ） \(6 \cdot 87 \%\) & （ \(8 \cdot \varepsilon\) ）9 887 & \((0.0) * * * * *\) & （ 0.0 ）＊＊＊＊＊ & （0．0）＊＊＊＊＊ & & \\
\hline （L＇ヶ） 6 ¢ 5 & （S＇IT）9＇9\％ &  & （0．0） 0 \％ & （0．0） 0 \％ 0 & （0．0） 0 \％ 0 & （\％\％）808「09 & 25\％ \\
\hline （ \(3 \cdot 0\) ）＊＊＊＊＊ & （0．0） 0 ＊＊＊＊＊ & （0．0）＊＊＊＊＊ &  & （0．0）＊＊＊＊＊＊ & （0．0）＊＊＊＊＊＊ & & \\
\hline （0．0） 0.0 & （0．0） 0 \％ & （0．0） 0 \％ & （0．0） 0 －00t & （0．0） 0 \％ & （0．0） 0 \％ 0 & （2T ）992＇s95 & L202 \\
\hline （0．0）＊＊＊＊＊ & （ 0 \％0）＊＊＊＊＊ & （0．0）＊＊＊＊＊＊ & （0．0）＊＊＊＊＊ & （8．0）ヶ．sヶ\％ & （0．0）＊＊＊＊＊＊ & & \\
\hline （ 0.0\() 00\) & （0．0） 0 \％ & （0．0） 0 \％ & （0．0） 0 \％ & （0．0）0．00t & （0．0） 0 \％ & （xz ）\(x z 0^{\prime} 6 \varepsilon z\) & 92sz \\
\hline （0．0）＊＊＊＊＊ & （ 0.0 ）＊＊＊＊＊ & （ 0.0 ）＊＊＊＊＊＊ & （ 0.0 ）＊＊＊＊＊ & （ 0.0 ）＊＊＊＊＊ & （9．0） \(0^{\circ} \mathrm{y}\) LZ & & \\
\hline （0．0） 0.0 & （0．0） 0.0 & （0．0） \(0 \cdot 0\) & （0．0） 0 \％ & （0．0） 0 \％ & （0．0） \(0 \cdot 001\) & （xฯ ）8ワワ「0¢I「！ & 0814 \\
\hline （z＇ท） & （6．8）z＇osz & （9＊）\({ }^{\circ} \mathrm{CBZ}\) &  & （r•T）カ・sヶて & （8．0）8．blz & & \\
\hline （z＊0）\({ }^{\text {\％}} 0\) & （ \(5^{\circ} 0\) ） 8.1 &  & （ \(\varepsilon \cdot 0\) ） \(8 \cdot 6\) &  & （ \(5 \cdot 0\) ）\({ }^{\text {coiol }}\) & （\％T）E¢9＇s8L & โヶ09 \\
\hline （ \(9 \cdot 5\) ）s．692 & （ 5 －8）9＊しちて & （ \(\varepsilon \cdot \eta) \varepsilon^{\circ} 068\) & （ヶ＇r ）8．Tsz & （6．0）\％－s．tz &  & & \\
\hline （z＊0）で0 &  & （\％＇0）く＇t & （ \(8 \cdot 0\) ）O＇ti & （ \(6 \cdot 0\) ）ガカレ & （\％＇0） 6 ．0L & （\％T）でカ＊OT8 & ทッケ \\
\hline \(\left(8^{\circ} \varepsilon\right)<\cdot 0<Z\) & （ \(\varepsilon \cdot 8\) ） \(6 \cdot 8 ヶ 2\) & （ \(8 \cdot \varepsilon) 9 \cdot 882\) &  &  & （9．0）） \(0 \cdot 7<2\) & & \\
\hline （z＇0）\({ }^{\text {co }}\) & （ \(\square^{\circ} 0\) ） \(8^{\circ} \mathrm{T}\) &  & （z＇0）\％＇OI & （ \(2 \cdot 0\) ） 0 ¢ 5 & （ 8.0 ） 8.06 & （\％T ）Sto＇965＇土 & S8I2I \\
\hline & & & & & & n asiheism & N \\
\hline SSVTONn & aNI \({ }^{\text {dawl }}\) & y3kV nvisv & OINVESİ & xovis & GILIGM & & \\
\hline & & & & －¢ porfiea kq & & & \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{N} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{WEIGHTED N}} & \multicolumn{6}{|l|}{by Level of Parenta' Education} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{GRAD COL}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{UNKNOWN}} \\
\hline & & & NOT & HS & GRAD & HS & POST & HS & & & & \\
\hline \multirow[t]{2}{*}{12024} & 1,581,162 & 17) & 7.9 ( & 0.3) & 28.3 ( & 0.8) & 14.65 & 0.4) & 36.7 ( & 1.0) & 12.4 ( & 0.5) \\
\hline & & & 249.4\% & 0.8) & 260.5 & 0.6) & 275.01 & 0.7) & 278.5 & 0.9) & 251.4( & 1.0) \\
\hline \multirow[t]{2}{*}{6053} & 802,167( & 2\%) & 6.46 & 0.4) & 27.76 & 0.9) & 13.76 & 0.5) & 38.61 & 1.1) & 13.6( & 0.6) \\
\hline & & & 249.8 & 1.4) & 259.3 & 0.8) & 274.01 & 1.2) & 277.61 & 1.0) & \(251.9(\) & 0.9) \\
\hline \multirow[t]{2}{*}{5971} & 778.994( & 2\%) & 9.51 & 0.6) & 29.01 & 0.9) & 15.61 & 0.7) & 34.8 ( & 1.1) & 11.14 & 0.6) \\
\hline & & & 249.26 & 1.4) & 261.8( & 0.7) & 275.91 & 1.1) & 279.51 & 1.0) & 250.8 ( & 1.7) \\
\hline \multirow[t]{2}{*}{7117} & 1,121,933 & 1x) & 6.71 & 0.4) & 28.6 & 1.1) & 15.91 & 0.5) & 39.1 ( & 1.4) & 9.71 & 0.5) \\
\hline & & & 254.31 & 1.3) & 266.21 & 0.9) & 279.66 & 0.8) & 285.0 ( & 0.8) & \(257.9(\) & 1.1) \\
\hline \multirow[t]{2}{*}{2508} & 237,117( & 22) & 7.54 & 0.5) & 28.91 & 1.0) & 13.1 ( & 0.7) & 36.3 ( & 1.2) & 14.26 & 0.7) \\
\hline & & & 235.71 & 2.3) & 244.2\% & 1.1) & 256.6( & 1.7) & 248.0 ( & i.5) & 236.8 ( & 1.4) \\
\hline \multirow[t]{2}{*}{2018} & 165,551( & 1x) & 16.61 & 1.6) & 27.7 ( & 0.9) & 10.36 & 1.3) & 19.96 & 1.5) & 25.51 & 1.6) \\
\hline & & & 244.1( & 1.5) & 249.4 & 1.2) & 260.0 ( & 2.7) & 263.16 & 1.9) & 245.36 & 1.4) \\
\hline \multirow[t]{2}{*}{381} & 56,561( & 7x) & 9.21 & 1.7) & 23.0 ( & 5.3) & 7.9 ( & 1.5) & 40.51 & 7.7) & 19.4 ( & \(3.4)\) \\
\hline & & & 254.5( & 5.2) & 244.9 ( & 8.8) & 275.3( & 6.4) & 290.6( & 4.0) & 255.8(10 & 10.8) \\
\hline \multirow[t]{2}{*}{1031} & 125,341( & 4x) & \(100.9(\) & \(0.0)\) & 0.01 & 0.0) & 0.01 & 0.0) & \(0.0<\) & 0.0) & 0.06 & \(0.0)\) \\
\hline & & & 249.4 & 0.8) & ***** & 0.0) & ***** & 0.0) & ***** & 0.0) & ***** & 0.0) \\
\hline \multirow[t]{2}{*}{3358} & 448,040 & 3\%) & C.OC & 0.0) & 100.0 ( & 0.0) & 0.01 & 0.0) & 0.01 & 0.0) & 0.01 & \(0.0)\) \\
\hline & & & *****( & \(0.0)\) & 260.56 & \(0.6)\) & ***** & 0.0) & ***** & 0.0) & *****( & 0.0) \\
\hline \multirow[t]{2}{*}{1696} & 231,4466 & 3\%) & 0.01 & \(0.0)\) & 0.01 & 0.0) & 100.01 & 0.0) & 0.01 & 0.0) & 0.06 & \(0.0)\) \\
\hline & & & ***** & 0.0) & ***** & 0.0) & 275.00 & 0.7) & ***** & 0.0) & ***** & 0.0) \\
\hline \multirow[t]{2}{*}{4275} & 580,293? & 3\%) & 0.01 & \(0.0)\) & 0.06 & 0.0) & 0.01 & 0.0) & 100.01 & \(0.0)\) & 0.01 & 0.0) \\
\hline & & & ***** & 0.0) & ***** & 0.0) & ***** & 0.0) & 278.51 & 0.9) & *****( & 0.0) \\
\hline \multirow[t]{2}{*}{1664} & 196,0426 & 47) & 0.02 & \(0.0)\) & 0.06 & 0.0) & 0.05 & 0.0) & 0.01 & 0.0) & 100.0( & 0.0) \\
\hline & & & ***** & 0.0) & *****( & 0.0) & ***** & 0.0) & *****? & 0.0) & 251.4( & 1.0) \\
\hline
\end{tabular}



\[
\text { Grade } 7
\]




\(\stackrel{\circ}{\circ}\)

\[
\begin{array}{ll}
n & n \\
0 & 0
\end{array}
\]

\[
\begin{array}{lll}
\vdots & \stackrel{\pi}{0} & \stackrel{9}{i}
\end{array}
\]
\[
\begin{array}{lllll} 
& N & N & N & ! \\
0 & 0 & 0 & 0 & 0
\end{array}
\]

\(\square\)
\[

\]
\[
\begin{array}{rrr}
24.3(0.9) & 56.1(0.6) & 19.6(0.7) \\
280.0(1.0) & 275.9(0.7) & 261.4(1.0)
\end{array}
\]
\[
\begin{aligned}
& \text { WEIGHTED N } \\
& 1,583,123(1 z)
\end{aligned}
\]
\[
=\begin{gathered}
\stackrel{N}{\circ} \\
\stackrel{\text { N }}{4}
\end{gathered}
\]
\[
\begin{aligned}
& !8 \in s \\
& 9509
\end{aligned}
\]

\(\stackrel{\sim}{\sim}\)
384

1026



\(13 \bar{\nabla}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & （L＇Z）I＇9ZZ &  &  & （でて）6「ワをて & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （て＇て） \(0^{\circ}\) て》 & （I「て）6＊6I & （0｀z）s＇8r & （ \(\left.L^{\circ} \tau\right) L^{\circ} 6 \tau\) & （27 &  & S091 \\
\hline & （rit）s．LSz & （ \(9 \cdot \tau) ヶ\) ¢ 692 & （ \(8^{\circ} \mathrm{z}\) ）6．scz & （I•z）z＇89z & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （ \(\varepsilon \cdot \mathrm{T}\) ） \(8 \cdot \angle Z\) & （6．t） \(0^{\circ} 92\) &  & （ \(¢\) ¢ ）8＊ヶて & （ \(x\) ¢ & ） \(60 \%^{\prime} \varepsilon \angle S\) & 9¢てヵ \\
\hline &  & （8＊T ） \(8^{\circ}\) Z9Z &  & （0＊z）ヶ＊I9z & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （ \(\left.\varepsilon^{\prime} \tau\right) 9^{\circ} 6\) Z & （ \(\varepsilon^{\prime}\) \％）\({ }^{\prime} 0 \varepsilon\) &  & （I． 5 ）6．8L & （2Z & \() \angle 50^{\circ} \angle \varepsilon Z\) & SZLI \\
\hline &  & （ \(\left.5^{\circ} \tau\right) 0^{\circ} \mathrm{Lr} Z\) & （t．t ）s．9ez & \((0 \cdot z)<\cdot 9 ヶ z\) & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} &  & \(\left(Z^{\prime} \boldsymbol{z}\right) L^{\circ} O \mathcal{L}\) & （ \(8^{\circ} \mathrm{I}\) ） \(6^{\circ}\) ¢ \(冖\) & （ \(\left.\mathrm{S}^{\circ} \tau\right) L^{\circ} 6 \tau\) & （ \(x \in\) & ） \(160^{\circ} 05 \%\) & \(0<\varepsilon \varepsilon\) \\
\hline & （て＇Z）ع＇ozて & （8＊ \(8^{\prime}\) ）5＊ 827 &  &  & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} &  &  &  &  & （2） & ）699＇92「 & \(\angle Z O T\) \\
\hline & （0＊てT）I＇sez & （ヶ＊8）\(\frac{1}{}\)－8ヶて & （ヶ．9）9．05z & （ \(6^{\circ} \mathrm{S}\) ） \(8^{\prime}\) ¢g & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （6．OT）T＇4 & （ \(\varepsilon^{\prime}\) ） \(6^{\circ} \mathrm{ST}\) &  & （ \(6^{\prime} 9\) ）\(\chi^{\prime} 6\) L & （27 & ）てヵで65 & 9とク \\
\hline & （6．＇）5．02\％ &  &  &  & & & \\
\hline \multirow[t]{2}{*}{0＇0} & （く＇0）\({ }^{\text {c }}\)（ 69 & （0＊2）6\％0T &  & （ \(\left.6^{\circ} \mathrm{L}\right) \mathrm{s}^{\circ} 6\) & （\％T & ） 08 ¢ \(^{\text {c } 291}\) & 8661 \\
\hline & \((\varepsilon \cdot \varepsilon)<\cdot \varsigma \tau Z\) & \((z \cdot \varepsilon))^{\prime} 8 \tau Z\) & （ธ「て）ヶ・カโて & （ \(6 \cdot \tau) \varepsilon^{\prime} \tau z \tau\) & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （ \(\varepsilon \cdot \varepsilon)<\cdot 8 \tau\) &  & （9＊0）カ・「ワ & （ \(\mathrm{C}^{\circ} 0\) ） 6 ＇0Z & （ \(\% \tau\) & ） \(8 \varepsilon \varepsilon\)＇9£ & ¢5ヶて \\
\hline & （ \(5^{\circ}\) ¢ ）9＊9¢て &  &  &  & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （ \(\left.\varepsilon^{*} 0\right) \varepsilon^{*} \dagger\) \％ & （ \(\tau^{*}\) ））て＇โ & （ \(0^{\circ}\) て）L＊T & （ \(\varepsilon^{\circ} 0\) ） \(8^{\circ} \mathrm{ZZ}\) & （2T & ）ssl＇zet＇t & をちてく \\
\hline & （ \(\left.L^{\prime} \tau\right) 8\) ）\(\angle E Z\) &  & （ \(\left.\mathrm{s}^{\prime} \tau\right) 6.8 \varepsilon \tau\) & （L＇t ）！＇zsz & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （6．0） \(0^{\circ} 62\) & （ \(\left.L^{\circ} \tau\right) \tau \cdot 9 Z\) & （ \(\left.9^{\prime} \tau\right) L^{\prime} \varepsilon \tau\) & （L＇0）T＇tz & （2I & ） \(80 \mathrm{Z}^{\prime} 8 \mathrm{LL}\) & E66S \\
\hline & \[
\left(6^{\circ} \tau\right) 6^{\prime} 97 z
\] & （ \(\varepsilon \cdot \tau) \tau \cdot 85 Z\) & （0＊2）く－9ヶて & \[
\left(8^{\circ} \tau ; \tau \cdot 8 \varsigma z\right.
\] & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （ \(L^{\prime} 0\) ）E 62 & （ \(6 \cdot \tau) \varepsilon^{\prime} \angle Z\) &  & （9＊0）6．02 & （zi & ） 4 ¢9＇zt8 & 6ヶエ \\
\hline & （L＇t ）s＇でて & （ \(\left.5^{\cdot} \tau\right)\) I＇SSZ &  & （\％＇T）\％¢ ¢ & & & \\
\hline \multirow[t]{2}{*}{0．0} & （ \(\left.L^{\circ} 0\right)\) ） 6 \％ & （ \(\left.8^{\circ} \mathrm{L}\right) L^{\circ} \mathrm{gz}\) & （\％＇し） & （ \(\%^{\circ} 0\) ） \(0^{\circ} \mathrm{Lz}\) & （2I & ）S28＇065＇I & でしで \\
\hline & & & & & N & a3IHOIJM & \(N\) \\
\hline \multirow[t]{4}{*}{ONISSI：} & ISIM & TV\＆INココ & LSVG－S & JSVG－N & & & \\
\hline & \multicolumn{4}{|l|}{кx7unoう jo uofged кq} & & & \\
\hline &  & Forfoxa eoue & S rexeves pue & se9＊7uesxed & odse & \％ Pe74 \(^{\text {¢ }}\) & \\
\hline & & &  & & & & \\
\hline
\end{tabular}
MISSING
0
\(0 \quad 0\)
\(0 \quad 0\)
0
0
0
0
0
\(0 \quad 0\)
\[
\begin{array}{r}
0.3(0.2) \\
254.1(2.1)
\end{array}
\]
\[
\begin{aligned}
& \text { N } \\
& 0 \\
& 0 \\
& \cdots \\
& \cdots \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]
\[
\left(0^{\circ} 0\right) * * * * x
\]
\[
\begin{aligned}
& 60 \\
& 00 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& n \\
& n \\
& n \\
& n \\
& n \\
& n
\end{aligned}
\]
\[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\]
\[
\text { Table } 15.90
\]
\[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\]
\[
\begin{array}{r}
0.0(0.0) \\
* * \hbar *(0.0)
\end{array}
\]
\[
\begin{array}{r}
1.0(0.3) \\
261.3(10.2)
\end{array}
\]
\[
\begin{array}{r}
0.0(0.0) \\
* * * * *(0.0)
\end{array}
\]
\[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\]
\[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\]
\[
\begin{array}{r}
0.0(0.0) \\
263.5(18.8)
\end{array}
\]
\[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\]
\[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& n \\
& n
\end{aligned}
\]
\[
\begin{array}{r}
1.6(0.4) \\
239.2(10.6)
\end{array}
\]
\[
\begin{array}{r}
0.0(0.0) \\
* * * * *(0.0)
\end{array}
\]
Weighted Response Percentages and General Science Proficiency Means，Grade 7
\[
\begin{aligned}
& O \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& k \\
& k \\
& k
\end{aligned}
\]
\[
\begin{array}{r}
0.7(0.3) \\
224.8(7.9)
\end{array}
\]
\[
\begin{aligned}
& 6 \\
& 0 \\
& 0 \\
& \sim 0 \\
& \cdots n \\
& n
\end{aligned}
\]
\[
\begin{array}{r}
0.0(0.0) \\
\star \star \star \star *(0.0)
\end{array}
\]
\[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & - \\
0 & 0 \\
0 & N \\
0 & N \\
N & N
\end{array}
\]
\[
\begin{aligned}
& 20 \\
& 00 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& *
\end{aligned}
\]
\[
\begin{aligned}
& 6 \\
& 0 \\
& \text { N } \\
& \cdots \\
& \text { n } \\
& \text { o } \\
& \text { N } \\
& \text { Ni } \\
& \text { N }
\end{aligned}
\]
\[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \sim \\
& N \\
& \dot{N} \\
& \cdots \\
& \sim
\end{aligned}
\]
\[
\begin{aligned}
& 3 \\
& 0 \\
& 0 \\
& \sim \\
& n \\
& n \\
& n \\
& n \\
& N
\end{aligned}
\]
\[
\begin{array}{ll}
\left(8^{\circ} 0\right. & ) 6^{\circ} 297 \\
\left(9^{\circ} 0\right. & 6 \cdot n)
\end{array}
\]
\[
\begin{aligned}
& 60 \\
& 00 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& \infty \\
& \cdots \\
& i \\
& n \\
& n \\
& i n \\
& n
\end{aligned}
\]
\[
\begin{array}{r}
75.9(1.1) \\
272.2(0.8)
\end{array}
\]
\[
\begin{array}{r}
0.0(0.0) \\
* * * *(0.0)
\end{array}
\]
\[
\begin{array}{r}
0.0(0.0) \\
\star \star \star \star \hbar(0.0)
\end{array}
\]
\[
\begin{aligned}
& 00 \\
& 00 \\
& 00 \\
& 0 * \\
& 0 * \\
& \vdots \\
& k
\end{aligned}
\]
\[
\begin{aligned}
& \text { a } \\
& 0 \\
& 0 \\
& \sim \\
& N \\
& \text { N } \\
& \text { n } \\
& \sim \\
& N
\end{aligned}
\]
\[
\begin{aligned}
& 00 \\
& 00 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& k
\end{aligned}
\]
\[
\begin{aligned}
& a n \\
& 0 n \\
& \sim n \\
& \cdots n \\
& m i n \\
& \sim n
\end{aligned}
\]
\[
\begin{gathered}
\text { WHITE } \\
71.2(0.3) \\
259.3(0.7)
\end{gathered}
\]
\[
\begin{array}{r}
0.0(0.0) \\
\star \star \star \star \hbar(0.0)
\end{array}
\]
\[
\begin{aligned}
& 60 \\
& 00 \\
& 00 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{gathered}
\text { WEIGETED } N \\
1,590,825(1 \%)
\end{gathered}
\]
\[
\begin{aligned}
& 812,617(1 \%) \\
& 778,209(1 \%)
\end{aligned}
\]

\section*{（ZI） \(8 \varepsilon \varepsilon \varepsilon^{\prime} 9 \varepsilon Z\)}

\section*{（xヶ）てヶて＇65}
\[
(X I) \subseteq 9 L^{\circ} Z \varepsilon I^{\prime} \tau
\] 0
\(n\)
\(n\)
0
0
0
0
0
0
\(n\)
0
\(573.409(3 \%)\)

2

\section*{でしで}
\[
\begin{aligned}
& n \\
& 0 \\
& \sim \\
& \infty \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{gathered}
\infty \\
\cdots \\
\cdots \\
\cdots \\
\cdots \\
\cdots \\
\cdots
\end{gathered}
\]
\[
\begin{aligned}
& 3 \\
& 0 \\
& 0 \\
& \sim 0 \\
& 0 \\
& 0 \\
& N
\end{aligned}
\]
\[
\begin{aligned}
& A \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 4 \\
& \sim \\
& N
\end{aligned}
\]
237，057（2\％）
\[
\begin{array}{ll}
6 & 0 \\
0 & 0 \\
\approx & 0 \\
0 & 0 \\
0 & N \\
\sim & 0
\end{array}
\]

\(450,091(32)\)


Weighted Response Percentages and General Science Proficiency Means, Grade 7

MISSING
\(\infty\)
\(\therefore \quad 0\)
\(\stackrel{\sim}{0}\)
\(\cdots\) \(\stackrel{+}{0}\) \(\stackrel{\square}{0}\)
\(\stackrel{m}{6}\)
\(\begin{array}{lllll}N & N & N & 0 & \because \\ 0 & 0 & 0 & 0 & 0\end{array}\)
Table 15.92
by Articles in the fome


\(\begin{array}{rrrr}31.6(1.5) & 31.4(1.1) & 36.9: 1.2) \\ 606.5(1.3) & 218.4(1.6) & 224.6(1.5)\end{array}\)


20
0
\(\dot{3} 0\)
0
0
0
0
0
0
0


 \(N\)
\(\vdots\)
\(\sim\)
\(\sim\)
\(n\)
\(n\)
0
\(N\)
\(63.0(0.9)\)
\(268.8(0.9)\)


231.7( 2.2 )
\(\stackrel{\Omega}{\Omega}\)
\(\varepsilon-0\)

\(49.3(2.1)\)
\(216.0(1.5)\)

\(16.9(1.0)\)
\(241.7(2.1)\)
\(n\)
\(\vdots\)
\(\vdots\)
\(\sim\)
\(\vdots\)
\(\vdots\)


WEIGHTED N
\(1,577,445(1 x)\)


\(\begin{array}{cc}\text { ren } & \text { re } \\ - & \sim \\ - & N \\ \cdots & N \\ \infty & n \\ -i & n \\ 0 & n\end{array}\)
\(n\)
\(n\)
\(\sim\)
\(N\)
\(n\)
\(n\)
\(n\)
\(n\)

\(z\)

8509
\(N\)
\(N\)
\(N\)
\(n\) \begin{tabular}{llll}
\(\vec{N}\) & \(n\) & \(\infty\) & \(\infty\) \\
\(\underset{\sim}{1}\) & \(\infty\) & \(\infty\) & \(\infty\) \\
\(N\) & \(N\) & \multirow{4}{*}{} &
\end{tabular} \begin{tabular}{l} 
N \\
\\
\\
\\
\hline
\end{tabular}

Weighted Response Percentages and General Science Proficiency Means, Grede 7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline N & WEIGHTED & & 0-2 & 3-5 & & \(6+\) & & MISSING \\
\hline \multirow[t]{2}{*}{11985} & 1,576,110 & 1\%) & 22.6(0.7) & 53.61 & 0.5) & 23.8 ( & 0.6) & 0.9 \\
\hline & & & 256.2(1.7) & 253.11 & 0.7) & 232.25 & 0.9) & \\
\hline \multirow[t]{2}{*}{6051} & 802,8816 & 1\%) & 22.7(0.9) & 52.26 & 0.9) & 25.16 & 0.9) & 1.2 \\
\hline & & & 260.4(1.9) & 256.9 ( & 1.0) & 236.16 & 1.1) & \\
\hline \multirow[t]{2}{*}{5934} & 773,2286 & 12) & 22.6(0.8) & 55.01 & 0.7) & 22.46 & 0.5) & 0.6 \\
\hline & & & 251.8(2.0) & 249.3 ( & 0.7) & 227.76 & 1.0) & \\
\hline \multirow[t]{2}{*}{7159} & 1,124,5856 & 17) & \(24.5(0.9)\) & 56.51 & 0.6) & 18.97 & 0.7) & 0.7 \\
\hline & & & 265.0(1.2) & 261.71 & 0.8) & 246.1 ( & 1.3) & \\
\hline \multirow[t]{2}{*}{2480} & 234,872 & 17) & \(11.3(0.6)\) & 43.36 & 1.4) & 45.41 & 1.3) & 0.6 \\
\hline & & & \(216.0(2.3)\) & 223.0 ( & 1.5) & 211.41 & 1.4) & \\
\hline \multirow[t]{2}{*}{1986} & 501.7336 & 12) & \[
21.1(1.3)
\] & 50.51 & 1.0) & 28.4 ( & 1.3) & 0.5 \\
\hline & & & \[
222.5(2.9)
\] & 226.1( & 1.3) & 214.4 ( & 2.0) & \\
\hline \multirow[t]{2}{*}{360} & 54,920 & 75) & 36.4(4.2) & 46.31 & 2.8) & 17.41 & 3.7) & 7.3 \\
\hline & & & 245.0(14.3) & 244.0 ( & 6.8) & 241.4 & 7.2) & \\
\hline \multirow[t]{2}{*}{1021} & 126.132 & 5\%) & 17.4(1.3) & 53.01 & 2.0) & 29.61 & 1.7) & 0.4 \\
\hline & & & \(221.5(2.3)\) & 229.4 ( & 1.6) & 217.1 ( & 2.0) & \\
\hline \multirow[t]{2}{*}{3361} & 448,367 & 35) & 18.2(1.0) & 55.56 & 0.9) & 26.24 & 0.8) & 0.4 \\
\hline & & & 243.6 (1.9) & 245.56 & 0.9) & 229.46 & 1.6) & \\
\hline \multirow[t]{2}{*}{1717} & 236,0366 & 2\%) & 19.8 (1.1) & 60.01 & 1.2) & 20.16 & 1.0) & 0.4 \\
\hline & & & 261.8( 2.4) & 262.5 & 1.3) & 245.8 ( & 2.2) & \\
\hline \multirow[t]{2}{*}{4242} & 571,688( & 37) & 29.1(0.9) & 52.06 & 0.9) & 18.96 & 1.0) & 0.3 \\
\hline & & & 272.3(1.3) & 265.4 ( & 1.2) & 241.76 & 1.6) & \\
\hline \multirow[t]{2}{*}{1597} & 188.1416 & 4\%) & 20.3(2.0) & 46.36 & 1.5) & 33.46 & 1.5) & 0.5 \\
\hline & & & 226.7( 4.5) & 236.0 ( & 1.9) & 220.2 ( & 1.6) & \\
\hline
\end{tabular}
Table 15.84

Weighted Response Percentages and General Reading Proficiency Means, Grade 11
Total Sample
total Missing
\(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\)




\(100.0(0.0)\)
\(56.9(0.2)\)
o


WEIGHTED N
(80) ts t'8气9't

\section*{}




\(=\)


\begin{tabular}{ll}
\(\underset{-1}{*}\) & \multirow{2}{*}{} \\
\(\underset{-1}{2}\)
\end{tabular}
\(\begin{array}{ll}\underset{\sim}{\infty} & 0 \\ \mathbf{0} & \stackrel{\infty}{\infty} \\ 0 & 6\end{array}\)
\(\stackrel{-}{\infty}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(0^{\circ} 0\)} & \[
\begin{aligned}
& (8 \cdot 0) 9 \cdot \angle 7 \\
& (8 \cdot \sigma) 8 \cdot 8 \varepsilon
\end{aligned}
\] & （ \(\varepsilon \cdot \tau) \chi^{\prime} 67\) & （0．1） \(9^{\circ} \mathrm{C7}\) & （6．0）5． 5 & & & \multirow[t]{2}{*}{I8S} \\
\hline & \[
\left(8^{\circ} \tau\right) 8 \cdot 8 \varepsilon
\] & \[
(\tau \varepsilon) 8 \cdot \tau \tau
\] & （ \(5^{\prime}\) 2）5＇8L & （0．E） \(6^{\circ} 02\) & （x） & ） \(765^{\prime}\) ヶS & \\
\hline & （ \(S^{\circ} 0\) ）E 8 S & （7＊0） \(0 \cdot 65\) & （ \(\varepsilon \cdot 0) 8 . \angle S\) & （9．0）［．09 & & & \multirow[t]{3}{*}{6879} \\
\hline \multirow[t]{2}{*}{\(0^{\circ} 0\)} &  &  &  &  & （xE & ）ヶで「で9 & \\
\hline & （ \(\left.\left.\varepsilon^{*} 0\right)\right\rangle^{*} 95\) & （ \(\varepsilon \cdot 0) \varepsilon \cdot L S\) & （9．0）5．95 & （9．0）\()^{\circ} \mathrm{LS}\) & & & \\
\hline \multirow[t]{2}{*}{0.0} & （I．I） \(0^{\circ} \mathrm{LZ}\) & （ \(\chi^{\prime}\) ¢）\(s^{\circ} \tau \varepsilon\) & （ \(5^{\circ} \mathrm{L}\) ） \(\boldsymbol{H}^{\circ}\) 6T & （ \(\left.7^{\circ} \mathrm{L}\right) 0^{\circ} \mathrm{zz}\) & （27 & ） \(98 Z^{\prime} 65 \varepsilon\) & \multirow[t]{2}{*}{\(679 \varepsilon\)} \\
\hline & （ \(\mathrm{C}^{\circ} 0\) ） \(8 \times 25\) & （s．0） \(0 \cdot \square 5\) & （9＊0）z＇zs & （ \(s^{\prime} 0\) ）\(\varepsilon\)＇ヶs & & & \\
\hline \multirow[t]{2}{*}{\(0 \%\)} &  & （ヶ＇z）s＇z & （ \(\left.\varepsilon^{\prime} \chi\right) L^{\prime} Z Z\) &  & （xE & ）8\＆9「ワワ & \multirow[t]{2}{*}{9ヶらヶ} \\
\hline & （ \(\varepsilon \cdot 0\) ） \(8 \cdot 05\) & （8．0）\％TS & （9．0） \(8^{\circ} 05\) &  & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （ \(8^{\circ} \mathrm{z}\) ）\(\varepsilon^{\prime} O \varepsilon\) &  & （ \(\left.\chi^{\circ} \varepsilon\right) 8^{\circ} 6 乙\) & （ \(0^{\circ} \mathrm{z}\) ）＜\({ }^{\circ} \mathrm{Oz}\) & （25 & \() 0 \leq \varepsilon^{\prime} 0 \varepsilon \tau\) & \multirow[t]{2}{*}{I97} \\
\hline & （6．1） 0.95 & （ \(8^{\circ} \mathrm{I}\) ） \(8^{\circ} \mathrm{ES}\) &  & （ \(¢ \cdot \tau\) ） \(8 \cdot 85\) & & & \\
\hline \multirow[t]{2}{*}{} & （9．9）\({ }^{\text {c }} 89\) & （て＇z）\({ }^{\text {c }} 6\) & （ \(\mathrm{C}^{\circ} \mathrm{L}\) ）9．9 &  & （x） & ）โ¢9＇zs & \multirow[t]{2}{*}{1くワ} \\
\hline & （ \(\varepsilon \cdot 0\) ）s．ts & （ S＇L ）E OS & （2＇t）5＇8\％ & （8．0）\％＇zs & & & \\
\hline \multirow[t]{2}{*}{\(0^{\circ} 0\)} & （6．0） \(8^{\circ} 89\) & \(\left(9^{\prime} z\right) L^{\prime} \tau \tau\) & （z＇I）\％ 9 & （ \(0 \cdot \tau)\) ¢ \(\frac{1}{}\) & （x2 & ）20s＇8t5 & \multirow[t]{2}{*}{\(5 ヶ 97\)} \\
\hline & （8＊） \(8^{\circ} \mathrm{zS}\) & （6．0） \(8^{\circ} \mathrm{LS}\) & （\％＊）\({ }^{\circ} \mathrm{C}\) 6\％ & （ \(L^{\circ} 0\) ）9＊ CS & & & \\
\hline \multirow[t]{2}{*}{\(0^{\circ} 0\)} & （ \(\left.9^{\prime} z\right) \varepsilon^{\prime} 9 \tau\) & （ \(5^{\prime}\) Z ） \(0^{\circ} 6 \mathrm{~T}\) & （6．0）\(\varepsilon^{\circ} 07\) & （8．0）カナカて & （xZ & ）0Zて「0てZ & \multirow[t]{2}{*}{} \\
\hline & （\％．0） 6.95 & （ \(5 \cdot 0)\) ）\(\angle 5\) & （ \(\varepsilon .0) 9.95\) & （9．0）E．8S & & & \\
\hline \multirow[t]{2}{*}{\(0 \%\)} & （で0）く て て &  & （8．t） \(2 \cdot 6 T\) & （z＇0）\％＇sて & （x） & ）86く＇9ヶて＇t & \multirow[t]{2}{*}{ES9IT} \\
\hline &  & （5．0）2．8S & （ ع．0）\({ }^{\circ} \cdot 9 \varsigma\) & （ \(\varepsilon \cdot 0) 5 \cdot 85\) & & & \\
\hline \multirow[t]{2}{*}{\(0 \cdot 0\)} & （ \(\iota^{\circ} 0\) ） \(1 \cdot 97\) & （ \(\left.8^{\circ} \mathrm{L}\right) 6^{\circ} 82\) & （L＇\(L^{\text {）}}\) ）L & （ \(0^{\circ} \mathrm{I}\) ） \(0^{\circ} \mathrm{\square} \boldsymbol{\sim}\) & （2T & \()<I T\) 608 & \multirow[t]{2}{*}{\(80 \varepsilon 8\)} \\
\hline & （：0）8．\(\%\) S & （9．0）9．n5 & （ \(5 \cdot 0)(125\) & （8．0）\({ }^{(0 \cdot 9}\) 9 & & & \\
\hline \multirow[t]{2}{*}{\(0^{\circ} 0\)} & \(\left(8^{\circ} 0\right) z^{\circ} \angle Z\) & （ \(\dagger\) ¢ ）カ・8て & （r．I）\(\underbrace{\circ} \mathrm{OZ}\) &  & （x &  & \multirow[t]{2}{*}{2028} \\
\hline &  & （S．0）¢＊9S &  & （S．0）E＊\(¢ 5\) & & & \\
\hline \(0^{\circ} 0\) & （ \(5^{\circ} 0\) ） \(9^{\circ} 97\) & （ \(5^{\circ} \mathrm{L}\) ） \(9^{\circ} 82\) &  &  & （20 & ）TSI＇8E9＇T & OTS95 \\
\hline \multirow[t]{3}{*}{ONISSIW} & IS3M & TVEINGJ & ISVE－S & ISVE－A & N & 13IHOİM & \(N\) \\
\hline & \multicolumn{6}{|l|}{Kxqunos fo uopsey Aq} & \\
\hline & ォ0＇subek & FPFFOXd 80 & \[
\begin{aligned}
& \text { y texeues } \\
& 96 . \text { st etqui }
\end{aligned}
\] & 8088740010 & odse & \％pe749\％em & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline －－TOTAL－－ \\
\hline SEX \\
\hline MALE \\
\hline FEMALE \\
\hline ETHNICITY／RACE WHITE \\
\hline BLACK \\
\hline HISPANIC \\
\hline OTHER \\
\hline PARENTAL EDUCATION LESS THAN H．S． \\
\hline GRADUATED H．S． \\
\hline SOME EDIJC AFTER E．S． \\
\hline GRADUATED COLLEGE \\
\hline UNXNOWN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & \(\bigcirc\) \\
\hline H & - & - & - & - & - & \(\stackrel{\circ}{\circ}\) & \(\stackrel{+}{\circ}\) & \(\stackrel{\circ}{*}\) & \(\bigcirc\) & \(\stackrel{+}{0}\) & 0 & \\
\hline 0 & \(\bigcirc\) & \(\bigcirc\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & 0 \\
\hline \% & & & & & & & & & & & & \\
\hline - & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Weighted Ros & spon & Percent & 宔里 & \begin{tabular}{l}
d Gener \\
Derived
\end{tabular} &  & ing Pro & ficior & Meanz &  & & & & \\
\hline & & & & WEIT & & BLAC & & HISP & ANIC & ASIAN & AMER & AMER & IND & UNCLA & SS \\
\hline & N & WEIGETED & & & & & & & & & & & & & \\
\hline -- TOTAL -- & 16510 & 1,638,151( & & 76.16 & 0.3) & 13.4 ( & 0.2) & 7.26 & 0.1) & 2.36 & 0.3) & 0.91 & 0.2) & 0.01 & 0.0) \\
\hline & & & & 57.3 ( & 0.2) & 51.3 ( & 0.3) & 51.3 ( & 0.3) & 57.71 & 1.5) & 52.51 & 1.3) & 38.9 ( & 3.5) \\
\hline SEX & & & & & & & & & & & & & & & \\
\hline MALE & 8202 & 829,034 & 2\%) & 75.81 & 0.6) & 13.45 & 0.4) & 7.46 & 0.3) & 2.66 & 0.5) & 0.96 & 0.3) & 0.02 & 0.0) \\
\hline & & & & 55.51 & 0.3) & 50.3 ( & 0.4) & 49.6 ( & 0.4) & 56.4 ? & 1.7) & 51.36 & 1.2) & 38.9 ( & 3.5) \\
\hline FEMALE & 8308 & 809.1176 & 1x) & 76.51 & 0.6) & 13.51 & 0.4) & 7.11 & 0.3) & 1.91 & 0.3) & 1.06 & 0.2) & 0.01 & 0.0) \\
\hline & & & & 59.1 ( & 0.2) & 52.3 ( & 0.3) & 53.1 ( & 0.4) & 59.51 & 1.9) & 53.66 & 1.5) & ***** & 0.0) \\
\hline ETHNICITY/RACE & & & & & & & & & & & & & & & \\
\hline WHITE & 11653 & 1,246,798( & 02) & 100.01 & 0.0) & 0.06 & \(0.0)\) & 0.01 & 0.0) & 0.01 & 0.0) & 0.01 & 0.0) & 0.01 & 0.0) \\
\hline & & & & 57.3 ( & 0.2) & ***** & \(0.0)\) & ***** & 0.0) & ***** & 0.0) & ***** & 0.0) & ***** & 0.0) \\
\hline BLACK & 2741 & 220,220 & 22) & \[
0.01
\] & \[
0.0)
\] & \[
100.0(
\] & \[
0.0)
\] & \[
0.01
\] & \[
0.0)
\] & \[
0.01
\] & 0.0) & 0.00 & \[
0.0)
\] & \[
0.01
\] & \[
0.0)
\] \\
\hline & & & & * * * ** ( & \[
0.0)
\] & \[
51.30
\] & \[
0.3)
\] & ***** ( & \[
0.0)
\] & \(\star \star \star \hbar *\) ( & 0.0) & *****( & \[
0.0)
\] & ***** ( & \[
0.0)
\] \\
\hline HISPANIC & 1645 & 118,502 & 2x) & 0.01 & 0.0) & 0.01 & 0.0) & 100.01 & 0.0) & 0.01 & \(0.0)\) & 0.01 & 0.0) & 0.01 & \(0.0)\) \\
\hline & & & & ***** & 0.0) & ***** & 0.0) & 51.3 ( & 0.3) & ***** & 0.0) & ***** & \(0.0)\) & ***** & \(0.0)\) \\
\hline OTEER & 471 & 52,6316 & 5\%) & \[
0.0(
\] & 0.0) & 0.01 & 0.0) & 0.06 & 0.0) & \[
70.8(
\] & 7.6) & 29.16 & 7.6) & 0.12 & 0.1) \\
\hline & & & & ***** & \(0.0)\) & ***** & 0.0) & ***** & \(0.0)\) & \[
57.7 \text { ( }
\] & 1.5) & 52.5 ( & 1.3) & 38.9 ( & 3.5) \\
\hline PAR'ATAL EDUCATION & & & & & & & & & & & & & & & \\
\hline LESS THAN H.S. & 1461 & 130,350 & 5\%) & 56.81 & 2.6) & 18.45 & 1.7) & 21.46 & 2.1) & 1.41 & \(0.4)\) & 1.96 & 0.8) & 0.05 & 0.0) \\
\hline & & & & 53.56 & 0.4) & 48.6 C & 0.6) & 49.56 & 0.6) & 49.26 & 2.5) & 49.56 & 1.7) & ***** & 0.0) \\
\hline GRADUATED H.S. & 4546 & 441,6386 & 3\%) & \[
76.2(
\] & \[
0.8)
\] & \[
15.1(
\] & & \[
7.0(
\] & \[
0.5)
\] & \[
0.76
\] & \[
0.2)
\] & \[
0.96
\] & 0.3) & 0.02 & \(0.0)\) \\
\hline & & & & \[
54.6(
\] & 0.3) & 49.4\% & \[
0.3)
\] & 49.7! & \[
0.5)
\] & 54.8 ( & 2.1) & 52.36 & 1.3) & ***** & 0.0) \\
\hline SOME EDUC AFTER H.S. & 3649 & 359,2856 & 2x) & \[
79.3(
\] & 0.8) & \[
12.8(
\] & \[
0.6)
\] & \[
5.91
\] & \[
0.4)
\] & \[
1.26
\] & \[
0.3)
\] & \[
0.91
\] & \[
0.1)
\] & \[
0.06
\] & \[
0.0)
\] \\
\hline & & & & \[
57.76
\] & 0.3) & \[
53.26
\] & \[
0.5)
\] & \[
54.3(
\] & \[
0.7)
\] & \[
57.06
\] & \[
2.5)
\] & 54.46 & \[
2.3)
\] & ***** & \[
0.0)
\] \\
\hline GRaduated college & 6189 & 642,424( & 3\%) & 80.9 ( & 0.8) & 10.86 & 0.4) & 4.0 ( & 0.3) & 3.81 & 0.7) & 0.51 & 0.1) & 0.01 & \(0.0)\) \\
\hline & & & & 59.8 ( & 0.3) & 53.56 & 0.6) & 54.4 ( & 0.6) & 60.11 & 1.4) & 55.36 & 2.4) & ***** & 0.0) \\
\hline UNXNOWN & 581 & 54.591( & 5\%) & 42.91 & 2.4) & 25.06 & 2.5) & 22.61 & 1.9) & 6.2 ( & 1.8) & 3.2 ( & 1.5) & 0.11 & 0.1) \\
\hline & & & & 49.81 & 0.9) & 47.81 & 0.6) & 47.81 & 0.8) & 48.4 ( & 2.7) & 50.2 ( & 2.2) & 38.9 ( & 3.5) \\
\hline \(4{ }^{4}\) & & & & & & & & & & & & & & & 42 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \[
\underset{\sim}{\mathcal{N}}
\] & ～ \\
\hline \[
\begin{aligned}
& \text { - } \\
& \stackrel{y}{*} \\
& \stackrel{y}{2}
\end{aligned}
\] & \begin{tabular}{l}
－ \\
\(\cdots\) \\
\(\cdots\) \\
\hline
\end{tabular} \\
\hline \[
\stackrel{\vdots}{\mathrm{N}}
\] & \[
\stackrel{\infty}{\underset{\sim}{\infty}}
\] \\
\hline
\end{tabular}
se
0
N
N
N
N


\(\left.\begin{array}{ll}0.0( & 0.0 \\ 0 * * * & 0.0\end{array}\right)\)
\(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ * & 0 \\ * & 0 \\ * & \end{array}\)

\(0.0(0.0)\)
\(* * * *(0.0)\)
\(\underset{* * * * *(0.0)}{0.0(0.0)}\)
0
0
0
\(0-\infty\)
\(\vdots\)
0
0
0
0
0
0
0
0
0
0
GRAD COL

\((2 \cdot 0) ヶ \cdot \varepsilon \quad(\varepsilon \cdot \tau) \varsigma^{\circ} 6 \varepsilon\)
\(n\)
0
0
0
0
0


Ǹ
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\stackrel{n}{0}\)
\(\stackrel{\square}{\circ}\)
\(\stackrel{?}{\circ}\)
\(\because\)
0
0
\(\vdots\)
0
0
0
0
0
\(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\)
\(z\)


2SI8
\(\begin{array}{cc}N \\ \underset{\infty}{N} & \stackrel{\rightharpoonup}{N} \\ \end{array}\)


\(130,350(5 \%)\)
\(441,638(3 \%)\)

 \(642,424(3 \%)\)
\(54,591(5 \%)\)
\(0.0(0.0)\)
\(* * * *(0.0)\)
\(0.0(0.0)\)
\(* * * * *(0.0)\)
\(0.0(0.0)\)
\(* * * *(0.0)\)
\(100.0(0.6)\)
\(58.9(0.2)\)
\(0.0(0.0)\)
\(* * * *(0.0)\)

ลิo ôo ôํ ôㅇ ôc 0
0.
0
0
0
0
0
0
0
 ล๐ ละ \(\begin{array}{rr}0.0< \\ * * * * * & 0.0 \\ 0.0\end{array}\)

0
0
0
0.
0.
0
0 \(0.0(0.0)\)
\(* * * *(0.0)\) \(0.0(0.0)\)
\(* * * * *(0.0)\)
0.0
00
00
0.
0.
0
0 ลิ ○○
\(0.0(0.0)\)
\(* * * *(0.0)\)
\(0.0(0.0)\) ＊＊＊＊＊（ 0.0 ）
\(0.0(0.0)\)
\(* * * *(0.0)\)
\(0.0(0.0)\)
\(* * * *(0.0)\)

\title{

}

\section*{\(823,461(2 z)\)
\(804,828(2 z)\) \\ }



\(\underset{\sim}{\infty} \underset{\infty}{\infty}\)
が

SEX
female
Ethnicity／race
parental education
less than h．S．
GRADUATED H．S．
SOME EDUC AFTER H．S．
GRADUATED COLLEGE
UNKNOWN －－TVIOI


Table 15.99
Weighted Response Percentages and General fading Proficiency Merns，Grade 11

z


\(\begin{array}{cc}\underset{\sim}{n} \\ \underset{\sim}{7} & \stackrel{m}{6} \\ \underset{\sim}{*}\end{array}\)
\(\begin{array}{lll}\infty & \infty & \infty \\ \stackrel{\infty}{\infty} & \stackrel{\infty}{-} & \stackrel{\infty}{n} \\ & & \end{array}\)
Table 15.100
Weighted Response Percentages and General Reading Proficiency Means，Grade 11
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& 0 \\
& z \\
& H \\
& 0 \\
& 0 \\
& 0 \\
& y
\end{aligned}
\] & \[
\stackrel{+}{0}
\] & \[
\stackrel{n}{0}
\] & \[
\begin{array}{r}
? \\
0
\end{array}
\] & \[
\stackrel{n}{0}
\] & \[
0
\] & \[
\underset{0}{-1}
\] & \[
\stackrel{\bullet}{\dot{\circ}}
\] & \[
0
\] & \[
\underset{0}{-1}
\] & \[
\overrightarrow{0}
\] & \[
0
\] & \[
\stackrel{\rightharpoonup}{0}
\] \\
\hline & & \[
\begin{aligned}
& \text { ®n } \\
& 00 \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& \text { İ } \\
& 0 \circ
\end{aligned}
\] & \[
\begin{aligned}
& \mathcal{G} \\
& 0 .
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 0 \circ \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& \underset{\sim}{7} \\
& \underset{i}{0}
\end{aligned}
\] & \[
\underset{\sim i}{\sim} \underset{\sim}{i}
\] & \(\stackrel{\omega}{0}\)－ & ¢
－
－ & \[
\begin{aligned}
& \hat{j} \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& \hat{0} గ \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G} \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& \approx \\
& \\
& \sim
\end{aligned}
\] \\
\hline  & \(\stackrel{+}{6}\) & \[
\begin{aligned}
& \text { n } \\
& \text { n. } \\
& \text { ó }
\end{aligned}
\] &  &  & \(\sim\)
\(\cdots \sim\)
\(\cdots\) & \[
\begin{aligned}
& \sim \sim \\
& \dot{N} \\
& \dot{N} \\
& \mathbf{N}
\end{aligned}
\] & \[
\begin{aligned}
& \text { on } \\
& 0 i \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ゅo } \\
& \text { io } \\
& \text { ro }
\end{aligned}
\] &  &  &  & \[
\begin{aligned}
& \check{\infty} \\
& \dot{\infty} \\
& \dot{N}
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \vdots \\
& \text { No }
\end{aligned}
\] \\
\hline \(\begin{array}{r}\infty \\ \hline \\ -7 \\ \hline\end{array}\) & & \[
\begin{aligned}
& N \\
& 00 \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 0.0 \\
& 0 \circ
\end{aligned}
\] & \[
\begin{aligned}
& \widehat{N} \\
& 00 \\
& 00
\end{aligned}
\] & ¢\％ & ¢ & ¢0
\(\cdots 0\)
\(\cdots 0\) & \[
\begin{aligned}
& \infty \\
& \infty \\
& \cdots
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& \dot{N} \dot{0}
\end{aligned}
\] &  & \[
\begin{array}{cc}
0 \\
\hdashline i o \\
\hdashline i
\end{array}
\] & O－
－ & No \\
\hline \(\xrightarrow{-1}\) & \[
\begin{aligned}
& n \\
& n \\
& n
\end{aligned}
\] & \[
\] & \[
\begin{aligned}
& \text { ǒ } \\
& \text { j } \\
& \text { sin }
\end{aligned}
\] & 6
0
\(\sim\)
\(\%\) &  & \[
\begin{aligned}
& \text { zo } \\
& \dot{\omega} \\
& \dot{n} \\
& \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& m \\
& \infty \\
& \infty \\
& \infty \\
&
\end{aligned}
\] &  &  & \[
\begin{aligned}
& n \\
& \text { n } \\
& 0 \\
& \text { in }
\end{aligned}
\] &  & No
Nin
n & \[
\begin{aligned}
& \because \sim \\
& \dot{v} \\
& \dot{\sigma}
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\oplus \\
\stackrel{-}{\mathrm{o}} \\
\mathrm{H}
\end{gathered}
\] & & ¢ & ¢－5 & \[
\begin{gathered}
\text { ON } \\
\text {-io }
\end{gathered}
\] & －0． & ¢ & \[
\begin{aligned}
& \approx \\
& \text { ain }
\end{aligned}
\] & \[
\begin{aligned}
& \hat{n} \\
& \dot{N} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
n \\
\text { Ni }
\end{gathered}
\] & ¢® & No &  & \[
\begin{aligned}
& \text { N } \\
& \underset{\sim}{\infty} \\
& 0
\end{aligned}
\] \\
\hline \％ & \[
\begin{gathered}
\text { N } \\
\mathbf{1}
\end{gathered}
\] & \[
\begin{aligned}
& \sim \\
& \dot{\circ} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { ǒo } \\
& \text { in } \\
& \text { sin }
\end{aligned}
\] & \[
\begin{aligned}
& \sim \\
& 0 \\
& \infty \\
& \infty \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \infty \\
& i n \\
& i n
\end{aligned}
\] & \[
\begin{aligned}
& \infty \sim \\
& \infty \\
& \underset{N}{N} \\
& \stackrel{N}{N}
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \infty \\
& \dot{0} \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \sim \\
& \sigma \\
& \dot{j} \\
& \dot{N}
\end{aligned}
\] & \[
\begin{aligned}
& \sim N \\
& \dot{N} \\
& \text { Nin }
\end{aligned}
\] & \[
\begin{aligned}
& \text { v. } \\
& \text { N. } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { y } \\
& \dot{0} \\
& \dot{o} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { on } \\
& 0 \\
& 0 \\
& 0 \\
& \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { fo } \\
& \text { no } \\
& \sim \sim
\end{aligned}
\] \\
\hline & \(z\) & \[
\stackrel{\mathrm{He}}{\mathrm{M}}
\] & N & \[
\underset{N}{\mathrm{~N}}
\] & \[
\underset{\sim}{r e}
\] & \[
\underset{\substack{x \\ N}}{ }
\] & \[
\underset{N}{N}
\] & \[
\underset{6}{\underset{\sim}{e}}
\] & S & \(\underset{\sim}{6}\) & N & － & \(\cdots\) \\
\hline &  & -
-1
-1
-1
-1
0
-1 & \[
\] & \[
\begin{aligned}
& \check{\omega} \\
& \underset{\sim}{r} \\
& \dot{\infty} \\
& \hline-
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \dot{0} \\
& 0 \\
& 0 \\
& \stackrel{0}{N} \\
& \text { N } \\
& -i
\end{aligned}
\] & \[
\begin{aligned}
& \text { J } \\
& \text { I } \\
& \text { O } \\
& \mathrm{N}
\end{aligned}
\] & \[
\begin{aligned}
& -= \\
& i-1 \\
& 0 \\
& \infty \\
& \infty \\
& -1
\end{aligned}
\] & F
－
n
N
N & \[
\begin{aligned}
& \check{n} \\
& \underset{n}{n} \\
& 0 \\
& 0 \\
& n
\end{aligned}
\] & \[
\begin{aligned}
& \text { - } \\
& \circ \\
& 0 \\
& - \\
& - \\
& j
\end{aligned}
\] & \[
\begin{aligned}
& \breve{N} \\
& \text { N } \\
& \infty \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
\] &  & N
\(\cdots\)
\(N\)
\(\vdots\)
n \\
\hline & \(z\) & \[
\begin{aligned}
& n \\
& n \\
& 0 \\
& \sim
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \bullet \\
& \hline-1
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \infty \\
& \mathbf{N} \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& -1 \\
& -1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{O} \\
& \mathrm{~N}
\end{aligned}
\] & \[
\begin{aligned}
& \mathbb{N} \\
& \stackrel{1}{0} \\
& \sim
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& -1
\end{aligned}
\] & \[
\begin{aligned}
& m \\
& \vec{n} \\
& \underset{\sim}{n}
\end{aligned}
\] & \[
\begin{aligned}
& n \\
& \underset{\sim}{0} \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \infty \\
& \underset{\infty}{\infty}
\end{aligned}
\] & \(\underset{\sim}{n}\) \\
\hline
\end{tabular}
ジ
\[
\begin{aligned}
& \text { WEIGHTED N } \\
& 1,190,734(1 \%)
\end{aligned}
\]
\[
\begin{aligned}
& 599,642(2 x) \\
& 591,093(2 x)
\end{aligned}
\]
\[
\text { Table } 15.101
\]
Total Sample
MISSING
Grade 11
\[
\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
\[
\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}
\] \(z\)
\(\begin{array}{ll}\underset{\infty}{\infty} & \underset{\sim}{\infty} \\ \underset{\infty}{\infty} & \underset{\sim}{\boldsymbol{\omega}}\end{array}\)
澹
\(\infty\)
n

앙

\(\begin{array}{ll}0 & 0 \\ \infty \\ \infty & 0 \\ i\end{array}\)
05815
SOME EDUC AFTER H.S.
GRADUATED COLLEGE
UNKNOWN
3
\(\times 3\)
\(\times 4\)

Table 15.102
Weighted Response Percentages and General Mathematics Proficiency Means, Grade 11



\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Percentages and General Mathematics Proficiency Means, Grade 11} \\
\hline WHITE & black & gispanic & ASIAN AMER & AMER IND & UNCLASS \\
\hline \(75.9(0.3)\) & 13.1( 0.2) & \(7.5(0.2)\) & 2.4( 0.3) & 1.0( 0.3) & 0.0( 0.0) \\
\hline \(309.4(0.7)\) & 279.2( 1.2 ) & 285.6( 1.5 ) & 330.6 ( 5.3) & 285.5( 2.7) & 307.8(13.4) \\
\hline 75.6(0.8) & 12.8( 0.5) & 7.6( 0.3) & 2.9( 0.4) & 1.1( 0.4) & \(0.0(0.0)\) \\
\hline 311.1( 0.9\()\) & 281.2( 1.9) & 288.6( 2.0 ) & \(337.0(6.3)\) & 288.3( 3.3 ) & *****( 0.0\()\) \\
\hline \(76.3(0.6)\) & 13.3( 0.4 ) & 7.4(0.3) & 2.0( 0.2) & 0.9( 0.3) & \(0.0(0.0)\) \\
\hline \(307.8(0.7)\) & 277.2(1.2) & 282.5( 1.6) & \(321.0(4.7)\) & \(282.0(3.6)\) & 307.8(13.4) \\
\hline \(100.0(0.0)\) & \(0.0(0.0)\) & \(0.0(0.0)\) & \(0.0(0.0)\) & \(0.0(0.0)\) & \(0.0(0.0)\) \\
\hline 309.4 ( 0.7) & *****( 0.0\()\) & ***** ( 0.0\()\) & *****( 0.0\()\) & ***** ( 0.0\()\) & *****( 0.0\()\) \\
\hline \(0.0(0.0)\) & 100.0( 0.0 ) & \(0.0(0.0)\) & 0.0( 0.0) & 0.0( 0.0\()\) & \(0.0(0.0)\) \\
\hline *****( 0.0) & \(279.2(1.2)\) & ***** ( 0.0) & *****( 0.0\()\) & ***** ( 0.0 ) & *****(0.0) \\
\hline \(0.0(0.0)\) & \(0.0(0.0)\) & 100.0( 0.0) & 0.0( 0.0\()\) & \(0.0(0.0)\) & \\
\hline ***** ( 0.0) & *****( 0.0\()\) & 285.6( 1.5) & ***** ( 0.0\()\) & ***** ( 0.0) & \[
* * * * *(0.0)
\] \\
\hline \(0.0(0.0)\) & \(0.0(0.0)\) & 0.0( 0.0 ) & 69.9( 8.4) & 29.7( 8.4) & \\
\hline ***** ( 0.0) & *****( 0.0 ) & *****( 0.0\()\) & 330.6 ( 5.3) & 285.5(2.7) & \[
307.8(13.4)
\] \\
\hline 59.9( 2.4) & 17.3( 1.5) & 19.2( 2.1) & 1.4( 0.5 ) & 2.1( 0.8\()\) & 0.0( 0.0) \\
\hline 290.5 ( 1.7) & 269.6 ( 1.8 ) & 278.4 ( 2.0) & \(306.8(10.4)\) & 276.1( 4.2 ) & *****( 0.0\()\) \\
\hline \(75.8(0.8)\) & 14.3( 0.5 ) & \(7.5(0.6)\) & 1.2(0.3) & 1.2( 0.3) & 0.0( 0.0) \\
\hline \(299.0(0.7)\) & 273.1( 1.6\()\) & \(280.0(1.6)\) & \(313.5(8.3)\) & 284.3( 2.7) & 294.4(****) \\
\hline \(78.4(0.8)\) & \(13.3(0.7)\) & 5.9( 0.6\()\) & 1.5( 0.4 ) & 0.9( 0.3) & \\
\hline \(312.0(0.8)\) & 281.2(2.0) & 293.1 ( 2.4) & \(309.9(7.2)\) & 296.4( 5.1) & *****( 0.0\()\) \\
\hline 80.6( 0.9 ) & \(10.5(0.5)\) & 4.6( 0.3 ) & \(3.7(0.7)\) & 0.6( 0.2) & \\
\hline \(319.5(0.7)\) & 289.0( 2.0) & 297.8(2.7) & 343.4 ( 5.0) & 295.6( 7.1) & \(311.3(17.8)\) \\
\hline 45.7( 2.6) & 22.4( 2.0 ) & 22.3( 2.3) & 6.1( 1.6) & 3.6( 1.7) & 0.0( 0.0) \\
\hline 283.3(1.9) & 268.5( 3.5 ) & 272.9(2.3) & \(312.6(8.4)\) & 264.8( 6.5 ) & ***** ( 0.0\()\) \\
\hline
\end{tabular}

WEIGHTED N
\(1,190.734(1 \%)\)
\(z\) n
\(\stackrel{0}{\infty}\)
\(\underset{\sim}{7}\) \(599,642(2 z)\)
\(591,093(2 z)\) \(\begin{array}{ll}0 & 0 \\ \text { in } & \text { in } \\ \text { in } & 0 \\ & \end{array}\)
(xz)EIE'SSt
(xI ) ISz'r06


 99.782(5\%) \(99.782(5 z)\)
\(323.606(3 z)\)


 . \(68 \varepsilon 8\) \(\stackrel{\infty}{\stackrel{\infty}{-1}}\) 1185
358 358 \(\stackrel{\infty}{\infty}\)

'S'H yaday onas awos

\section*{gRaduated b.s.}

HOILYOnas TVINEXYa
ethnicity/RACE
WHITE
black
hispanic

\section*{-- TVIOI}

Table 15.106
Weighted Response Percentages and General Mathematics Proficiency Means, Grade 11


\(-80 \%-\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & 0-2 & & 3-5 & & \(6+\) & & MISSING \\
\hline & \(N\) & WEIGRTED & & & & & & & & \\
\hline -- TOTAL -- & 11814 & 1,186,881( & 12) & 46.11 & 0.9) & 44.61 & 0.8) & 9.36 & & 0.3 \\
\hline & & & & 312.50 & 0.9) & 299.6 & 0.8) & 283.34 & 1.1) & \\
\hline SEX & & & & & & & & & & \\
\hline MALE & 5814 & 596,987 & 2x) & 45.9 ( & 1.2) & 44.31 & 1.0) & 9.71 & 0.6) & 0.4 \\
\hline & & & & 313.9 ( & 1.1) & 302.58 & 1.1) & 286.4 & 1.5) & \\
\hline FEMALE & 6000 & 589.894( & 2x) & 46.36 & 1.1) & 44.81 & 1.0) & 8.9( & 0.5) & 0.2 \\
\hline & & & & \(311.2(\) & 1.0) & 296.6 ( & 0.8) & 279.8( & 1.7) & \\
\hline ETBNICITY/RACE & & & & & & & & & & \\
\hline WHITE & 8362 & 900,973 & 2x) & 50.8 ( & 1.1) & 42.81 & 0.9) & 6.41 & 0.5) & 0.4 \\
\hline & & & & 315.8 ( & 0.9) & 304.9 ( & 0.7) & 291.1( & 1.5) & \\
\hline BLACK & 1913 & 155,9736 & 2\%) & 22.46 & 1.0) & 53.81 & 1.3) & 23.88 & 1.4) & 0.2 \\
\hline & & & & 287.16 & 2.4) & 279.66 & 1.4) & 270.86 & 2.0) & \\
\hline EISPANIC & 1181 & 98.594( & 3\%) & 41.81 & 1.7) & 46.26 & 1.8) & 12.01 & 1.2) & 0.3 \\
\hline & & & & 291.4( & 2.4) & 284.2\% & 1.6) & 271.86 & 2.8) & \\
\hline OTAER & 358 & 41,3421 & 4\%) & 43.21 & 2.4) & 45.11 & 3.1) & 11.71 & 1.9) & 0.0 \\
\hline & & & & 322.7 ( & 6.2) & 313.51 & \(7.8)\) & 310.1 ( & 6.9) & \\
\hline PARENTAL EDUCATION & & & & & & & & & & \\
\hline LESS TEAN H.S. & 1096 & 99,679 ( & 5\%) & 36.01 & 1.8) & 49.91 & 1.6) & 24.14 & 1.5) & 0.1 \\
\hline & & & & \(291.8(\) & 1.7) & 283.01 & 1.5) & 271.2( & 3.2) & \\
\hline GRADUATED H.S. & 3259 & 323,3316 & 3\%) & 37.65 & 1.1) & 50.4 ( & 1.1) & 12.01 & 1.0) & 0.1 \\
\hline & & & & 300.46 & 0.9) & 292.76 & 1.0) & 278.1( & 1.4) & \\
\hline SOME EDUC AFTER H.S. & 2607 & 259,718( & 3\%) & 44.6 ( & 1.5) & 46.76 & 1.4) & 8.71 & 0.6) & 0.0 \\
\hline & & & & 313.3 ( & 1.2) & 303.56 & 0.9) & 288.76 & 2.2) & \\
\hline graduated college & 4412 & 463.5101 & 4\%) & 56.31 & 1.2) & 37.81 & 1.2) & 5.9 ( & 0.5) & 0.0 \\
\hline & & & & 322.1 ( & 0.9) & 310.2 ( & 1.2) & 295.8 ( & 2.5) & \\
\hline UNKNOWN & 399 & 36,852 & 62) & \(31.2(\) & 2.6) & 49.91 & 2.4; & 19.0 ( & 2.5) & 0.1 \\
\hline & & & & 282.2( & 3.0) & 280.0( & 2.3) & 270.0 ( & 3.0) & \\
\hline
\end{tabular}
\[
\begin{gathered}
\text { WEIGHTED N } \\
1.174,394(1 \%)
\end{gathered}
\]
\[
\text { Table } 15.108
\]
\[
\text { Weighted Response Percentages and General Science Proficiency Means, Grade } 11
\]
Total Sample
\[
\begin{array}{lllllllllll}
0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\underset{H}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
H & 0 & 0 & 0
\end{array}
\]
\[
\begin{array}{ll}
n & \tilde{R} \\
N & N \\
\sim & - \\
M & - \\
N & 0 \\
N & 0 \\
-i & N \\
\infty & n
\end{array}
\]
\[
\begin{aligned}
& 40,159(4 \pi) \\
& 103,587(5 \%) \\
& 325,830(32)
\end{aligned}
\]
\[
\begin{gathered}
\text { TOTAL } \\
100.0(0.0) \\
291.0(1.0) \\
100.0(0.0) \\
298 . ?(1.1) \\
100.0(0.0) \\
283.5(1.0) \\
100.0(0.0) \\
300.1(1.0) \\
100.0(0.0) \\
253.1(1.5) \\
100.0(0.0) \\
263.8(1.5) \\
100.0(0.0) \\
294.6(8.4) \\
100.0(0.0) \\
100.0(0.0) \\
264.1(1.6) \\
100.0(0.0) \\
277.4(1.0) \\
100.0(0.0) \\
295.2(1.0) \\
100(2.9)
\end{gathered}
\]
\[
\begin{array}{ll}
n & n \\
m & n \\
\sim & n \\
0 & n \\
\infty & \infty \\
n & 0 \\
n & n \\
& n
\end{array}
\]
\[
=\begin{gathered}
\vec{J} \\
\underset{N}{N} \\
\text { I }
\end{gathered}
\]
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& J \\
& N \\
& \underset{\sim}{2}
\end{aligned}
\]} \\
\hline \\
\hline \\
\hline
\end{tabular}
\(\square\) 5989
8291

 \(\begin{array}{lllll}\vec{N} & N & N & N & N \\ -1 & N & N & N & N \\ \cdots & N & N & N & \end{array}\)
Weighted Response Percenteges and General Soience Proficiency Means，Grade 11

\((X \tau) ヶ 6 \varepsilon^{\prime} ヶ \angle \tau^{\prime} \tau\)
N aЗIHSIGM \((2 Z)\) I09＇Z65
\((2 Z) \varepsilon 6 L^{\prime}\) T8S
\(\begin{array}{ll}n & \infty \\ n & \infty \\ n & \infty \\ n & n\end{array}\)
\(z\)
\(4 ヶ<I I\)
－－－TVIOI

\[
\begin{array}{r}
23.3(0.3) \\
300.3(2.0)
\end{array}
\]
\[
\begin{aligned}
& n \\
& i \\
& i \\
& n \\
& i \\
& i
\end{aligned}
\]
\[
\begin{aligned}
& \text { WEIGETED N } \\
& 1.174,394(1 \%)
\end{aligned}
\] \(581,783(2 x)\)
\(592,601(2 x)\)
40，159（4x）
N
11744
5755
5989
\begin{tabular}{l} 
N \\
\hline 0 \\
-1
\end{tabular}
1159
\[
\text { Table } 15.110
\]
\begin{tabular}{|c|c|}
\hline ¢๐ก & กิ． \\
\hline － & \(\bigcirc\) \\
\hline ¢๐ & ぁ๐ \\
\hline へ \({ }_{\text {N }}^{\sim}\) & \(\stackrel{\sim}{\sim} \stackrel{+}{\sim}\) \\
\hline no & に \\
\hline －N & \\
\hline ニぇ & ¢ \\
\hline ～\({ }_{\sim}^{\sim}\) & N \({ }_{\text {N }}^{\text {N }}\) \\
\hline すの & लิ \\
\hline － & \\
\hline のス & 厄－ \\
\hline \(\stackrel{\infty}{\square}\) & ご \\
\hline \(\cdots\) & N \\
\hline こ & กิ \\
\hline ris & \(\sim\)－ \\
\hline ご & のス \\
\hline べ○ & 内 \\
\hline & \(\stackrel{\sim}{\sim}\) \\
\hline
\end{tabular}
\[
\begin{array}{r}
16.0(2.9) \\
259.2(5.3)
\end{array}
\]
\[
\begin{array}{r}
67.7(1.5) \\
264.2(1.8)
\end{array}
\]
\[
274.0(1.4)
\]
\[
\begin{array}{r}
28.5(0.7) \\
292.1(2.4)
\end{array}
\]




\(\stackrel{\rightharpoonup}{0}\)
 N N్N N N

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{} \\
\hline （0．0）＊＊＊＊＊ &  & （8．9）ヶ・らヶて & （テ「カ）5＊9ヶて &  &  & & \\
\hline （0．0） 0 \％ 0 &  & （土「1）9＊＊ & （ \(6 \cdot 1\) ） \(0^{\prime} \mathrm{zz}\) &  & （ 0 ¢ \(\varepsilon\) ）8．クワ & （28）20¢＇68 & 227 \\
\hline （ \(\angle \cdot \varepsilon \tau\) ） \(6 \cdot 0 \angle Z\) & （\％－9 ）z－08z & （8．9 ）8．\(\frac{\text { ce }}{}\) &  & （ \(6 \cdot z\) ）\()^{\circ} \angle 9 z\) & （6．0） \(6 \cdot \varepsilon\) ¢ \(\varepsilon\) & & \\
\hline （t＇0）to & （ \(5 \cdot 0\) ）ヶ＊ & （9＊0） \(9 \cdot \varepsilon\) & （ \(\varepsilon \cdot 0\) ） \(6 \cdot \varepsilon\) & （ \(5 \cdot 0\) ） 6.01 & （ 6.0 ） 0 ．18 & （2ヶ）Izく「0s\％ & とてをワ \\
\hline （0．0）＊＊＊＊＊ & （0．9）5．58z & （c＇it）z＇i6z & （ \(\mathrm{s}^{\prime}\) \％）9＇18z &  &  & & \\
\hline （0．0） 0.0 & （ \(\varepsilon \cdot 0\) ） 6.0 & （roo ）sti & （ \(5 \cdot 0\) ） 8 ＇s & （8．0）ヶ＇てI & （ 6.0 ）\(\varepsilon^{\circ} 64\) & （xz ）s6e osz & 6£sz \\
\hline （0．0）＊＊＊＊＊＊ & （L．8）6． 897 & （9．L）9＊8L2 &  &  &  & & \\
\hline （0．0） 0.0 & （2．0） \(6^{\circ} 0\) & （z＇0）\({ }^{\text {c }}\)（ & （5．0）2．L & （ 60 ）s．nt & （8．0） \(\mathrm{E}^{\prime} 9 \mathrm{l}\) & （x\＆）0¢8＇sz¢ & L62¢ \\
\hline （0．0）＊＊＊＊＊ & （ \(6 \cdot \varepsilon\) ） \(8 \cdot 95 z\) & （ \(5 \cdot L\) ）6．682 & （ \(0 \cdot z)<\cdot \varepsilon s z\) &  & （ \(L^{\prime}\) z ）z．s \(<\tau\) & & \\
\hline （0．0） 0 \％ &  & （\％＇0）9＇โ & （โ＇z）\({ }^{\text {cost }}\) & （ \(\left.9^{\circ} \tau\right)\) ）\({ }^{\text {c }}\) 8 & （ \(\varepsilon^{\prime}\) z） \(0^{\circ} \angle 5\) & （xs ） \(285^{\circ} \mathrm{EOL}\) & โて！ \\
\hline （ \(\angle \cdot \varepsilon \tau) 6.0<\tau\) & （9＊9）カ＊ \(29 \%\) & （2．\(\angle) 0^{\circ} \mathrm{COE}\) & \((0.0) * * * * *\) & \((0.0) * * * * *\) & \((0.0) * * * * *\) & & \\
\hline （8．0）\({ }^{\text {c }}\)（ & （ \(5 \cdot 6\) ）\(\varepsilon^{\circ} 0 \varepsilon\) & （6．8）5．89 & （0．0） 0 O & （0．0） \(0 \cdot 0\) & （0．0） 0.0 &  & T98 \\
\hline （ 0.0 ）＊＊＊＊＊ & （ 0.0 ）＊＊＊＊＊ & （0．0）＊＊＊＊＊ & （ \(5 \cdot \tau\) ） \(8 \cdot \varepsilon 9 z\) &  & \((0.0) * * * * *\) & & \\
\hline （0．0） 0.0 & （0．0） 0.0 & （0．0） 0 O & （0．0） 0.007 & （0．0） \(0 \cdot 0\) & （0．0） 0 \％ & （\％））96x＇s8 & 6SIt \\
\hline （ 0.0 ）＊＊＊＊＊ & （ 0.0 ）＊＊＊＊＊ & （0．0）＊＊＊＊＊ & （ 0.0 ）＊＊＊＊＊ &  & \((0.0) * * * * *\) & & \\
\hline （0．0） 0 \％ & （0．0） \(0 \cdot 0\) & （0．0） 0 \％ & （0．0） \(0 \cdot 0\) & （0．0） 0 O00 & （0．0） 0 \％ & （ \(x 2\) ） 899 ＇9st & \(\varepsilon \varepsilon 6 \tau\) \\
\hline \((0.0) * * * * *\) & （0．0）\({ }^{(0.0 * * * *}\) & （ 0.0 ）＊＊＊＊＊ & （ 0.0 ）＊＊＊＊＊ & （ 0.0 ）＊＊＊＊＊ & （0．1 ）T．008 & & \\
\hline （0．0） 0 O & （0．3） \(0^{\circ} 0\) & （0．0） 0 \％ & （0．0） 0 \％ & （0．0） 0.0 & （0．0） 0.001 & （\％r ）9 \％＇ 268 & 1628 \\
\hline （＊＊＊＊）8．062 & （ \(2 \cdot 9\) ）6．85z & （6．s ） \(6 \cdot n 87\) & （ \(0^{\circ} \mathrm{z}\) ）9．I9z &  & （0．1）9＇262 & & \\
\hline （0．0） 0 O &  &  & （ \(\varepsilon \cdot 0\) ）\()^{\circ} \mathrm{L}\) &  & （9．0）L＇SL & （xz ）109＇z85 & 6855 \\
\hline （ 6.5 s ）t． 69 \％ & （ \(6 \cdot \angle)\) ）\(\cdot 9 \angle Z\) & （5．8） \(0 \cdot \varepsilon\) ¢ & （ \(\tau \cdot z\) ）\(\cdot 99 \%\) &  & （I＇t） \(8 \cdot \angle 08\) & & \\
\hline  & （ \(\varepsilon \cdot 0\) ） \(0^{\circ} \mathrm{L}\) &  & （ \(\varepsilon \cdot 0)\) I＇L & （ro ）8＇zI & （5．0） \(\mathrm{c}^{\circ} \mathrm{gl}\) & （\％z ）¢6L＇r8s & ss \(¢\) \\
\hline （ \(\angle \cdot \varepsilon \tau\) ） \(6 \cdot 0<\tau\) & （9．9）ヶ＊ 292 & （2．L） \(0 \cdot 108\) &  &  & （0．1）\％008 & & \\
\hline （0．0） 0 \％ & （\％0） 0 ¢ & （ \(\varepsilon \cdot 0) \varepsilon^{\prime} z\) & （z＇0）\(\varepsilon^{\circ} \mathrm{L}\) & （ \(\varepsilon \cdot 0\) ）\(\varepsilon \cdot \varepsilon \tau\) & （r）0 ） 0 9 9 &  & カッじ「 \\
\hline \multirow[t]{3}{*}{SSVIONп} & ONI yawv & צaWY NVISV & SINVdSİ & XOVTA & 3IIBM & n asimoram & N \\
\hline & & & & d ponfied Kq & & & \\
\hline & \multicolumn{7}{|l|}{} \\
\hline
\end{tabular}
Weighted Response Percentages and General Science Proficiency Means，Grade 11

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \(\stackrel{\square}{\circ}\) & \(\stackrel{\square}{0}\) & \[
\stackrel{?}{0}
\] & \[
\stackrel{m}{0}
\] & \[
\stackrel{N}{0}
\] & \[
\stackrel{\infty}{\circ}
\] & \[
0
\] & \[
\stackrel{\rightharpoonup}{0}
\] & \[
\because
\] & \(\bigcirc\) & \[
0
\] & \(\bigcirc\) \\
\hline & \[
\begin{aligned}
& \text { NO } \\
& \dot{O}
\end{aligned}
\] & \[
\begin{aligned}
& \circ . \\
& \dot{\circ}-\mathrm{F}
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \dot{\infty}-\underset{\sim}{\circ}
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { mo } \\
& \underset{\sim}{n}
\end{aligned}
\] & \[
\begin{aligned}
& \text { min } \\
& \dot{N}
\end{aligned}
\] & \[
\underset{\sim}{~} \underset{\sim}{n}
\] & \[
\begin{aligned}
& \text { n } \\
& \text { iN }
\end{aligned}
\] & \[
\underset{\sim}{n}
\] & \[
\begin{gathered}
N \\
\underset{\sim}{N} \\
\underset{\sim}{2}
\end{gathered}
\] & め． & べへ． \\
\hline \(n\) &  &  & \[
\begin{aligned}
& \text { ご } \\
& \text { í } \\
& \text { i。 }
\end{aligned}
\] &  &  &  & \[
\underset{\sim}{\text { o. }} \underset{\sim}{\underset{\sim}{-}}
\] & \[
\begin{aligned}
& \approx \underset{\sim}{n} \\
& \dot{n} \underset{N}{N}
\end{aligned}
\] &  &  & \[
\begin{aligned}
& \sim \\
& \infty \\
& \underset{\sim}{\infty} \underset{\sim}{\sim} \\
& \hline
\end{aligned}
\] &  \\
\hline & \[
\begin{gathered}
n \\
\vdots \\
\vdots
\end{gathered}
\] & Nin & \[
\begin{aligned}
& \infty \\
& \infty \\
& \dot{0}-\underset{\sim}{n}
\end{aligned}
\] & \[
\begin{aligned}
& 6 . \\
& 0.7 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { へ } \\
& \text { i }
\end{aligned}
\] & \[
\begin{aligned}
& \hat{\sigma} \\
& \underset{\sim}{i}
\end{aligned}
\] & \[
\begin{gathered}
\hat{N} \\
\underset{\sim}{N}
\end{gathered}
\] & \[
\begin{aligned}
& \infty . \\
& \dot{\sim} \dot{N}
\end{aligned}
\] & \[
\stackrel{N}{\mathrm{~N}} \stackrel{0}{\mathrm{~N}}
\] & \[
\stackrel{O}{0} \underset{\sim}{i}
\] & ミえ & ¢o． \\
\hline ＊ &  &  & \[
\begin{aligned}
& \text { N } \\
& \underset{\sim}{ \pm} \\
& \underset{N}{\infty}
\end{aligned}
\] & \[
\begin{aligned}
& \checkmark \approx \\
& \text { NiN }
\end{aligned}
\] & \[
\begin{aligned}
& \sim \\
& \\
& \dot{\sim} \\
& \underset{N}{N}
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { n } \\
& \dot{N} \\
& \text { N } \\
& \text { N }
\end{aligned}
\] &  & \[
\begin{aligned}
& \ddot{N} \underset{\sim}{o} \\
& \underset{\sim}{\infty} \\
& \underset{N}{n}
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { N } \\
& \stackrel{y}{N} \\
& \stackrel{0}{N}
\end{aligned}
\] &  \\
\hline & \[
\begin{aligned}
& n \\
& \vdots \\
& \vdots
\end{aligned}
\] & \[
\stackrel{\vdots}{\circ}
\] & \[
\begin{aligned}
& 0.0 \\
& \vdots \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& n \\
& \vdots 0 \\
& \vdots-i
\end{aligned}
\] &  & \[
\begin{aligned}
& \omega \\
& \dot{N} \\
& \dot{N}
\end{aligned}
\] & \[
\begin{aligned}
& \hat{m} \\
& \underset{\sim}{0} \dot{0}
\end{aligned}
\] & \[
\begin{gathered}
\widehat{\omega} \\
\underset{\sim}{N}
\end{gathered}
\] &  & \[
\stackrel{\sigma}{6} \stackrel{( }{\mathbf{o}}
\] & § & กo． \\
\hline 0 &  & ¢ & べ & \[
\begin{aligned}
& \text { ño } \\
& \dot{0} \underset{\sim}{\alpha} \\
& \underset{N}{2}
\end{aligned}
\] &  &  &  & \[
\begin{aligned}
& \sim \\
& \underset{\sim}{n} \\
& \text { Nin }
\end{aligned}
\] &  &  &  & － \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { (xT ) Est'OLT't } \\
& \text { N agIbolam }
\end{aligned}
\]
\[
\begin{aligned}
& 579,484(2 x) \\
& 590.969(2 x)
\end{aligned}
\]
\[
\begin{aligned}
& 889,421(1 \%) \\
& 156,358(2 \%)
\end{aligned}
\]
\[
\begin{aligned}
& 103,212(5 x) \\
& 325,603(3 x)
\end{aligned}
\]
\[
250,395(2 x)
\]
\[
450,605(4 x)
\]
\(=\begin{aligned} & \stackrel{\rightharpoonup}{ } \\ & \underset{\sim}{-}\end{aligned}\)
\(\stackrel{n}{\sim} \stackrel{N}{n}\)
\begin{tabular}{ll}
\(\stackrel{\infty}{\circ}\) \\
\(\stackrel{\sim}{\infty}\) & \(\stackrel{\sim}{\boldsymbol{\sim}}\) \\
& \\
\hline
\end{tabular}

\(\stackrel{\rightharpoonup}{0}\)

Weighted Response Percentages and General Science Proficiency Means, Grade 11 Table 15.114
WEIGHTED N
\(1,170,740(12)\)

 \(\begin{array}{ll}\text { N } \\ \text { n } \\ \text { n } \\ 0 \\ n \\ n & \end{array}\)



 56 MISSING
\(\stackrel{N}{0} \quad \stackrel{0}{0}\)
\(\begin{array}{llll}\stackrel{7}{0} & \ddot{0} & \stackrel{0}{0} & \stackrel{0}{0} \\ \stackrel{0}{0} & 0\end{array}\)
\(\begin{array}{lllll}\because & \overrightarrow{1} & \overrightarrow{0} & \boldsymbol{E} & \overrightarrow{0} \\ \dot{0} & 0 & 0 & 0 & 0\end{array}\)
\(\cdots\)


\(\div \quad \dot{\circ} \quad \dot{\circ} \quad \dot{0}\)
\(\circ\)

-
\(\circ\)

\section*{APPENDIX A}

\section*{Instrument and Item Tables}

Table A. 1
Subject Area Blocks in Booklets, Grade 3/Age 9
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline BOOKLET & & \multicolumn{2}{|l|}{BLOCKS} & \multicolumn{2}{|l|}{BOOKLET} & \multicolumn{2}{|l|}{BLOCKS} \\
\hline *1) & 9R1 & 9M1 & 9S1 & 27) & \(9 \mathrm{S1}\) & \(9 \mathrm{S5}\) & 9 S 6 \\
\hline *2) & 9S2 & 9R2 & 9M3 & 28) & 9M6 & 9M2 & 9M7 \\
\hline *3) & 9M2 & 9S3 & 9R3 & 29) & 9 M 4 & \(9 \mathrm{M6}\) & 9M5 \\
\hline **4) & 9M1 & 9M2 & 9S3 & 30) & 9 S 4 & 9 C 3 & 9M2 \\
\hline **5) & 9Si & 9S2 & 9M3 & 31) & 9 S 7 & 9C3 & 9M5 \\
\hline 6) & 9 S 3 & 9S4 & 9S1 & 32) & 9P.5 & 9M2 & 9S7 \\
\hline 7) & 9R5 & 9R1 & 9C2 & 33) & 9C2 & 9 Cl & 9 C 3 \\
\hline 8) & 9S3 & 9 S 7 & 9 S 5 & 34) & 9S5 & 9 M 7 & 9 Cl \\
\hline 9) & 9 C 2 & \(9 \mathrm{M6}\) & 9S3 & 35) & 9R2 & 9R5 & 9R6 \\
\hline 10) & 9R3 & 9R2 & 9 Cl & 36) & 9M5 & 9M7 & 9M1 \\
\hline 11) & 9M4 & 9 Ml & 9M2 & 37) & 9 Cl & 9 R 1 & 9S3 \\
\hline 12) & 9 Rl & 9M4 & \(9 \mathrm{S4}\) & 38) & 9M6 & \(9 \mathrm{S6}\) & 9R2 \\
\hline 13) & 9R4 & 9 C 1 & 9M3 & 39) & 9S2 & 9R3 & 9M4 \\
\hline 14.) & 9S2 & 9R6 & 9M7 & 40) & 9S5 & 9S2 & 9S4 \\
\hline 15) & \(9 \mathrm{M1}\) & 9C2 & 9R6 & 41) & 9 S 7 & \(9 \mathrm{S1}\) & 9S2 \\
\hline 16) & 9 M 2 & \(9 \mathrm{R6}\) & 9S1 & 42) & \(9 \mathrm{S4}\) & 9 S 6 & \(9 \mathrm{S7}\) \\
\hline 17) & 9S6 & 9 M 5 & 9R1 & 43) & 9R2 & 9 S 7 & 9C2 \\
\hline 18) & 9S6 & 9S3 & 9S2 & 44) & 9C3 & 9 S 2 & 9R5 \\
\hline 19) & 9M1 & \(9 \mathrm{M6}\) & 9M3 & 45) & 9M7 & 9 C 3 & 9R2 \\
\hline 20) & 9S1 & 9 C 2 & 9M3 & 46) & 9 M 7 & 9 M 4 & 9M3 \\
\hline 21) & 9M5 & 954 & 9R3 & 47) & \(9 \mathrm{M1}\) & \(9 \mathrm{S1}\) & 9R5 \\
\hline 22) & 9M2 & 9M5 & 9M3 & 48) & 9R1 & 9R2 & 9R4 \\
\hline 23) & 9R3 & 9S5 & 9M3 & 49) & 9R6 & 9R4 & 9C3 \\
\hline 24) & 9R4 & 9 S 3 & \(9 \mathrm{M1}\) & 50) & 9 Cl & 9 M 4 & 9S6 \\
\hline 25) & 9R4 & 9S5 & 9M6 & 51) & 9R5 & 9R4 & 9R3 \\
\hline 26) & 9R6 & 9R3 & 9R1 & & & & \\
\hline
\end{tabular}

Booklet used for Bridge A assessment only
** Booklet used for Bridge B assessment only

Table A. 2
Subject Area Blocks in Booklets, Grade 7/Age 13
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline BOOKLET & \multicolumn{3}{|c|}{BLOCKS} & BOOKLET & \multicolumn{3}{|c|}{BLOCKS} \\
\hline *1) & 13R1 & 13M1 & 13S1 & 35) & 13R4 & 13S7 & 13M3 \\
\hline *2) & 13S2 & 13R2 & 13M3 & 36) & \(13 \mathrm{C6}\) & 13R3 & 13R2 \\
\hline *3) & 13M2 & 13S3 & 13R3 & 37) & 13S3 & 13M2 & 13S8 \\
\hline **4) & 13M1 & 13M2 & 13S3 & 38) & 13M5 & 13M6 & 13M9 \\
\hline **5) & 13S1 & 13S2 & 13M3 & 39) & 13S5 & 13M4 & 13R3 \\
\hline 6) & 13R3 & 13R1 & 13R5 & 40) & 13C5 & 13S1 & 13M4 \\
\hline 7) & 13M7 & 13M9 & 13M3 & 41) & 13S7 & 1356 & 13S8 \\
\hline 8) & 1358 & 13M5 & 13R1 & 42) & 13R2 & 13M2 & 1354 \\
\hline 9) & 13 Cl & 13C5 & \(13 \mathrm{C4}\) & 43) & 13M2 & 13M8 & 13M9 \\
\hline 10) & 13M4 & 13M2 & 13M5 & 44) & 13M4 & 13M1 & 13M9 \\
\hline 11) & 13S8 & 13S2 & \(13 \mathrm{S4}\) & 45) & 13C2 & 13C1 & 13R6 \\
\hline 12) & 13S8 & 13C2 & 13R4 & 46) & 13S5 & 13M6 & \(13 \mathrm{C4}\) \\
\hline 13) & 13M2 & 13M1 & 13M3 & 47) & 13R5 & 13S9 & 13M6 \\
\hline 14) & 13R6 & 13R5 & 13 C 5 & 48) & \(13 \mathrm{C4}\) & 13S6 & 13M9 \\
\hline 15) & 13S3 & 13S5 & 13S7 & 49) & 1356 & 13S9 & 13S1 \\
\hline 16) & 13R3 & 13C2 & 13S6 & 50) & \(13 \mathrm{C4}\) & 13R6 & 13M2 \\
\hline 17) & 13M7 & 13R3 & 13 C 5 & 51) & 13 Cl & 13R2 & 13M9 \\
\hline 18) & 13 C 5 & 13C3 & 13R2 & 52) & 1356 & 13s3 & 13S2 \\
\hline 19) & 13R4 & 13 C 4 & \(13 \mathrm{C6}\) & 53) & 13C2 & 1353 & 13M7 \\
\hline 20) & 13R6 & 13R4 & 13R3 & 54) & 13S7 & 13S2 & 13S9 \\
\hline 21) & 13S9 & 1354 & 13S3 & 55) & 13S4 & 13 C 6 & 13M5 \\
\hline 22) & 13 C 3 & 13M8 & 13S9 & 56) & 13M6 & 13 M 7 & 13M2 \\
\hline 23) & 13 C 6 & 13 C 5 & 13C2 & 57) & 13M1 & 13R6 & 13S1 \\
\hline 24) & 13R4 & 13 Cl & 13R1 & 58) & 13S9 & 13S8 & 13S5 \\
\hline 25) & 13M5 & 13 M 8 & 13M3 & 59) & 13M1 & 13M5 & 13M7 \\
\hline 26) & 13M1 & 13R1 & 13 C 3 & 60) & 13R5 & 13S7 & 13C1 \\
\hline 27) & \(13 \mathrm{C3}\) & 13 C 4 & 13 C 2 & 61) & 13S1 & 13S8 & 13S3 \\
\hline 28) & 13 M 7 & 13 M 4 & 13 M 8 & 62) & 13S2 & 13 Sl & 13S5 \\
\hline 29) & 13M6 & 13 M 8 & 13M1 & 63) & 13S2 & 13 C 3 & 13 M 3 \\
\hline 30) & 13M8 & 13R5 & 13S2 & 64) & 13 Cl & \(13 \mathrm{C6}\) & 13 C 3 \\
\hline 31) & 1354 & 1355 & 13S6 & 65) & 13S7 & 13M7 & 13M9 \\
\hline 32) & 13R1 & 13R2 & 13R6 & 66) & 13S1 & 1354 & 13S7 \\
\hline 33) & 13M4 & 13 M 6 & 13M3 & 67) & 13R1 & 13S3 & 13C6 \\
\hline 34) & 13R2 & 13R4 & 13R5 & & & & \\
\hline
\end{tabular}

Table A. 3
Subject Area Blocks in Booklets, Grade 11/Age 17 BOOKLET BLOCKS BOOKLET BLOCKS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1) & \multicolumn{3}{|l|}{Not Used} & 49) & 17C3 & 17S2 & 17S11 \\
\hline 2) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Not Used}} & 50) & 13R1 & 13 R 3 & 17C5 \\
\hline 3) & & & & 51) & 17S7 & 1758 & 13 R 6 \\
\hline *4) & 17M1 & 17M2 & 17s3 & 52) & 17 C 3 & 17S9 & 17S7 \\
\hline *5) & 1.7S1 & 17S2 & 17M3 & 53) & 13M5 & 13M4 & 17 C 2 \\
\hline 6) & 1754 & 17M11 & 17M8 & 54) & \(17 \mathrm{C4}\) & 17C6 & 13R1 \\
\hline 7) & 13R6 & 13R4 & 17C1 & 55) & 17S7 & 17 S 11 & \(17 \mathrm{S4}\) \\
\hline 8) & 17S3 & 13S5 & 17S2 & 56) & 1355 & 17S10 & 1754 \\
\hline 9) & 13R4 & 13M5 & 17M7 & 57) & 17M1 & 17S2 & 17M10 \\
\hline 10) & 17M8 & 17M1 & \(17 \mathrm{C4}\) & 58) & 17M7 & 1758 & 17S9 \\
\hline 11) & \(13 \mathrm{M5}\) & 17M10 & 17M8 & 59) & 17M2 & 17M8 & 17M9 \\
\hline 12) & 1759 & 17M2 & 13S6 & 60) & 17M8 & 17S11 & 17M3 \\
\hline 13) & 17M11 & 13R3 & 17M10 & 61) & 13R1 & 13R5 & 13 R 4 \\
\hline 14) & 13R2 & 13M4 & 17M2 & 62) & 17S2 & 17S4 & 13R5 \\
\hline 15) & 17M2 & 1757 & 13M4 & 63) & 17S4 & 1758 & 17S3 \\
\hline 16) & 13S6 & 17S4 & 17M6 & 64) & 17M10 & 13M4 & 17 Ml \\
\hline 17) & 1758 & 1355 & \(17 \mathrm{C6}\) & 65) & 1356 & 17C1 & 17M9 \\
\hline 18) & 17S10 & 17S9 & 17S2 & 66) & \(17 \mathrm{C4}\) & 17C1 & 17 C 5 \\
\hline 19) & 17S1 & 17S10 & 17c2 & 67) & 17 S 8 & 17M10 & 17M3 \\
\hline 20) & 17M2 & 17M6 & 17M10 & 68) & 17s3 & 13R6 & 17M3 \\
\hline 21) & \(17 \mathrm{C6}\) & 13R2 & 17C1 & 69) & 17511 & 17S10 & 17S8 \\
\hline 22) & 17 C 5 & 17 C 3 & 13R6 & 70) & 1753 & 17S11 & 1759 \\
\hline 23) & 17S9 & 13S6 & 17S8 & 71) & 17S9 & 1754 & 17 S1 \\
\hline 24) & 17M6 & 13R5 & 17C3 & 72) & 17M8 & 17M7 & 17M6 \\
\hline 25) & 17M6 & 13144 & 17M9 & 73) & 13M4 & 17M7 & 17M3 \\
\hline 26) & 13R5 & 13R2 & \(17 \mathrm{C4}\) & 74) & 1355 & 13M5 & 17 S 10 \\
\hline 27) & 17C2 & 17C6 & 17 C 3 & 75) & 17 C 6 & \(17 \mathrm{C5}\) & 13 R 5 \\
\hline 28) & 13R2 & 17C5 & 1754 & 76) & 17M11 & 17M2 & 13M5 \\
\hline 29) & 17M7 & 17M10 & 17M9 & 77) & 17 Cl & 17C2 & 13R5 \\
\hline 30) & 17M7 & 17M2 & 17C1 & 78) & 17M11 & 17S1 & 17S10 \\
\hline 31) & 17M1 & 17M2 & 17M3 & 79) & 13R4 & \(17 \mathrm{C6}\) & 17S1 \\
\hline 32) & 17M1 & 17M7 & 17M11 & 80) & 17S2 & 1356 & 17S7 \\
\hline 33) & 17C5 & 17C2 & 13R4 & 81) & 13R3 & 13 R 4 & 13R2 \\
\hline 34) & 17M8 & 13R1 & 1355 & 82) & 13S6 & 17s3 & 17S1 \\
\hline 35) & 17C2 & \(17 \mathrm{C4}\) & 13R6 & 83) & 17M10 & 17C6 & 17M3 \\
\hline 36) & 17M1 & 13R2 & 17M9 & 84) & 17S1 & 1757 & 13S5 \\
\hline 37) & 17S11 & 13M4 & 17M9 & 85) & 13R5 & 13R6 & 13R3 \\
\hline 38) & 17C1 & \(17 \mathrm{C3}\) & 13R1 & 86) & 13S5 & 17S9 & 13R3 \\
\hline 39) & 17511 & 1355 & 13S6 & 87) & 23M4 & 17M8 & 17M11 \\
\hline 40) & 13M5 & 17M6 & 17M1 & 88) & 17S10 & 13 S 6 & 13 R 4 \\
\hline 41) & 17M6 & 17M11 & 17M3 & 89) & 13R6 & 13R1 & 13R2 \\
\hline 42) & 13R3 & 17C2 & 17M7 & 90) & \(17 \mathrm{C4}\) & 17C3 & 13R3 \\
\hline 43) & 13M5 & 17M9 & 17M3 & 91) & 17S2 & 17S1 & 17S8 \\
\hline 44) & 17M1 & 17 S 7 & 17S3 & 92) & 13R4 & 17H1 & 17 Ll \\
\hline 45) & 17S3 & \(17 \mathrm{C4}\) & 13M5 & 93) & 17H2 & 13R4 & 17L2 \\
\hline 46) & 17C5 & 17M11 & 17M9 & 94) & 17L3 & 13R4 & 17H3 \\
\hline 47) & 17S1 & 17S11 & 13R1 & 95) & 17L4 & 17 H 4 & 13 R 4 \\
\hline 48) & 1757 & 17S3 & 17 S10 & & & & \\
\hline
\end{tabular}
*Booklet used for Bridge \(B\) assessment only

Table A. 4
Block-to-Block Occurrence Matrix, Grade 3/Age 9 Spiral Booklets

R1R2R3R4R5R6M1M2M3M4M5M6M7S1S2S3S4S5S6S7C1C2C3


Table A. 5

\section*{Block-to-Block Occurrence Matrix, Grade 7/Age 13 Spiral Booklets}

\section*{R1R2R3R4R5R6M1M2M3M4M5M6M7M8M9S1S2S3S4S5S6S7S8S9C1C2C3C4C5C6}


Table A. 6
Block-to-Block Occurrence Matrix, Grade 11/Age 17 Spiral Booklets*

*Semicolon (;) represents 10 ; colon (:) represents 11.

Table A. 7
Composition of Items in Blocks, Grade 3/Age 9
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Block & Type & \[
\begin{aligned}
& \text { Background } \\
& \text { Items } \\
& \hline
\end{aligned}
\] & Cognitive
\(\qquad\) & \begin{tabular}{l}
Total \\
Items
\end{tabular} & \begin{tabular}{l}
Cognitive \\
Items
\end{tabular} & Open-Ended Cognitive
\(\qquad\) \\
\hline 9R1 & Rdg & 1-11 & 12-21 & 21 & 10 & \\
\hline 9R2 & Rdg & 1-9 & 10-20 & 20 & 11 & \\
\hline 9R3 & Rdg & 1-7 & 8-17 & 17 & 10 & 1 \\
\hline 9 R 4 & Rdg & 1-4 & 5-16 & 16 & 12 & 2 \\
\hline 9R5 & Rdg & 1-10 & 11-24 & 24 & 14 & \\
\hline 9R6 & Rdg & 1-4 & 5-17 & 17 & 13 & \\
\hline 9S1 & Sci & 1-5 & 6-23 & 23 & 18 & \\
\hline 9S2 & Sci & --- & 1-25 & 25 & 25 & \\
\hline \(9 \mathrm{S3}\) & Sci & 1-11 & 12-31 & 31 & 20 & \\
\hline \(9 \mathrm{S4}\) & Sci & 1-9 & 10-23 & 23 & 14 & \\
\hline 955 & Sci & \(1-4\) & 5-19 & 19 & 15 & 1 \\
\hline 956 & Sci & 1-4 & 5-19 & 19 & 15 & 1 \\
\hline 957 & Sci & 1-7 & 8-21 & 21 & 14 & \\
\hline \(9 \mathrm{M1}\) & Math & --- & 1-26 & 26 & 26 & 9 \\
\hline 9M2 & Math & --- & 1-26 & 26 & 26 & 9 \\
\hline 9M3 & Math & 1-3 & 4-19 & 19 & 16 & 10 \\
\hline & & & (5-14 calc.) & & & \\
\hline \(9 \mathrm{M4}\) & Math & 2-7 & 8-28 & 28 & 21 & 7 \\
\hline 9M5 & Math & 1-11 & 12-28 & 28 & 17 & \\
\hline 9M6 & Math & \(1-8\) & 9-28 & 28 & 20 & 2 \\
\hline 9 M 7 & Math & 1-10 & 11-28 & 28 & 18 & \\
\hline 9 Cl & Comp & 1-18, 30, 31 & 19-29, 32-40 & 40 & 20 & 1 \\
\hline 9 C 2 & Comp & 1-13,24,25 & 14-23, 26-34 & 34 & 19 & 2 \\
\hline \(9 \mathrm{C3}\) & Comp & 1-11,22,23 & 12-21,24-33 & 33 & 20 & 1 \\
\hline
\end{tabular}

Table A. 8
Composition of Items in Blocks, Grade 7/Age 13


Table A. 9
Composition of Items in Blocks, Grade 11/Age 17
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Block & Type & Background
\(\qquad\) & Cognitive
\(\qquad\) &  & \begin{tabular}{l}
Cognitive \\
Items
\end{tabular} & Open-Ended Cognitive
\(\qquad\) \\
\hline 13R1 & Rdg & 1-19 & 20-31 & 31 & 12 & 1 \\
\hline 13R2 & Rdg & 1-9 & 10-19 & 19 & 10 & \\
\hline 13R3 & Rdg & 1-15 & 16-18 & & 13 & \\
\hline & & & (19-28 SS)* & & & \\
\hline 13R4 & Rdg & 1-7 & 8-21 & 21 & 14 & \\
\hline 13R5 & Rdg & 1-6 & 7-18 & 18 & 12 & \\
\hline 13R6 & Rdg & 1-4 & 5-18 & 18 & 14 & 5 \\
\hline 17M1 & Math & 1-14 & 15-49 & 49 & 35 & 10 \\
\hline 17M2 & Math & 1-14 & 15-49 & 49 & 35 & 5 \\
\hline 17M3 & Math & 1-11 & 12-35 & 35 & 24 & 14 \\
\hline & & & (12-30 calc.) & & & \\
\hline 13M4 & Math & 1-14 & 15-43 & 43 & 29 & 12 \\
\hline 13M5 & Math & 1-17 & 18-43 & 43 & 26 & 15 \\
\hline 17M6 & Math & 1-10 & 11-46 & 46 & 36 & 18 \\
\hline 17M7 & Math & 1-16 & 17-53 & 53 & 37 & \\
\hline 17M8 & Math & 1-15 & 16-52 & 52 & 37 & \\
\hline 17M9 & Math & 1-20 & 21-61 & 61 & 41 & 13 \\
\hline & & & (21-33 calc.) & & & \\
\hline 17M10 & Math & 1-10 & 11-46 & 46 & 36 & \\
\hline 17M11 & Math & 1-11 & 12-48 & 48 & 37 & 3 \\
\hline 17S1 & Sci & 1-11 & 12-38 & 38 & 27 & \\
\hline 17S2 & Sci & 1-9 & 10-41 & 41 & 32 & \\
\hline 17S3 & Sci & \(1-9\) & 10-32 & 32 & 23 & \\
\hline 17S4 & Sci & 1-11 & 12-31 & 31 & 20 & 1 \\
\hline 13S5 & Sci & 1 & 2-19 & 19 & 18 & \\
\hline 13S6 & Sci & 1-10 & 11-28 & 28 & 18 & \\
\hline 17S7 & Sci & 1-17 & 18-37 & 37 & 20 & 1 \\
\hline 17S8 & Sci & 1-13 & 14-33 & 33 & 20 & 1 \\
\hline 17S9 & Sci & 1-17 & 18-37 & 37 & 20 & 1 \\
\hline \(17 \mathrm{S10}\) & Sci & 1-15 & 16-35 & 35 & 20 & 1 \\
\hline 17511 & Sci & 1-9 & 10-29 & 29 & 20 & 1 \\
\hline 17C1 & Comp & 1-19,31,32 & 20-30, 33-44 & 44 & 23 & 2 \\
\hline 17C2 & Comp & 1-13,25, 26 & 14-24, 27-36 & 36 & 21 & 3 \\
\hline 17 C 3 & Comp & 16-19 & 1-15, 20-28 & 28 & 24 & \\
\hline \(17 \mathrm{C4}\) & Comp & 1-21,31, 32 & 22-30, 33-40 & 40 & 17 & \\
\hline 1765 & Comp & 1-18,33, 34 & 19-32, 35-44 & 44 & 24 & \\
\hline \(17 \mathrm{C6}\) & Comp & 1-17,26,27 & 18-25,28-36 & 36 & 17 & 1 \\
\hline
\end{tabular}
*Study skills

Table A. 9
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Block & Type & Background
\(\qquad\) & Cognitive
\(\qquad\) &  & \# Cognitive
\(\qquad\) & \begin{tabular}{l}
非 \\
Open-Ended \\
Cognitive \\
Items
\end{tabular} \\
\hline 17H1 & Hist & 1-12,49-61 & 13-48 & 61 & 36 & \\
\hline 17H2 & Hist & 1-12,49-61 & 13-48 & 61 & 36 & \\
\hline 17H3 & Hist & 1-12,48-60 & 13-47 & 60 & 35 & \\
\hline 17H4 & Hist & 1-12,47-59 & 13-46 & 59 & 34 & \\
\hline 17L1 & Lit & 1-18,49-72 & 19-48 & 72 & 30 & \\
\hline 17L2 & Lit & 1-18,50-73 & 19-49 & 73 & 31 & \\
\hline 17L3 & Lit & 1-18,49-72 & 19-48 & 72 & 30 & \\
\hline 1714 & Lit & 1-18,49-72 & 19-48 & 72 & 30 & \\
\hline
\end{tabular}
-430-

Table A. 10
Block Occurrence in Booklets, Grade 3/Age 9
Occurs in Booklets

Block
9R1
9R2
9R3
9R4
9R5
9R6
9S1
9 S 2
953
954
9S5
9S6
957
9M1
9 M 2
9 M 3
9 M 4
9 M 5
9M6
9 M 7
9 Cl
9 C 2
9 C 3

Bridge
1
2
3

1
2
3

1, 4
3, 4
2, 5

BIB Spiral
\(7,12,17,26,37,48\)
\(10,35,38,43,45,48\)
10, 21, 23, 26, 39, 51, LM*
13, 24, 25, 48, 49, 51
\(7,32,35,44,47,51\)
\(14,15,16,26,35,49\)
\(5,6, \geq 6,20,27,41,47\)
\(5,14,18,39,40,41,44\)
\(4,6,8,9,18,24,37\)
\(6,12,21,30,40,42\)
\(8,23,25,27,34,40\)
\(17,18,27,38,42,50\)
\(8,31,32,41,42,43\)
11, 15, 19, 24, 36, 47
11, 16, 22, 28, 30, 32
13, 19, 20, 22, 23, 46
11, 12, 29, 39, 46, 50, LM*
17, 21, 22, 29, 31, 36
\(9,19,25,28,29,38\)
\(14,28,34,36,45,46\)
\(10,13,33,34,37,50\)
7, 9, 15, 20, 33, 43
\(30,31,33,44,45,49\)

483

Table A. 11
Block Occurrence in Booklets, Grade 7/Age 13
Occurs in Booklets

Block
13R1
13R2
13R3
13R4
13R5
13R6
13s1
13S2
13 r. 3
13S4
13S5
13S6
1357
13S8
13S9
13M1
13M2
13M3
13M4
13M5
13M6
13M7
13M8
13M9
13C1
13C2
13 C 3
13 C 4
13C5
13 C 6

Bridge
1
2
3

1, 5
2, 5
3, 4


(
 1,4

3, 4
2, 5
Occurs in Booklets

6, 8, 24, 26, 32, 67, LM*
\(18,32,34,36,42,51\)
\(6,16,17,20,36,39\)
\(12,19,20,24,34,35\)
\(6,14,30,34,47,60\)
\(14,20,32,45,50,57\)
40, 49, 57, 61, 62, 66
11, 30, 52, 54, 62, 63
\(15,21,37,52,53,61,67\)
\(11,21,31,42,55,66\)
\(15,31,39,46,58,62\)
\(16,31,41,48,49,52\)
\(15,35,41,54,60,65,66\)
8, 11, 12, 37, 41, 58, 61
\(21,22,47,49,54,58\)
13, 26, 29, 44, 57, 59
\(10,13,37,42,43,50,56\)
7, 13, 25, 33, 35, 63
\(10,28,33,39,40,44\)
8, 10, 25, 38, 55, 59
\(29,33,38,46,47,56\)
7, 17, 28, 53, 56, 59, 65, LM*
\(22,25,28,29,30,43\)
\(7,38,43,44,48,51,65\)
9, 24, 45, 51, 60, 54
\(12,16,23,27,45,53\)
18, 22, 26, 27, 63, 64
9, 19, 27, 46, 48, 50
\(9,14,17,18,23,40\)
19, \(23,36,55,64,67\)
*Language Minority Probe booklet

Table A. 12
Block Occurvence in Booklets, Grade 11/Age 17


\footnotetext{
*Language Minority Probe booklet
}

> Table A. 12
> (continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Occurs in Booklets} \\
\hline Block & Bridge & & BIB Spiral \\
\hline 17H1 & & 92 & \\
\hline 17H2 & & 93 & \\
\hline 17H3 & & 94 & \\
\hline 17H4 & & 95 & \\
\hline 17 Ll & & 92 & \\
\hline 17 L 2 & & 93 & \\
\hline 17L3 & & 94 & \\
\hline 17L4 & & 95 & \\
\hline
\end{tabular}

Table\{A. 13
READING COGNITIVE ITEMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{COHORT 1}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{COHORT 2}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{COHORT 3}} \\
\hline FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM & FIELD & & & & & & \\
\hline N001501 & R1 & 17 & R1 & 25 & & & & & & & & BLOCK & ITEM \\
\hline N001502 & R1 & 18 & R1 & 26 & R1 & 25 & N010603 & R6 & 12 & -- & -- & -- & -- \\
\hline N001503 & R1 & 19 & R1 & 27 & R1 & 26 & N010604 & R6 & 13 & -- & -- & -- & \\
\hline N001504 & R1 & 20 & R1 & 28 & R1 & 27 & N010605 & R6 & 14 & -- & -- & & \\
\hline N002001 & R2 & 14 & R1 & 22 & R1 & 28 & N013001 & R5 & 21 & -- & -- & & -- \\
\hline N002002 & R2 & 15 & R1 & 23 & R1 & 22
23 & N013002 & R5 & 22 & -- & -- & -- & -- \\
\hline N002003 & R2 & 16 & R1 & 24 & R1 & 23
24 & N013003 & R5 & 23 & -- & - - & -- & \\
\hline N002801 & R2 & 17 & R1 & 20 & R1 & 24 & N013004 & R5 & 24 & -- & -- & & -- \\
\hline N002802 & R2 & 18 & R1 & 21 & R1 & 20 & N013301 & R2 & 12 & -- & -- & -- & -- \\
\hline N003001 & R & 18 & R2 & 18 & R1 & 21
18 & N013401
N013402 & R6 & 15 & R4 & 19 & R4 & 19 \\
\hline N003003 & -- & -- & R2 & 19 & R2 & 18
19 & N013402
N013403 & R6 & 16 & R4 & 20 & R4 & 20 \\
\hline N003101 & R3 & 12 & R1 & 29 & R1 & 29 & N013403
N014201 & R6 & 17 & R4 & 21 & R4 & 21 \\
\hline N003102 & R3 & 13 & R1 & 30 & R1 & 30 & N014201
N014301 & R1
R5 & 11
18 & -- & -- & -- & \\
\hline N003104 & R3 & 14 & R1 & 31 & R1 & 31 & N014302 & R5 & 18
19 & -- & -- & & \\
\hline N003105 & R3 & 14 & R1 & 31 & R1 & 31 & N014302
N 014303 & RS & 19 & & & & \\
\hline N003201 & -- & -- & R5 & 12 & R5 & 12 & N014303
N 021101 & R5 & 20 & -- & -- & -- & \\
\hline N003202 & -- & -- & R5 & 13 & R5 & 13 & N021101 & R4
R4 & 5 & -- & -- & & \\
\hline N003203 & -- & -- & R5 & 14 & R5 & 14 & & R4
R 4 & 7 & & & & \\
\hline N003204 & -- & -- & R5 & 15 & R5 & & N021103
N 021201 & R4 & 7 & & & -- & -- \\
\hline N004101 & R2 & 19 & & & RS & 15 & N021201 & R4 & 13 & R6 & 5 & R6 & 5 \\
\hline N004601 & -- & -- & R3 & 16 & R3 & 16 & N021202
N02-203 & R4 & 14 & R6 & 6 & R6 & 6 \\
\hline N004602 & -- & & R3 & 17 & R3 & 17 & NO2.
NO 021204 & R4 & 15 & R6 & & R6 & 7 \\
\hline N004603 & & -- & R3 & 18 & R3 & 18 & N021204
N 021301 & R4 & 16 & R6 & 8 & R6 & 8 \\
\hline N005001 & -- & -- & R2 & 15 & R2 & 18 & N021301
NO 021302 & R4 & 8 & R6 & 9 & R6 & 9 \\
\hline N005002 & -- & -- & R2 & 16 & R2 & 15 & N021302
N 021303 & R4 & 9 & R6 & 10 & R6 & 10 \\
\hline NOO5003 & -- & -- & R2 & 17 & R2 & 17 & N021303
NO 21304 & R4 & 10 & R6 & 11 & R6 & 11 \\
\hline N005701 & -- & -- & R3 & 22 & R3 & 22 & N021304
N 021305 & R4 & 11 & R6 & 12 & R6 & 12 \\
\hline N005702 & -- & -- & R3 & 23 & R3 & 23 & N021305
N 021306 & R4 & 12 & R6 & 13 & R6 & 13 \\
\hline N005703 & -- & -- & R3 & 24 & R3 & 24 & N021306
N021308 & R4 & 8 & R6 & 9 & R6 & 9 \\
\hline N006001 & -- & -- & R3 & 19 & R3 & 19 & N021308
N021309 & R4 & 9 & R6 & 10 & R6 & 10 \\
\hline N006002 & -- & -- & R3 & 20 & R3 & 20 & N021309 & R4 & 9 & R6 & 10 & R6 & 10 \\
\hline N006003 & -- & -- & R3 & 21 & R3 & 21 & N021401 & R5 & 14 & -- & -- & -- & -- \\
\hline N007101 & -- & -- & R3 & 25 & R3 & 25 & N021402 & R5 & 15 & -- & -- & -- & -- \\
\hline N007102 & -- & -- & R3 & 26 & R3 & 28 & N021403 & R 5 & 16 & -- & -- & -- & -- \\
\hline N007103 & -- & - - & R3 & 27 & R3 & 28
27 & N021404 & R5 & 17 & -- & - - & -- & -- \\
\hline N007104 & -- & -- & R3 & 28 & R3 & 27 & N021501 & R6 & 5 & -- & -- & -- & -- \\
\hline N007301 & -- & -- & R4 & 13 & R4 & 28 & N021502 & R6 & 6 & -- & -- & -- & -- \\
\hline N007302 & -- & -- & R4 & 14 & R4 & 13
14 & N021503 & R6 & 7 & -- & -- & -- & \\
\hline N007303 & -- & -- & R4 & 15 & R4 & 14 & N021504 & R6 & 8 & & -- & -- & -- \\
\hline N007304 & -- & -- & R4 & 16 & R4 & 15 & N021505 & R6 & 9 & -- & -- & -- & - \\
\hline N007305 & -- & -- & R4 & 17 & R4 & 16
17 & N021601 & -- & -- & R5 & 7 & R5 & 7 \\
\hline N007306 & -- & -- & R4 & 18 & R4 & 17
18 & N021602
N 021603 & & & R5 & 8 & R5 & 8 \\
\hline N007401 & -- & -- & R4 & -8 & R4 & 18
8 & N021603
N 021604 & -- & -- & R5 & 9 & RS & 9 \\
\hline NOO7402 & -- & -- & R4 & 9 & R4 & 8 & N021604
N 021605 & & & R5 & 10 & R5 & 10 \\
\hline NOO7403 & -- & -- & R4 & 10 & R4 & 9
10 & N021605
N 021701 & & & R5 & 11 & R5 & 11 \\
\hline N007404 & -- & -- & R4 & 11 & R4 & 11 & N021701
H021702 & & & R5 & 16 & R5 & 16 \\
\hline N007405 & -- & -- & R4 & 12 & R4 & 12 & 1021702
NO 021703 & & & R5 & 17 & RS & 17 \\
\hline N008201 & -- & -- & R2 & 10 & R4 & 12 & N021703
N 021801 & & & R5 & 18 & R5 & 18 \\
\hline N008202 & -- & -- & R2 & 11 & R2 & 11 & N021801
N021802 & & & R6 & 14 & R6 & 14 \\
\hline N008203 & -- & -- & R2 & 12 & R2 & 112 & N021802
N021803 & & & R6 & 15 & R6 & 15 \\
\hline N008204 & -- & -- & R2 & 13 & R2
R2 & 12 & N021803 & & & R6 & 16 & R6 & 16 \\
\hline N008205 & -- & -- & R2 & 14 & R2 & 14 & N02 \({ }^{\text {NOL }}\) & & & R6 & 17 & R6 & 17 \\
\hline N008601 & R3 & 15 & R2 & 14 & R2 & 14 & N02i & & -- & R6 & 18 & R6 & 18 \\
\hline N008602 & R3 & 16 & -- & -- & -- & & N0218u0 & & & R6 & 14 & R6 & 14 \\
\hline N008603 & R3 & 17 & -- & - - & & & N021810 & -- & -- & R6 & 18 & R6 & 18 \\
\hline N008901 & R1 & 15 & -- & -- & & & & & & & & & \\
\hline N008902 & R1 & 16 & -- & - _ & & & & & & & & & \\
\hline N009401 & R2 & 13 & -- & -- & & & & & & & & & \\
\hline N009801 & R2 & 11 & -- & -- & & & & & & & & & \\
\hline N010.101 & R5 & 11 & -- & - - & & & & & & & & & \\
\hline N010162 & R5 & 12 & -- & -- & & & & & & & & & \\
\hline N010103 & RS & 13 & -- & -- & & & & & & & & & \\
\hline N010201 & R2 & 20 & -- & -- & -- & & & & & & & & \\
\hline N010301 & R2 & 10 & -- & -- & & & & & & & & & \\
\hline N010401 & R1 & 12 & -- & -- & -- & & & & & & & & \\
\hline N010402 & R1 & 13 & -- & -- & & & & & & & & & \\
\hline N010403 & R1 & 14 & -- & -- & & & & & & & & & \\
\hline N010501 & R3 & 8 & - - & -- & & & & & & & & & \\
\hline N010502 & R3 & 9 & -- & -- & & & & & & & & & \\
\hline N010503 & R3 & 10 & -- & -- & & & & & & & & & \\
\hline N010504 & R3 & 11 & -- & -- & & & & & & & & & \\
\hline N010601 & R6 & 10 & -- & -- & & & & & & & & & \\
\hline N010602 & R6 & 11 & -- & -- & -- & & & & & & & & \\
\hline
\end{tabular}

MATHEMATICS COGNITIVE ITEMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{CORORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FIELD & RLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM & FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline N200101 & -- & -- & -- & -- & M8 & 31 & N212101 & -- & -- & -- & - & M1 & 45 \\
\hline N200201 & -- & -- & -- & -- & M1 & 26 & N212201 & -- & & & -- & M1 & 37 \\
\hline N200401 & M6 & 27 & M6 & 35 & -- & -- & N212301 & -- & -- & -- & -- & M1 & 40 \\
\hline N200501 & -- & -- & -- & -- & M7 & 26 & N212501 & -- & -- & -- & -- & M1 & 47 \\
\hline N200:01 & -- & -- & -- & -- & M8 & 48 & N212601 & & -- & -- & -- & M1 & 43 \\
\hline N200702 & -- & -- & -- & -- & M8 & 49 & N212701 & -- & -- & -- & -- & M1 & 21 \\
\hline N200901 & -- & -- & M 7 & 44 & M8 & 34 & N212901 & -- & -- & M9 & 32 & M8 & 21 \\
\hline N201001 & -- & -- & M8 & 57 & M8 & 42 & N212902 & -- & -- & M9 & 33 & M8 & 22 \\
\hline N201101 & -- & -- & M6 & 42 & M7 & 25 & N212903 & -- & -- & M9 & 34 & M8 & 23 \\
\hline N201201 & -- & -- & M7 & 53 & - & - & N213001 & -- & -- & & -- & M8 & 27 \\
\hline N201301 & -- & -- & -- & -- & M7 & 49 & N213101 & -- & -- & M7 & 36 & -- & \\
\hline N201401 & -- & -- & M7 & 39 & M7 & 23 & N213201 & -- & -- & & -- & M8 & 29 \\
\hline N201402 & -- & -- & M7 & 40 & M7 & 44 & N213401 & -- & - & -- & -- & M9 & 49 \\
\hline N201701 & -- & -- & M9 & 45 & M8 & 30 & N213501 & -- & -- & -- & -- & M9 & 50 \\
\hline N201801 & -- & -- & M6 & 44 & -- & - & N213601 & -- & -- & M8 & 41 & M9 & 40 \\
\hline N202501 & -- & -- & M7 & 38 & M7 & 27 & N213701 & -- & -- & -- & -- & M1 & 28 \\
\hline N202701 & -- & -- & -- & -- & M1 & 40 & N214101 & -- & -- & -- & -- & M1 & 19 \\
\hline N202801 & M7 & 15 & -- & -- & -- & -- & N214301 & M7 & 13 & -- & -- & & -- \\
\hline N203001 & -- & -- & M9 & 56 & M8 & 50 & N214501 & -- & -- & -- & -- & M1 & 30 \\
\hline N203201 & -- & -- & M7 & 45 & M7 & 18 & N214701 & -- & -- & M8 & 22 & M9 & 39 \\
\hline N203601 & -- & -- & M7 & 43 & M7 & 29 & N214801 & -- & -- & -- & & M1 & 38 \\
\hline N203701 & -- & -- & M6 & 43 & -- & -- & N214901 & M7 & 27 & M7 & 41 & M9 & 45 \\
\hline N203801 & -- & -- & M8 & 37 & M9 & 46 & N215001 & M7 & 19 & M9 & 39 & M9 & 37 \\
\hline N204101 & -- & -- & M7 & 18 & M8 & 16 & N215101 & -- & -- & -- & -- & M1 & 29 \\
\hline N204201 & -- & -- & -- & -- & M1 & 42 & N215301 & M6 & 26 & M6 & 32 & & -- \\
\hline N204401 & -- & - & -- & -- & M1 & 21 & N215401 & M7 & 14 & & -- & -- & -- \\
\hline N204501 & -- & -- & -- & -- & M9 & 48 & N215601 & -- & -- & M8 & 36 & \%8 & 26 \\
\hline N204601 & M6 & 13 & M6 & 17 & -- & -- & N215701 & & & M8 & 24 & M8 & 18 \\
\hline N204701 & & & M6 & 46 & -- & -- & N216101 & -- & -- & & & M7 & 33 \\
\hline N204801 & -- & -- & м6 & 40 & -- & -- & N216201 & -- & -- & -- & -- & M9 & 43 \\
\hline N204901 & M6 & 12 & M6 & 16 & -- & -- & N216301 & & & M9 & 51 & M7 & 30 \\
\hline N205001 & & - & M6 & 39 & -- & -- & N216401 & -- & -- & M9 & 49 & M 7 & 28 \\
\hline N205101 & -- & -- & M8 & 31 & 11 & 14 & N216501 & M6 & 17 & M6 & 21 & & \\
\hline N205201 & -- & -- & M7 & 22 & M1 & 12 & N216601 & M6 & 22 & M6 & 26 & -- & -- \\
\hline N205301 & M6 & 10 & м6 & 14 & -- & -- & N2i6901 & -- & -- & M7 & 55 & M7 & 36 \\
\hline N205301 & -- & -- & -- & -- & M1 & 11 & N217101 & -- & -- & M8 & 51 & M7 & 34 \\
\hline N205s01 & -- & & -- & -- & M1 & 31 & N217201 & M6 & 16 & M6 & 20 & -- & -- \\
\hline N205901 & -- & -- & M7 & 42 & M1 & 22 & N217701 & -- & -- & M7 & 52 & M7 & 40 \\
\hline N206301 & -- & -- & -- & -- & M9 & 58 & N217801 & -- & & M7 & 54 & 97 & 38 \\
\hline N206501 & -- & -- & M8 & 27 & M8 & 25 & N218501 & -- & -- & M8 & 47 & M7 & 20 \\
\hline N206601 & M7 & 16 & M7 & 28 & M8 & 20 & N218801 & -- & -- & -- & & M1 & 22 \\
\hline *206701 & & & M8 & 46 & M1 & 26 & N219001 & -- & -- & -- & -- & M1 & 30 \\
\hline N206801 & -- & -- & M8 & 19 & M9 & 38 & N219101 & M6 & 11 & M6 & 15 & -- & \\
\hline N207101 & -- & -- & M9 & 36 & M8 & 24 & N2193C1 & -- & -- & M8 & 49 & M7 & 19 \\
\hline N207401 & M6 & 18 & M6 & 22 & -- & & N219401 & -- & -- & -- & -- & M1 & 38 \\
\hline N207501 & & -- & M6 & 48 & -- & -- & N219501 & -- & -- & -- & -- & M7 & 51 \\
\hline N207601 & -- & -- & M6 & 33 & -- & -- & N219701 & -- & -- & M9 & 53 & M1 & 35 \\
\hline N207701 & -- & -- & M7 & 48 & -- & -- & N219901 & M5 & 24 & & -- & -- & -- \\
\hline N207801 & M7 & 17 & M7 & 24 & M1 & 15 & N220001 & M6 & 23 & M6 & 27 & -- & -- \\
\hline H208101 & -- & -- & M9 & 41 & M8 & 17 & N220101 & M6 & 15 & M6 & 19 & -- & -- \\
\hline N208301 & -- & -- & M8 & 48 & M1 & 19 & N220201 & -- & -- & -- & -- & M7 & 50 \\
\hline N208401 & -- & -- & M6 & 34 & -- & -- & N220301 & -- & -- & -- & -- & M9 & 55 \\
\hline N208501 & -- & -- & M8 & 50 & M8 & 47 & N220401 & -- & -- & M7 & 49 & M7 & 32 \\
\hline N208601 & -- & -- & M9 & 47 & M8 & 38 & N220501 & -- & -- & M9 & 40 & M7 & 22 \\
\hline N208801 & -- & -- & -- & -- & M1 & 16 & N220601 & -- & -- & & -- & M7 & 52 \\
\hline N208901 & -- & -- & -- & -- & M1 & 34 & N220701 & -- & -- & -- & -- & M7 & 37 \\
\hline N209101 & M 7 & 25 & M9 & 48 & - & - & N220801 & -- & -- & -- & -- & M1 & 29 \\
\hline N209301 & & & & -- & M1 & 23 & N220901 & -- & -- & -- & -- & M7 & 53 \\
\hline N209401 & -- & -- & -- & -- & M8 & 32 & N221001 & -- & -- & -- & -- & \({ }_{\text {H1 }}\) & 36 \\
\hline N209501 & -- & -- & M9 & 43 & M1 & 18 & N221101 & -- & -- & -- & -- & M1 & 48 \\
\hline H209601 & -- & -- & - & -- & M1 & 17 & N221201 & -- & -- & -- & -- & M9 & 56 \\
\hline N209801 & M7 & 20 & M9 & 46 & M9 & 44 & N221601 & -- & -- & -- & -- & M9 & 57 \\
\hline N209901 & -- & -- & -- & -- & M1 & 24 & N221701 & -- & -- & -- & -- & M9 & 54 \\
\hline N210101 & -- & -- & -- & -- & H8 & 46 & N221801 & -- & -- & -- & -- & M9 & 61 \\
\hline N210301 & -- & -- & -- & -- & M1 & 25 & N221901 & -- & -- & M9 & 50 & M9 & 47 \\
\hline N210401 & -- & -- & -- & -- & M1 & 20 & N222101 & -- & -- & -- & -- & M8 & 51 \\
\hline N210601 & -- & -- & -- & -- & M1 & 14 & N222401 & -- & -- & M8 & 21 & M9 & 36 \\
\hline N210701 & -- & -- & -- & -- & M1 & 16 & N222501 & -- & -- & -- & -- & M8 & 39 \\
\hline N210901 & -- & -- & -- & -- & M8 & 36 & N222801 & -- & -- & -- & -- & M8 & 33 \\
\hline N211001 & -- & -- & -- & -- & M1 & 46 & N223001 & -- & -- & -- & -- & M1 & 33 \\
\hline N211501 & -- & -- & -- & -- & M1 & 41 & N223101 & -- & -- & -- & - & M1 & 46 \\
\hline N211801 & -- & -- & -- & -- & M1 & 32 & N223301 & -- & -- & M8 & 39 & M8 & 45 \\
\hline N211901 & -- & -- & -- & -- & M9 & 51 & N223601 & -- & -- & -- & -- & M1 & 43 \\
\hline
\end{tabular}

Teble A. 14
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM & FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline N223801 & -- & -- & -- & -- & M1 & 27 & N237501 & M6 & 24 & - & -- & - & - \\
\hline N224301 & M5 & 16 & -- & -- & & 27 & N237601 & M7 & 18 & -- & -- & -- & -- \\
\hline N224401 & -- & -- & M6 & 41 & -- & -- & N237701 & M5 & 23 & -- & & -- & - \\
\hline N224701 & M4 & 25 & & -- & -- & -- & N238001 & MS & 15 & -- & -- & -- & - \\
\hline N224702 & M4 & 26 & -- & -- & -- & -- & N238101 & M7 & 20 & -- & -- & & -- \\
\hline N224col & -- & - & M8 & 18 & M7 & 17 & N238201 & M5 & 26 & -.. & & & -- \\
\hline N225001 & -- & -- & -- & -- & M7 & 44 & N238401 & MS & 25 & -- & -- & & -- \\
\hline N225301 & -- & -- & -- & -- & M8 & 44 & N238701 & MS & 18 & -- & -- & -- & -- \\
\hline N2254C1 & -- & -- & -- & -- & M1 & 39 & N238901 & M5 & 14 & -- & -- & -- & - \\
\hline N225601 & -- & -- & M8 & 56 & M7 & 39 & N239101 & M7 & 12 & -- & -- & -- & -- \\
\hline N225901 & -- & -- & M8 & 23 & M1 & 17 & 1239201 & MS & 12 & & -- & & -- \\
\hline N226001 & -- & -- & -- & -- & M1 & 18 & N239301 & M5 & 28 & -- & -- & & -- \\
\hline N226201 & -- & -- & M7 & 47 & M1 & 25 & N239401 & MS & 13 & -- & -- & & -- \\
\hline N226401 & -- & -- & M8 & 35 & M9 & 35 & N239501 & M7 & 23 & -- & -- & -- & - \\
\hline N227101 & -- & -- & - & 5 & M1 & 35 & N239601 & M7 & 28 & -- & & -- & -- \\
\hline N227201 & -- & -- & M6 & 47 & -- & -- & N239801 & MS & 17 & -- & -- & -- & -- \\
\hline N227301 & -- & -- & -- & -- & M7 & 31 & N239901 & M5 & 20 & -- & -- & -- & -- \\
\hline N227401 & -- & -- & -- & -- & M8 & 52 & N240001 & M5 & 27 & -- & -- & -- & -- \\
\hline N227701 & M6 & 20 & M6 & 24 & -- & -- & N250201 & M4 & 19 & M2 & 19 & -- & -- \\
\hline N227901 & -- & -- & M6 & 31 & -- & -- & N250301 & M 2 & 20 & N2 & 19 & -- & -- \\
\hline N228001 & M4 & 27 & -- & -- & -- & -- & N250501 & , & , & M5 & 39 & M5 & 39 \\
\hline N228301 & -- & -- & -- & -- & M7 & 42 & N250601 & M2 & 13 & H & 3 & NS & 39 \\
\hline N228501 & -- & -- & M7 & 37 & M8 & 28 & N250602 & M2 & 14 & -- & -- & -- & -- \\
\hline N228701 & -- & -- & -- & -- & M9 & 52 & N250603 & \(\mathrm{Mi}^{\circ}\) & 15 & -- & -- & -- & -- \\
\hline N228801 & M4 & 28 & -- & -- & - & S & N250701 & M1 & 7 & M2 & 14 & -- & -- \\
\hline N229001 & -- & -- & M8 & 29 & M9 & 41 & N250702 & M1 & 8 & M2 & 15 & -- & -- \\
\hline N229101 & M5 & 21 & - & -- & -- & - - & N250703 & M1 & 9 & M2 & 16 & - & -- \\
\hline N229201 & -- & -- & M8 & 42 & M7 & 46 & N250801 & A & 3 & M4 & 16 & M4 & 16 \\
\hline N229202 & -- & -- & M8 & 43 & M7 & 47 & N250802 & -- & -- & M4 & 17 & M4 & 17 \\
\hline N229203 & -- & -- & M8 & 44 & M7 & 48 & N250803 & -- & - - & M4 & 18 & M4 & 18 \\
\hline N229301 & -- & -- & M8 & 45 & M7 & 35 & N250901 & M2 & 17 & M1 & 25 & M6 & 11 \\
\hline N229601 & -- & -- & -- & -- & M1 & 44 & N250902 & M2 & 18 & M1 & 26 & M6 & 12 \\
\hline N229801 & -- & -- & -- & -- & M1 & 36 & N250903 & M2 & 19 & M1 & 27 & M6 & 13 \\
\hline N229901 & -- & -- & -- & -- & M1 & 37 & N251101 & - & 1 & M & 27 & M1 & 49 \\
\hline N230001 & -- & -- & -- & -- & M1 & 44 & +251201 & -- & -- & M5 & 26 & M5 & 26 \\
\hline N230101 & M6 & 14 & M6 & 18 & -- & -- & N251401 & M2 & 16 & NS & 26 & NS & -- \\
\hline N230201 & -- & -- & M8 & 35 & M8 & 35 & N251601 & M4 & 13 & -- & -- & -- & -- \\
\hline N230301 & -- & -- & -- & -- & M9 & 60 & N251701 & , & 13 & M8 & 40 & M2 & 41 \\
\hline N230401 & -- & -- & -- & -- & M1 & 32 & N251801 & -- & -- & M5 & 32 & M5 & 32 \\
\hline N230501 & M6 & 9 & M6 & 13 & -- & -- & N251901 & -- & -- & M7 & 26 & MS & 32 \\
\hline N230601 & -- & -- & M9 & 52 & M7 & 43 & N252001 & M2 & 25 & M2 & 40 & -- & -- \\
\hline N230701 & -- & -- & -- & -- & M1 & 28 & N252i01 & M1 & 25 & M1 & 41 & -- & -- \\
\hline N230801 & -- & -- & -- & -- & M1 & 41 & N252201 & M1 & 25 & M5 & 30 & M5 & 30 \\
\hline N231101 & -- & -- & M7 & 27 & M8 & 19 & N25260: & M1 & 26 & M5 & 40 & M5 & 40 \\
\hline N231301 & -- & -- & M9 & 54 & M7 & 45 & N252701 & -- & 2 & M8 & 55 & M6 & 44 \\
\hline N231401 & -- & -* & M & -- & M1 & 39 & N252901 & M4 & 23 & M1 & 32 & - & 4 \\
\hline N231501 & -- & -- & M8 & 30 & M1 & 13 & N253201 & H & 23 & M 4 & 42 & M4 & 42 \\
\hline N231703 & M6 & 25 & M6 & 29 & -- & -- & N253202 & -- & -- & M5 & 37 & M5 & 37 \\
\hline N231801 & -- & & M8 & 38 & M8 & 43 & N253701 & -- & -- & H2 & 22 & \(\stackrel{-}{-}\) & 37 \\
\hline N232001 & -- & -- & -- & -- & M1 & 27 & N253801 & -- & - - & M5 & 42 & M5 & 42 \\
\hline N232101 & -- & -- & -- & -- & M8 & 41 & N253901 & -- & -- & S & 4 & M1 & 39 \\
\hline N232601 & -- & -- & -- & -- & M1 & 45 & N253902 & -- & - & -- & -- & M1 & 40 \\
\hline N232901 & -- & -- & M7 & 33 & M1 & 15 & N253903 & -- & -- & -- & -- & M1 & 41 \\
\hline N233101 & -- & -- & -- & -- & M1 & 42 & N253904 & -- & -- & -- & -- & M1 & 42 \\
\hline N233401 & -- & -- & -- & -- & M1 & 23 & N254001 & -- & -- & M3 & 28 & M2 & 21 \\
\hline N233402 & -- & -- & -- & -- & M1 & 24 & N254301 & -- & -- & M7 & 35 & M1 & 33 \\
\hline N234101 & M7 & 21 & H9 & 37 & M9 & 53 & N254501 & -- & -- & M5 & 35 & M5 & 35 \\
\hline N234201 & -- & -- & M8 & 20 & M7 & 21 & N254601 & -- & -- & M1 & 16 & M2 & 15 \\
\hline N234301 & -- & -- & M9 & 55 & M7 & 41 & N254602 & -- & -- & M1 & 46 & M1 & 27 \\
\hline N234501 & M6 & 28 & M6 & 36 & - & 4 & N255101 & -- & -- & M4 & 38 & H2 & 38 \\
\hline N234901 & M7 & 22 & M8 & 32 & M8 & 37 & N255301 & -- & -- & N & 3 & M2 & 46 \\
\hline N235101 & -- & -- & M6 & 30 & -- & -- & N255302 & -- & -- & M4 & 37 & M2 & 48
37 \\
\hline N235201 & M5 & 22 & -- & -- & -- & -- & N255401 & -- & -- & N4 & 3 & M6 & 43 \\
\hline N235301 & -- & - & M6 & 38 & -- & -- & N255501 & -- & -- & -- & -- & M3 & 33 \\
\hline N235501 & M5 & 19 & -- & -- & -- & -- & N255601 & -- & -- & -- & -- & M2 & 45 \\
\hline N235601 & M6 & 21 & M6 & 25 & -- & -- & N255701 & -- & -- & M1 & 50 & M1 & 32 \\
\hline N236101 & -- & -- & M8 & 28 & M8 & 40 & N255801 & - & -- & M1 & 5 & M2 & 49 \\
\hline N236201 & & 19 & M6 & 37 & & -- & N255901 & -- & -- & -- & -- & M1 & 33 \\
\hline \(\$ 236401\)
\(\$ 236501\) & M6 & 19 & M6 & 23 & -- & -- & N255902 & -- & -- & -- & -- & M1 & 34 \\
\hline n236501
\(\mathbf{M 2 3 6 9 0 1}\) & M7
M7 & 11 & -- & -- & -- & -- & N256001 & -- & -- & -- & -- & M3 & 34 \\
\hline N237301 & -- & 2 & M6 & 28 & -- & -- & N256101
N 256301 & -- & & M2
M 4 & 17 & M1 & 15 \\
\hline N237401 & -- & -- & M6 & 45 & -- & -- & N256501 & - & -- & M 4
M 3 & 15 & M4
M6 & 19
35 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM & FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline N256801 & M4 & 21 & M3 & 32 & M1 & 36 & N267301 & M4 & 12 & -- & -- & -- & -- \\
\hline N257101 & & & -- & -- & M3 & 35 & N 267601 & M1 & 3 & -- & -- & -- & -- \\
\hline N257201 & M1 & 11 & -- & -- & -- & -- & N2.67602 & M1 & 18 & -- & -- & -- & -- \\
\hline N257401 & -- & -- & M7 & 23 & -- & -- & N267801 & -- & -- & -- & -- & M1 & 20 \\
\hline N257601 & -- & -- & M1 & 35 & -- & -- & N267901 & -- & -- & M5 & 41 & H5 & 41 \\
\hline N257701 & M4 & 22 & -- & -- & -- & -- & N267921 & -- & -- & -- & -- & M 3 & 30 \\
\hline N257801 & M2 & 3 & -- & -- & -- & -- & N268201 & M1 & 24 & M8 & 16 & -- & -- \\
\hline N257901 & -- & -- & M5 & 23 & M5 & 23 & N268221 & M3 & 14 & M9 & 20 & -- & -- \\
\hline N258201 & - & -- & M4 & 39 & M4 & 39 & N268801 & -- & -- & -- & -- & M2 & 48 \\
\hline N258501 & M3 & 19 & -- & -- & -- & -- & N268901 & -- & -- & -- & -- & M2 & 47 \\
\hline N258801 & -- & -- & M1 & 38 & M2 & 38 & N269001 & M2 & 26 & M1 & 44 & M2 & 22 \\
\hline N258802 & -- & -- & M2 & 31 & M1 & 26 & N269101 & M1 & 23 & M2 & 26 & -- & -- \\
\hline N 258803 & -- & -- & M2 & 41 & M1 & 37 & N269201 & -- & -- & M2 & 44 & M6 & 41 \\
\hline N258804 & - - & -- & M7 & 20 & M1 & 18 & N269401 & -- & -- & MS & 57 & M9 & 59 \\
\hline N258901 & -- & -- & M4 & 31 & M4 & 31 & N269901 & -- & -- & M3 & 29 & -- & -- \\
\hline N259001 & -- & -- & -- & -- & M2 & 31 & N270001 & M1 & 14 & -- & -- & -- & -- \\
\hline N259101 & M4 & 16 & -- & -- & -- & -- & N270301 & -- & -- & M2 & 20 & Mi & 30 \\
\hline N259501 & -- & -- & M5 & 36 & M5 & 36 & N270302 & -- & -- & M2 & 21 & M1 & 31 \\
\hline H259901 & -- & -- & M7 & 34 & M1 & 28 & N270701 & -- & -- & -- & -- & M6 & 37 \\
\hline N259921 & -- & -- & M3 & 20 & M3 & 22 & N270702 & -- & -- & -- & -- & M6 & 38 \\
\hline N260101 & -- & -- & M1 & 43 & M2 & 20 & N270901 & \(\cdots\) & 1 & -- & -- & -- & -- \\
\hline N260301 & -- & -- & M8 & 53 & -- & - & N270902 & M4 & 15 & -- & -- & -- & -- \\
\hline N260601 & -- & -- & M7 & 21 & M1 & 16 & N271101 & M2 & 24 & M7 & 17 & -- & -- \\
\hline N260701 & -- & -- & M5 & 33 & M5 & 33 & N271301 & - & & M9 & 44 & M3 & 32 \\
\hline N260801 & -- & -- & -- & -- & M2 & 43 & N271401 & -- & -- & M 4 & 33 & M4 & 33 \\
\hline N260901 & -- & -- & M 8 & 54 & M1 & 35 & N272101 & M3 & 17 & -- & -- & -- & -- \\
\hline N 260902 & -- & -- & \(\mathrm{M}_{4}\) & 40 & M4 & 40 & N272102 & M1 & 15 & -- & -- & -- & -* \\
\hline N261001 & -- & -- & M1 & 47 & M2 & 40 & N272301 & M2 & 1 & -- & -- & -- & -- \\
\hline N261201 & -- & -- & M2 & 38 & M2 & 26 & N272302 & M4 & 11 & -- & -- & -- & -- \\
\hline N261301 & -- & -- & M2 & 37 & M2 & 2.8 & N272601 & M4 & 17 & -- & -- & -- & -- \\
\hline N261401 & M2 & 12 & -- & -- & -- & -- & N272801 & M3 & 15 & -- & -- & -- & -- \\
\hline N261501 & -- & -- & M2 & 34 & M2 & 24 & N273501 & M2 & 6 & -- & -- & -- & -- \\
\hline N261601 & -- & -- & M2 & 36 & M2 & 27 & N273901 & -- & -- & M1 & 37 & M6 & 36 \\
\hline N261801 & -- & -- & M2 & 35 & M2 & 25 & N273902 & -- & -- & M5 & 25 & M5 & 25 \\
\hline N262001 & -- & -- & -- & -- & M9 & 42 & N274101 & -- & -- & M7 & 25 & -- & -- \\
\hline N262201 & M1 & 10 & M2 & 18 & -- & -- & N274801 & -- & -- & M1 & 29 & M6 & 25 \\
\hline N262301 & -- & -- & M7 & ¿9 & M2 & 17 & N274802 & -- & -- & M5 & 29 & M5 & 29 \\
\hline N 262401 & M3 & 18 & M1 & 28 & M1 & 17 & N275001 & -- & -- & M1 & 42 & -- & -- \\
\hline N 262501 & M1 & 19 & M1 & 33 & M2 & 35 & N275301 & -- & -- & N & 25 & -- & -- \\
\hline N262502 & M1 & 20 & M1 & 34 & M2 & 36 & N275401 & M2 & 7 & -- & -- & -- & -- \\
\hline N 262601 & -- & -- & M7 & 46 & H1 & 38 & N276001 & M2 & 21 & -- & -- & -- & -- \\
\hline N262701 & -- & -- & M4 & 15 & M4 & 15 & N276002 & M2 & 22 & -- & -- & -- & -- \\
\hline N 262801 & -- & -- & M 4 & 20 & M4 & 20 & N276021 & M3 & 9 & -- & -- & -- & -- \\
\hline N262802 & -- & -- & M & 21 & M4 & 21 & N276022 & M3 & 10 & -- & -- & -- & -- \\
\hline N262803 & -- & -- & \(\cdots\) & 22 & M4 & 22 & N276101 & M1 & 12 & -- & -- & -- & -- \\
\hline N263C01 & -- & -- & M 7 & 51 & M1 & 43 & N276501 & M4 & 18 & -- & -- & -- & -- \\
\hline N263101 & -- & -- & M1 & 39 & M2 & 37 & N276601 & M2 & 2 & -- & -- & -- & -- \\
\hline N263201 & -- & -- & -- & -- & M2 & 18 & N276801 & M1 & 4 & M1 & 17 & M6 & 17 \\
\hline N263202 & -- & -- & -- & -- & M2 & 19 & N276802 & M1 & 5 & M1 & 18 & M6 & 18 \\
\hline N263401 & M2 & 4 & M2 & 12 & -- & -- & N276803 & M1 & 6 & M1 & 19 & M6 & 19 \\
\hline N263402 & M2 & 5 & M2 & 13 & -- & -- & N276821 & 33 & 4 & M3 & 9 & M3 & 12 \\
\hline N263501 & M 4 & 24 & M2 & 30 & M6 & 34 & N276822 & M3 & 5 & M3 & 10 & M3 & 13 \\
\hline N263801 & -- & - & M 4 & 43 & M4 & 43 & N276823 & M3 & 6 & M3 & 11 & M3 & 14 \\
\hline N263901 & -- & -- & M 4 & 30 & M4 & 30 & N277401 & M1 & 2 & H2 & 8 & -- & -- \\
\hline N264301 & -- & -- & M8 & 58 & M1 & 47 & N277501 & M2 & 8 & -- & -- & -- & -- \\
\hline N264321 & -- & -- & M9 & 28 & M3 & 29 & N277601 & M2 & 9 & M1 & 20 & M6 & 20 \\
\hline N264501 & -- & -- & M7 & 29 & -- & -- & N277602 & M2 & 10 & M1 & 21 & M6 & 21 \\
\hline N264521 & -- & -- & M3 & 19 & M3 & 23 & N277603 & M2 & 11 & M1 & 22 & M6 & 22 \\
\hline N264601 & -- & -- & M4 & 34 & M4 & 34 & N277621 & M3 & 11 & M9 & 17 & M9 & 24 \\
\hline N264701 & -- & -- & M2 & 33 & M2 & 39 & N277622 & M3 & 12 & M9 & 18 & M9 & 25 \\
\hline N265201 & M4 & 14 & M1 & 36 & -- & -- & N277623 & M3 & 13 & M9 & 19 & M9 & 26 \\
\hline N265202 & -- & -- & M1 & 30 & -- & -- & N277901 & M4 & 8 & M2 & 9 & M6 & 14 \\
\hline N265401 & M1 & 21 & -- & -- & -- & -- & N277902 & M4 & 9 & M2 & 10 & M6 & 15 \\
\hline N265901 & & , & M1 & 40 & M6 & 39 & N277903 & M4 & 10 & M2 & 11 & M6 & 16 \\
\hline N265902 & -- & -- & M3 & 31 & M6 & 42 & N278301 & -- & - & M4 & 35 & M4 & 35 \\
\hline N265903 & -- & -- & M5 & 31 & M5 & 31 & N278302 & -- & -- & M4 & 36 & M4 & 36 \\
\hline N266001 & -- & -- & M5 & 38 & M5 & 38 & N278501 & -- & -- & M7 & 30 & M1 & 23 \\
\hline N 266101 & M1 & 22 & M3 & 27 & M6 & 24 & N278502 & -- & -- & M7 & 31 & M1 & 24 \\
\hline N266501 & -- & -- & -- & -- & M3 & 31 & N278503 & -- & -- & M7 & 32 & M1 & 25 \\
\hline N266701 & -- & -- & M4 & 32 & M4 & 32 & N278901 & -- & -- & M2 & 32 & M2 & 23 \\
\hline N266801 & -- & -- & M1 & 31 & M2 & 16 & N278902 & -- & -- & M2 & 29 & M2 & 42 \\
\hline N267001 & M3 & 16 & - & -- & -- & -- & N278903 & -- & -- & M2 & 42 & M2 & 44 \\
\hline N267201 & -- & -- & M1 & 23 & -- & -- & N278904 & -- & -- & M1 & 49 & M6 & 45 \\
\hline
\end{tabular}

Table A.14
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FIELD} & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{COHORI 2}} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline & BLOCK & ITEM & BLOCX & ITEM & BLOCK & ITEM & FIELD & BLOCK & ITEM & & & COHOR & ITEM \\
\hline N278905 & -- & -- & M8 & 52 & M1 & 44 & & & & & & & \\
\hline N278921 & -- & -- & M3 & 18 & M3 & 21 & N2871102 & -- & -- & M8 & 34 & M1 & 29 \\
\hline N278922 & -- & -- & M3 & 22 & M3 & 24 & N287102
N 287301 & -- & -- & M9 & 38 & M2 & 32 \\
\hline N278923 & -- & -- & M3 & 21 & M3 & 26 & N287302 & - & -- & M8 & 25 & M1 & 45 \\
\hline N278924 & -- & -- & M3 & 24 & M3 & 28 & & -- & -- & M8 & 26 & H1 & 46 \\
\hline \multirow[t]{2}{*}{N278925} & -- & -- & M3 & 23 & M3 & 27 & & & & & & & \\
\hline & & & M9 & 30 & -- & -- & & & & & & & \\
\hline \multirow[t]{2}{*}{N279301} & -- & -- & M5 & 34 & M1 & 31 & & & & & & & \\
\hline & & -- & -- & -- & M5 & 34 & & & & & & & \\
\hline N279321 & & -- & M9 & 29 & M9 & 29 & & & & & & & \\
\hline N279401 & -- & -- & M5 & 43 & M5 & 43 & & & & & & & \\
\hline N279421 & -- & -- & M9 & 31 & M9 & 30 & & & & & & & \\
\hline N280401 & -- & -- & M8 & 33 & . 2 & 30 & & & & & & & \\
\hline N280421 & -- & -- & M9 & 26 & M9 & 28 & & & & & & & \\
\hline N280601 & -- & -- & M4 & 23 & M4 & 23 & & & & & & & \\
\hline N280602 & -- & -- & M4 & 24 & M4 & 24 & & & & & & & \\
\hline N280603 & -- & -- & \(\mathrm{N}_{4}\) & 25 & M4 & 25 & & & & & & & \\
\hline N280604 & -- & -- & M4 & 26 & M4 & 26 & & & & & & & \\
\hline N280605 & -- & -- & M4 & 27 & M4 & 27 & & & & & & & \\
\hline N280606 & -- & -- & M4 & 28 & M4 & 28 & & & & & & & \\
\hline N280621 & -- & -- & H3 & 12 & M3 & 15 & & & & & & & \\
\hline N280622 & -- & -- & M3 & 13 & M3 & 16 & & & & & & & \\
\hline N280623 & -- & -- & M3 & 14 & M3 & 17 & & & & & & & \\
\hline N280624 & -- & -- & M3 & 15 & H3 & 18 & & & & & & & \\
\hline N280625 & -- & -- & M3 & 16 & M3 & 19 & & & & & & & \\
\hline N280626 & -- & -- & M3 & 17 & M3 & 20 & & & & & & & \\
\hline N281401 & -- & -- & M2 & 39 & M2 & 29 & & & & & & & \\
\hline N281901 & -- & -- & M1 & 15 & H2 & 2 & & & & & & & \\
\hline N282201 & -- & -- & M2 & 28 & M6 & 27 & & & & & & & \\
\hline N282202 & -- & -- & M3 & 26 & M9 & 34 & & & & & & & \\
\hline N282701 & -- & -- & M5 & 24 & M5 & 24 & & & & & & & \\
\hline N282801 & -- & -- & S & 2 & M1 & 48 & & & & & & & \\
\hline N282901 & M4 & 20 & -- & -- & M & & & & & & & & \\
\hline N283001 & -- & -- & M9 & 42 & -- & -- & & & & & & & \\
\hline N283101 & -- & -- & M1 & 51 & M6 & 40 & & & & & & & \\
\hline N 284001 & M1 & 16 & - - & -- & M1 & 12 & & & & & & & \\
\hline N284002 & M1 & 17 & -- & -- & M1 & 13 & & & & & & & \\
\hline N284021 & M3 & 7 & -- & -- & M9 & 32 & & & & & & & \\
\hline N284022 & M3 & 8 & -- & -- & M9 & 33 & & & & & & & \\
\hline N284101 & -- & - & MS & 18 & M5 & 18 & & & & & & & \\
\hline N284102 & -- & -- & M5 & 19 & M5 & 19 & & & & & & & \\
\hline N284401 & -- & -- & M5 & 27 & M6 & 26 & & & & & & & \\
\hline N284421 & & & -- & -- & M5 & 27 & & & & & & & \\
\hline \multirow[t]{2}{*}{N284501} & -- & -- & M9 & 24 & M9 & 27 & & & & & & & \\
\hline & & -- & M5 & 20 & M6 & 31 & & & & & & & \\
\hline \multirow[t]{2}{*}{N284502} & -- & & M5 & 31 & M5 & 20 & & & & & & & \\
\hline & & & MS & 31 & M6 & 32 & & & & & & & \\
\hline \multirow[t]{2}{*}{N284503} & -- & -- & & -- & M5 & 21 & & & & & & & \\
\hline & -- & -- & MS & 22 & M6 & 33 & & & & & & & \\
\hline N284521 & & & -- & -- & M5 & 22 & & & & & & & \\
\hline N284522 & -- & -- & M9 & 21 & M9 & 21 & & & & & & & \\
\hline N284523 & -- & -- & N9
H9 & 22 & M9 & 22 & & & & & & & \\
\hline N285001 & -- & -- & M5 & 28 & M9
M5 & 23 & & & & & & & \\
\hline N285021 & -- & -- & M9 & 25 & M9 & 31 & & & & & & & \\
\hline N285201 & -- & -- & H4 & 29 & M4 & 29 & & & & & & & \\
\hline N285301 & -- & -- & M7 & 50 & -- & 2 & & & & & & & \\
\hline N285321 & -- & -- & M9 & 27 & M3 & 25 & & & & & & & \\
\hline N285401 & -- & -- & H4 & 41 & M4 & 41 & & & & & & & \\
\hline N285701 & -- & -- & M2 & 27 & M1 & 21 & & & & & & & \\
\hline N285901 & -- & -- & -- & -- & M6 & 46 & & & & & & & \\
\hline N286001 & -- & -- & -- & -- & M1 & 19 & & & & & & & \\
\hline N286002 & - & -- & -- & -- & H1 & 20 & & & & & & & \\
\hline N286101 & 11 & 13 & -- & -- & - & 2 & & & & & & & \\
\hline N286102 & M2 & 23 & M8 & 17 & -- & -- & & & & & & & \\
\hline N286201 & -- & - - & M1 & 24 & M6 & 23 & & & & & & & \\
\hline N286301 & -- & -- & M1 & 45 & M2 & 33 & & & & & & & \\
\hline N286302 & -- & -- & -- & -- & M1 & 22 & & & & & & & \\
\hline N286501 & -- & -- & M1 & 48 & H2 & 34 & & & & & & & \\
\hline N286502 & -- & -- & M2 & 43 & M1 & 34 & & & & & & & \\
\hline N286601 & -- & -- & M2 & 23 & M6 & 28 & & & & & & & \\
\hline N286602 & -- & -- & M2 & 24 & M6 & 29 & & & & & & & \\
\hline N286603 & -- & -- & M2 & 25 & H6 & 30 & & & & & & & \\
\hline
\end{tabular} 493

SCIENCE COGNITIVE ITEMS


Table A. 15
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & I TEM & FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline N409601 & -- & -- & S3 & 34 & -- & -- & N416701 & S6 & 15 & -- & -- & -- & -- \\
\hline N409701 & -- & -- & S3 & 35 & -- & -- & N416702 & S6 & 15 & -- & -- & -- & -- \\
\hline N409801 & -- & -- & S3 & 36 & -- & -- & N416801 & S & - & S6 & & & \\
\hline N409901 & -- & -- & -- & -- & S1 & 18 & N416901 & -- & -- & S6 & 25 & S6 & 25 \\
\hline N410001 & -- & -- & -- & -- & S1 & 14 & N417001 & -- & - & S6 & 24 & S6 & 24 \\
\hline N410002 & -.. & -- & -- & -- & S1 & 15 & N417101 & -- & -- & S6 & 27 & S6 & 18 \\
\hline N410003 & -- & -- & -- & -- & S1 & 15 & N417201 & -- & -- & S6 & 28 & S6 & 27 \\
\hline N410004 & -- & -- & -- & -- & S1 & 17 & N417301 & -- & -- & S6 & 14 & S6 & 28 \\
\hline N410101 & -- & -- & -- & -- & S1 & 25 & N417401 & - & -- & S9 & 30 & & \\
\hline N410102 & -- & -- & -- & -- & S1 & 26 & N417601 & - - & -- & S6 & 13 & S1 & 26 \\
\hline N410103 & -- & -- & -- & -- & S1 & 27 & N417701 & -- & - & S & 13 & S6 & 13 \\
\hline N410201 & -- & -- & -- & -- & S1 & 32 & N417801 & -- & -- & S6 & 21 & S6 & 21 \\
\hline N4 10301 & -- & -- & -- & -- & S1 & 36 & N417901 & -- & -- & S6 & 19 & S6 & 19 \\
\hline N410401 & -- & -- & -- & -- & S2 & 15 & N418001 & -- & -- & S6 & 26 & S6 & 26 \\
\hline N410501 & -- & -- & -- & -- & S2 & 22 & N418101 & -- & -- & S6 & 15 & S6 & 15 \\
\hline N410601 & -- & -- & -- & -- & S2 & 23 & N418201 & -- & -- & S6 & 22 & S6 & 22 \\
\hline N410602 & -- & -- & -- & -- & S2 & 24 & N418301 & -- & -- & S6 & 12 & S6 & 17 \\
\hline N410603 & -- & -- & -- & -- & S2 & 25 & N418401 & -- & -- & S6 & 12 & S6 & 12 \\
\hline N410604 & -- & -- & -- & -- & S2 & 26 & N418501 & - & - - & S6 & 11 & S6 & 11 \\
\hline N410701 & -- & -- & -- & -- & S2 & 34 & N418701 & -- & -- & S6 & 20 & S6 & 20 \\
\hline N410801 & -- & -- & -- & -- & S2 & 39 & N418702 & -- & -- & S5 & 12 & S5 & 11 \\
\hline N410901 & -- & -- & -- & -- & S2 & 40 & N418801 & -- & -- & 55 & 18 & S5 & 12 \\
\hline N411001 & -- & -- & -- & -- & S2 & 41 & N418901 & -- & -- & 55 & 18 & S5 & 18 \\
\hline N411101 & -- & -- & -- & -- & S3 & 22 & N419001 & -- & -- & S5 & 5 & S5 & 5 \\
\hline N411201 & -- & -- & -- & -- & S3 & 23 & N419101 & -- & -- & 55 & 8 & S 5 & 8 \\
\hline N411301 & -- & -- & -- & -- & S3 & 20 & N419201 & -- & -- & S5 & 13 & S5 & 13 \\
\hline N411401 & -- & -- & -- & -- & S3 & 25 & N419301 & -- & - & S5 & 4 & S 5 & 4 \\
\hline N411501 & -- & -- & -- & -- & S3 & 26 & N419401 & -- & -- & S5 & 7 & S5 & 7 \\
\hline N411502 & -- & -- & -- & -- & S3 & 27 & N419501 & -- & -- & S5 & 3 & S5 & 9 \\
\hline N411601 & -- & -- & -- & -- & S3 & 28 & N419601 & -- & -- & S5 & & S5 & 3 \\
\hline N411701 & -- & -- & -- & -- & S3 & 29 & N419701 & -- & -- & S5 & 19 & S5 & 19 \\
\hline N411801 & -- & -- & -- & -- & S3 & 30 & N419801 & -- & -- & S5 & 16 & S5 & 16 \\
\hline N411901 & -- & -- & -- & -- & S3 & 31 & N419901 & -- & -- & S 5 & 17 & S5 & 2 \\
\hline N412001 & -- & -- & -- & -- & S3 & 32 & N420001 & -- & -- & S5 & 15 & S5 & 17 \\
\hline N412101 & S4 & 10 & S4 & 10 & -- & -- & N420101 & -- & -- & S5 & 15 & S5 & 15 \\
\hline N412201 & S4 & 11 & S4 & 11 & -- & -- & N420201 & -- & -- & S5 & 10 & S5 & 10 \\
\hline N412301 & S4 & 21 & S4 & 21 & -- & -- & N420301 & -- & -- & S7 & 13 & S5 & 14 \\
\hline N412501 & S6 & 13 & -- & -- & -- & -- & N420401 & -- & -- & S7 & 19 & & -- \\
\hline N4 12601 & -- & -- & S4 & 24 & -- & -- & N420501 & -- & -- & S7 & 20 & -- & \\
\hline N412701 & S4 & 22 & S4 & 22 & -- & -- & N420601 & - - & -- & S7 & 13 & -- & -- \\
\hline N412801 & S4 & 14 & S4 & 14 & -- & -- & N42070i & -- & & S7 & 22 & -- & \\
\hline \(N 412901\) & S4 & 13 & S4 & 13 & -- & -- & N420702 & - - & - - & S7 & 22 & -- & -- \\
\hline N413001 & -- & -- & S9 & 16 & -- & -- & N420901 & -- & -- & S7 & 25 & & \\
\hline N413101 & -- & -- & S9 & 19 & -- & -- & N421101 & -- & -- & S7 & 11 & & \\
\hline N413201 & S4 & 17 & S4 & 17 & -- & -- & N421201 & -- & -- & S7 & 21 & -- & -- \\
\hline N413301 & S4 & 18 & S4 & 18 & -- & -- & N421301 & -- & -- & S7 & 14 & & \\
\hline N413401 & S4 & 19 & S4 & 19 & -- & -- & N421302 & -- & -- & S7 & 15 & -- & -- \\
\hline N4 13601 & S4 & 12 & S4 & 12 & -- & -- & K421401 & -- & -- & S7 & 17 & -- & -- \\
\hline N413602 & S4 & 12 & S4 & 12 & -- & -- & N421501 & -- & -- & S7 & 27 & -- & -- \\
\hline N413701 & S4 & 23 & S9 & 18 & S1 & 12 & N421601 & -- & -- & S8 & 32 & 34 & 24 \\
\hline N413901 & S5 & 5 & -- & -- & -- & -- & N421701 & -- & -- & S7 & 24 & S8 & 26 \\
\hline N414001 & -- & -- & S4 & 25 & -- & -- & N421801 & & & S7 & 10 & S8 & \\
\hline N414101 & S5 & 6 & -- & -- & -- & -- & N421901 & & & S7 & 16 & & \\
\hline N414201 & S5 & 19 & -- & -- & -- & -- & N422001 & -- & -- & S7 & 26 & S4 & 14 \\
\hline N414301 & S5 & 13 & -- & -- & -- & -- & N422101 & -- & -- & S8 & 16 & S1 & 11 \\
\hline \$414401 & S5 & 17 & S6 & 23 & S6 & 23 & N422201 & -- & & S8 & 19 & S1 & 17 \\
\hline N414501 & S5 & 16 & -- & -- & -- & -- & N422301 & -- & -- & S8 & 25 & S & 17 \\
\hline N414601 & S5 & 15 & -- & -- & -- & -- & N422401 & -- & -- & S8 & 26 & S8 & 27 \\
\hline N414701 & S5 & 12 & S7 & 12 & -- & -- & N422501 & -- & -- & S8 & 22 & S & \\
\hline N414801 & S5 & 8 & -- & -- & -- & -- & N422601 & -- & & S8 & 31 & -- & \\
\hline N414901 & S5 & 7 & -- & -- & -- & -- & N422701 & -- & -- & S8 & 20 & -- & -- \\
\hline N415101 & S5 & 14 & -- & -- & -- & -- & N422801 & -- & -- & S8 & 30 & & \\
\hline N415401 & S6 & 11 & -- & -- & -- & -- & N422901 & -- & -- & S8 & 29 & & \\
\hline N415501 & S4 & 16 & S4 & 16 & -- & -- & N423001 & -- & -- & S8 & 21 & & \\
\hline N415601 & S6 & 18 & -- & -- & -- & -- & N423101 & -- & -- & S8 & 17 & _ - & \\
\hline N415701 & S6 & 14 & -- & -- & -- & -- & N423201 & -- & -- & S8 & 24 & & \\
\hline N415801 & S6 & 6 & -- & -- & -- & -- & N423202 & -- & -- & S8 & 24 & & \\
\hline N416001 & S6 & 7 & -- & -- & -- & -- & N423301 & -- & -- & S8 & 23 & -- & \\
\hline N416101 & S6 & 16 & -- & -- & -- & -- & N423401 & -- & -- & S8 & 15 & -- & \\
\hline N416301 & S6 & 10 & -- & -- & -- & -- & N423501 & -- & -* & S8 & 18 & & \\
\hline N416401 & -- & -- & S4 & 26 & -- & -- & N423601 & -- & -- & S8 & 27 & & \\
\hline N416501 & S6 & 12 & -- & -- & -- & -- & N423701 & -- & -- & S8 & 28 & & \\
\hline N416601 & S6 & 19 & -- & -- & -- & -- & N423801 & -- & -- & -- & -- & S9 & 18 \\
\hline
\end{tabular}

Table A. 15 continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COBORT 3} \\
\hline FIELD & ELOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM & FIELD & SLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline N423901 & -- & -- & -- & -- & S9 & 22 & N431201 & -- & -- & -- & -- & S8 & 14 \\
\hline N423902 & -- & -- & -- & -- & S9 & 23 & N431301 & -- & -- & -- & -- & S8 & 19 \\
\hline N424001 & -- & -- & -- & -- & S9 & 34 & N431302 & -- & -- & -- & -- & S8 & 19 \\
\hline H424201 & -- & -- & -- & -- & S9 & 36 & N431401 & -- & -- & -- & -- & S8 & 20 \\
\hline N424301 & -- & -- & -- & -- & S9 & 19 & N431501 & -- & -- & -- & -- & S 8 & 15 \\
\hline N424401 & -- & -- & -- & -- & S9 & 31 & N431801 & -- & -- & -- & -- & S8 & 28 \\
\hline N424501 & -- & -- & -- & -- & S9 & 27 & N431901 & -- & -- & -- & -- & S 8 & 17 \\
\hline N424701 & -- & -- & -- & -- & S9 & 21 & N431902 & -- & -- & -- & -- & S8 & 18 \\
\hline N424801 & -- & -- & -- & -- & S9 & 24 & N432001 & -- & -- & -- & -- & S1 & 28 \\
\hline N424802 & -- & -- & -- & -- & S9 & 25 & N432101 & -- & -- & -- & -- & S8 & 16 \\
\hline N424803 & -- & -- & -- & -- & S9 & 25 & N432201 & -- & -- & -- & -- & S 8 & 23 \\
\hline N424901 & -- & -- & -- & -- & S9 & 28 & N432301 & -- & -- & -- & -- & S 8 & 30 \\
\hline N425001 & -- & -- & -- & -- & S9 & 20 & N432401 & -- & -- & -- & -- & S8 & 25 \\
\hline N425101 & -- & -- & -- & -- & S9 & 35 & N432501 & -- & -- & -- & -- & S8 & 32 \\
\hline N425201 & -- & -- & -- & -- & S9 & 26 & N432601 & -- & -- & -- & -- & S8 & 22 \\
\hline N425301 & -- & -- & -- & & S9 & 30 & N432701 & -- & -- & -- & -- & S8 & 21 \\
\hline N425401 & -- & -- & -- & -- & S9 & 33 & N432801 & -- & -- & -- & -- & S8 & 29 \\
\hline N425501 & -- & -- & -- & -- & S9 & 29 & N432901 & -- & -- & -- & -- & S8 & 24 \\
\hline N42560 1 & -- & -- & -- & -- & S 1 & 27 & N433001 & S 5 & 11 & -- & -- & -- & -- \\
\hline N425701 & -- & -- & -- & -- & S1 & 30 & N433101 & S 5 & 18 & -- & -- & -- & -- \\
\hline N425702 & -- & -- & -- & -- & S 1 & 30 & N433201 & S6 & 17 & -- & -- & -- & -- \\
\hline N425801 & -- & -- & -- & -- & S 1 & 25 & N433301 & S6 & 5 & -- & -- & -- & -- \\
\hline N425901 & -- & -- & -- & -- & S 1 & 22 & N433401 & S6 & 8 & -- & -- & -- & -- \\
\hline N42600 1 & -- & -- & -- & -- & S 1 & 31 & N433501 & S6 & 9 & -- & -- & -- & -- \\
\hline N426101 & -- & -- & -- & -- & S 1 & 16 & N433601 & S4 & 20 & S4 & 20 & -- & -- \\
\hline N426201 & -- & -- & -- & -- & S 1. & 32 & N433701 & -- & -- & S 7 & 18 & -- & -- \\
\hline N426401 & -- & -- & -- & -- & S1 & 20 & N433801 & -- & -- & -- & -- & S4 & 16 \\
\hline N426501 & -- & -- & -- & -- & S1 & \(\therefore 5\) & N433901 & -- & -- & -- & -- & S7 & 33 \\
\hline N426601 & -- & -- & -- & -- & S9 & 32 & N434001 & -- & -- & -- & -- & S7 & 29 \\
\hline N426801 & -- & -- & -- & -- & S1 & 29 & N434101 & -- & -- & -- & -- & S 8 & 33 \\
\hline N426901 & -- & -- & -- & -- & S1 & 28 & N434201 & -- & -- & -- & -- & S1 & 33 \\
\hline N427001 & -- & -- & -- & -- & S1 & 21 & N434202 & -- & -- & -- & -- & S1 & 34 \\
\hline N427101 & -- & -- & -- & -- & S1 & 23 & N434301 & -- & -- & -- & -- & S4 & 18 \\
\hline N427201 & -- & -- & -- & -- & S1 & 18 & N434401 & S4 & 15 & S4 & 15 & -- & -- \\
\hline N427202 & -- & -- & -- & -- & S 1 & 19 & N434501 & S5 & 9 & -- & -- & -- & -- \\
\hline N427301 & -- & -- & -- & -- & S1 & 35 & N434502 & S5 & 9 & -- & -- & -- & -- \\
\hline N427401 & -- & -- & -- & -- & S 1 & 24 & N434601 & S 5 & 10 & -- & -- & -- & -- \\
\hline N427501 & -- & -- & -- & -- & S 7 & 20 & N434801 & -- & -- & -- & -- & S4 & 15 \\
\hline N427601 & -- & -- & -- & -- & S7 & 19 & N434901 & -- & -- & 54 & 27 & -- & -- \\
\hline N427701 & -- & -- & -- & -- & S 7 & 35 & N435001 & -- & -- & S4 & 23 & -- & -- \\
\hline N427801 & -- & -- & -- & -- & S 7 & 18 & N4S5101 & -- & -- & S6 & 16 & S6 & 16 \\
\hline N427901 & -- & -- & -- & -- & S7 & 32 & N435201 & -- & -- & S5 & 6 & S5 & 6 \\
\hline N428001 & -- & -- & -- & -- & S7 & 25 & N435301 & -- & -- & -- & -- & S9 & 37 \\
\hline N428101 & -- & -- & -- & -- & S 7 & 21 & N435401 & -- & -- & S9 & 14 & S 1 & 10 \\
\hline N428102 & -- & -- & -- & -- & S7 & 22 & N435501 & -- & -- & S9 & 15 & -- & -- \\
\hline N428201 & -- & -- & -- & -- & S7 & 26 & N435601 & -- & -- & S9 & 20 & -- & -- \\
\hline N428202 & -- & -- & -- & -- & S 7 & 26 & N435701 & -- & -- & S9 & 21 & -- & -- \\
\hline N428301 & -- & -- & -- & -- & S 7 & 27 & N435801 & -- & -- & S9 & 22 & S1 & 20 \\
\hline N428401 & -- & -- & -- & -- & S7 & 34 & N435901 & -- & -- & S9 & 23 & S 1 & 23 \\
\hline N428501 & -- & -- & -- & -- & S7 & 23 & N436001 & -- & -- & S9 & 24 & -- & -- \\
\hline N428601 & -- & -- & -- & -- & S7 & 30 & N436107 & -- & -- & S9 & 25 & - & -- \\
\hline N428801 & -- & -- & -- & -- & S7 & 28 & N436201 & -- & -- & S9 & 26 & S1 & 24 \\
\hline N428901 & -- & -- & -- & -- & S7 & 24 & N436301 & -- & -- & S9 & 27 & -- & -- \\
\hline N429001 & -- & -- & -- & -- & S7 & 37 & N436401 & -- & -- & S9 & 28 & S1 & 22 \\
\hline N429101 & -- & -- & -- & -- & S7 & 36 & N436501 & -- & -- & S9 & 29 & S1 & 21 \\
\hline N429201 & -- & -- & -- & -- & S7 & 31 & N436601 & -- & -- & S9 & 31 & -- & -- \\
\hline N429401 & -- & -- & -- & -- & S4 & 19 & N436701 & -- & -- & S9 & 17 & -- & -- \\
\hline N429601 & -- & -- & -- & -- & S4 & 25 & N436801 & -- & -- & -- & -- & S1 & 13 \\
\hline Y429701 & -- & -- & -- & -- & S4 & 29 & N436802 & -- & -- & -- & -- & S1 & 14 \\
\hline N429801 & -- & -- & -- & -- & S4 & 27 & N436901 & -- & -- & -- & -- & S1 & 15 \\
\hline N429901 & -- & -- & -- & -- & S4 & 13 & N437001 & -- & -- & -- & -- & S1 & 16 \\
\hline N430001 & -- & -- & -- & -- & S4 & 20 & N437002 & -- & -- & -- & -- & S1 & 16 \\
\hline N430002 & -- & -- & -- & -- & S4 & 21 & N437101 & -- & -- & -- & -- & S1 & 17 \\
\hline N430003 & -- & -- & -- & -- & S4 & 22 & N437201 & -- & -- & -- & -- & S1 & 18 \\
\hline N430101 & -- & -- & -- & -- & S4 & 23 & N437202 & -- & -- & -- & -- & S1 & 19 \\
\hline N430301 & -- & -- & -- & -- & S4 & 30 & N437301 & -- & -- & -- & -- & S1 & 25 \\
\hline N430401 & -- & -- & -- & -- & S4 & 12 & N437401 & -- & -- & -- & -- & S1 & 27 \\
\hline N430501 & -- & -- & -- & -- & S4 & 26 & N437501 & -- & -- & -- & -- & S1 & 29 \\
\hline N430601 & -- & -- & -- & -- & S 4 & 28 & N437601 & S7 & 8 & -- & -- & -- & -- \\
\hline N430801 & -- & -- & -- & -- & S4 & 17 & N437701 & S7 & 9 & -- & -- & -- & -- \\
\hline N430802 & -- & -- & -- & -- & S4 & 17 & N437801 & S7 & 10 & -- & -- & -- & -- \\
\hline N430901 & -- & -- & -- & -- & S4 & 31 & N437901 & S7 & 11 & -- & -- & -- & -- \\
\hline N431101 & -- & -- & -- & -- & S8 & 31 & N438001 & S7 & 12 & -- & -- & -- & -- \\
\hline
\end{tabular}

Table A. 15 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FIELD} & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline & BLOCK & ITEM & BLOCK & ITEM & BL.OCK & ITEM \\
\hline N438101 & S7 & 13 & -- & -- & & \\
\hline N438201 & S7 & 14 & -- & -- & & \\
\hline N438301 & S7 & 15 & -- & -- & & \\
\hline N438401 & S\% & 16 & -- & -- & -- & \\
\hline N438501 & S7 & 17 & -- & -- & & \\
\hline N438601 & S 7 & 18 & -- & -- & & \\
\hline N438701 & S7 & 19 & -- & -- & & \\
\hline N438801 & S7 & 20 & -- & -- & & \\
\hline N438901 & S7 & 21 & -- & -- & & \\
\hline
\end{tabular}

Table A. 16
COMPUTER COMPETENCE COGNITIVE ITEMS
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
 \\
OXO: if: i
\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 炰 } \\
& \underset{\sim}{4}
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 邑 } \\
& \underset{\sim}{\mu}
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COBORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline N608001 & -- & -- & C6 & 24 & -- & -- \\
\hline N 608002 & -- & -- & C6 & 25 & -- & -- \\
\hline N608101 & -- & -- & C6 & 26 & -- & -- \\
\hline N608103 & -- & -- & C6 & 28 & -- & -- \\
\hline N608201 & -- & -- & -- & - & C6 & 28 \\
\hline N608301 & -- & -- & -- & -- & C6 & 29 \\
\hline N608302 & -- & -- & -- & -- & C6 & 30 \\
\hline N608303 & -- & -- & -- & -- & C6 & 31 \\
\hline N608401 & -- & -- & -- & -- & C6 & 32 \\
\hline N608402 & -- & -- & -- & -- & C6 & 32 \\
\hline N608501 & C1 & 37 & C1 & 38 & - & -- \\
\hline N608601 & C1 & 38 & C1 & 39 & -- & -- \\
\hline N608701 & C1 & 39 & C1 & 40 & -- & -- \\
\hline N608702 & C1 & 40 & C1 & 41 & -- & -- \\
\hline N608801 & -- & -- & C1 & 42 & -- & -- \\
\hline N608901 & C2 & 31 & C2 & 32 & -- & -- \\
\hline N609001 & C2 & 32 & C2 & 33 & -- & -- \\
\hline N609101 & C2 & 33 & C2 & 34 & -- & -- \\
\hline N609201 & C2 & 34 & C 2 & 35 & -- & -- \\
\hline N609202 & C2 & 34 & C2 & 35 & -- & -- \\
\hline N609301 & C3 & 29 & -- & & -- & -- \\
\hline H609401 & C3 & 30 & -- & -- & -- & -- \\
\hline N609501 & C3 & 31 & -- & -- & -- & -- \\
\hline N609601 & C3 & 32 & -- & -- & -- & -- \\
\hline N609602 & C3 & 33 & -- & -- & -- & -- \\
\hline N60960 & C3 & 33 & -- & -- & -- & -- \\
\hline N609701 & -- & -- & C3 & 25 & -- & -- \\
\hline N609801 & -- & -- & C3 & 26 & -- & -- \\
\hline N609901 & -- & -- & C3 & 27 & -- & -- \\
\hline *610001 & -- & -- & C3 & 28 & -- & -- \\
\hline N610101 & -- & -- & C4 & 32 & -- & -- \\
\hline N610102 & -- & -- & C4 & 33 & -- & -- \\
\hline N610103 & -- & -- & C4 & 34 & -- & -- \\
\hline N61020 1 & -- & -- & C4 & 35 & -- & -- \\
\hline N610301 & -- & -- & C4 & 36 & -- & -- \\
\hline N610401 & -- & -- & C4 & 37 & -- & -- \\
\hline N610501 & -- & -- & C5 & 25 & -- & -- \\
\hline N610601 & -- & -- & C5 & 26 & -- & -- \\
\hline N610701 & -- & -- & C5 & 27 & -- & -- \\
\hline N610702 & -- & -- & C5 & 28 & -- & -- \\
\hline N610703 & -- & -- & C5 & 29 & -- & -- \\
\hline N610704 & -- & -- & C5 & 30 & -- & -- \\
\hline N610801 & -- & -- & C6 & 29 & -- & -- \\
\hline N610802 & -- & -- & C6 & 30 & -- & -- \\
\hline N610803 & -- & -- & C6 & 31 & -- & -- \\
\hline N610901 & -- & -- & C6 & 32 & -- & -- \\
\hline N611001 & -- & -- & C6 & 33 & -- & -- \\
\hline N611101 & -- & -- & -- & -- & C1 & 38 \\
\hline N611103 & -- & -- & -- & -- & C1 & 40 \\
\hline N611201 & -. & -- & -- & -- & C1 & 41 \\
\hline N611202 & -- & -- & -- & -- & C1 & 42 \\
\hline N611203 & -- & -- & -- & -- & C1 & 43 \\
\hline N611204 & -. & -- & -- & -- & C1 & 44 \\
\hline N611301 & -- & -- & -- & -- & C 2 & 33 \\
\hline N611302 & -- & -- & -- & -- & C2 & 34 \\
\hline N611303 & -- & -- & -- & -- & C 2 & 35 \\
\hline N611304 & -- & -- & -- & -- & C 2 & 36 \\
\hline N611401 & -- & -- & -- & -- & C3 & 25 \\
\hline N611402. & -- & -- & -- & -- & C3 & 26 \\
\hline N611403 & -- & -- & -- & -- & C3 & 27 \\
\hline N611404 & -- & -- & -- & -- & C3 & 28 \\
\hline N611501 & -- & -- & -- & -- & C4 & 40 \\
\hline N611601 & -- & -- & -- & -- & C5 & 39 \\
\hline \(N 611602\) & -- & -- & -- & -- & Cs & 40 \\
\hline N611603 & -- & -- & -- & -- & C5 & 41 \\
\hline N611604 & -- & -- & -- & -- & C5 & 42 \\
\hline N611605 & -- & -- & -- & -- & Cs & 43 \\
\hline N611606 & -- & -- & -- & -- & C5 & 4.4 \\
\hline N611701 & -- & -- & -- & -- & C6 & 33 \\
\hline N611702 & -- & -- & -- & -- & C6 & 34 \\
\hline N611703 & -- & -- & -- & -- & C6 & 35 \\
\hline N611801 & -- & -- & -- & -- & C6 & 36 \\
\hline
\end{tabular}

U．S．HISTORY COGNITIVE ITEMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM & FIELD & BLOCK & ITEM & & & & \\
\hline H000101 & －－ & －－ & －－ & －－ & H1 & 13 & H005301 & －－ & －－ & －－ & －－ & H2 & 43 \\
\hline H000201 & －－ & －－ & －－ & －－ & H1 & 14 & H005401 & －－ & －－ & －－ & －－ & H2 & 44 \\
\hline H000301 & －－ & －－ & －－ & －－ & H1 & 15 & H005501 & －－ & －－ & －－ & －－ & H2 & 45 \\
\hline H000401 & －－ & －－ & －－ & －－ & H1 & 16 & H005601 & －－ & －－ & －－ & －－ & H2 & 46
47 \\
\hline H000501 & －－ & －－ & －－ & －－ & 日1 & 17 & H005701 & －－ & －－ & －－ & －－ & H2 & 47 \\
\hline H000601 & －－ & －－ & & －－ & H1 & 18 & H005801 & －－ & －－ & & & & 48
13 \\
\hline H007701 & －－ & －－ & －－ & －－ & H1 & 19 & H005901 & & －－ & & －－ & H3 & 14 \\
\hline H000801 & －－ & －－ & －－ & －－ & 81 & 20 & H006001 & & －－ & －－ & －－ & H3 & 15 \\
\hline H000901 & －－ & －－ & & & H1 & 21 & H0066201 & －－ & －－ & －－ & －－ & H3 & 16 \\
\hline E001001 & －－ & －－ & －－ & & H1 & 22
23 & H006201
H006301 & －－ & & －－ & －－ & H3 & 17 \\
\hline H001101 & & －－ & －－ & －－ & H1 & 23
24 & HOO6301
HOO6401 & －－ & －－ & －－ & －－ & H3 & 18 \\
\hline H001201 & & & －－ & －－ & \({ }_{81}\) & 24 & H006501 & －－ & －－ & －－ & －－ & H3 & 19 \\
\hline H001202 & －－ & －－ & & & H1 & 25
26 & H006501 & －－ & －－ & －－ & －－ & H3 & 20 \\
\hline H001203 & －－ & －－ & & & H1 & 26 & 2006601 & －－ & －－ & －－ & －－ & 日3 & 21 \\
\hline H001204 & －－ & －－ & －－ & －－ & H1 & 27 & H006701 & & & & & H3 & 22 \\
\hline H001205 & －－ & －－ & －－ & －－ & H1 & 28 & H006801 & & & －－ & & H3 & 22 \\
\hline H001301 & －－ & －－ & & & H1 & 29 & H006901 & －－ & & & & R & 23 \\
\hline H001401 & －－ & －－ & －－ & －－ & \(\mathrm{H}_{1}\) & 30 & H007001 & －－ & －－ & & & H3 & 24 \\
\hline H001501 & －－ & －－ & －－ & －－ & H1 & 31 & H007101 & －－ & －－ & －－ & －－ & H3 & 25 \\
\hline H001601 & －－ & －－ & －－ & －－ & H1 & 32 & H007102 & －－ & －－ & －－ & －－ & H3 & 26 \\
\hline H001701 & －－ & －－ & －－ & －－ & H1 & 33 & H007103 & －－ & －－ & －－ & －－ & H3 & 27 \\
\hline H001801 & －－ & －－ & －－ & －－ & H1 & 34 & H007201 & －－ & －－ & －－ & & H3 & 28 \\
\hline \％001901 & －－ & －－ & －－ & －－ & 日1 & 35 & H007301 & －－ & －－ & －－ & －－ & H3 & 29 \\
\hline H002001 & －－ & －－ & －－ & －－ & H1 & 36 & H007401 & －－ & －－ & & & H3 & 30 \\
\hline H002101 & －－ & －－ & －－ & －－ & H1 & 37 & H007501 & －－ & －－ & & & 日3 & 3 L \\
\hline H002201 & －－ & －－ & －－ & －－ & H1 & 38 & H007601 & －－ & －－ & & & 日3 & 32 \\
\hline H002301 & －－ & －－ & －－ & －－ & H1 & 39 & H007701 & －－ & & & & H3 & 33 \\
\hline H002401 & －－ & －－ & －－ & －－ & H1 & 40 & H007801 & －－ & －－ & & & H3 & 34 \\
\hline H002402 & －－ & －－ & －－ & －－ & H1 & 41 & H007901 & －－ & －－ & & & E3 & 35 \\
\hline H002403 & －－ & －－ & －－ & －－ & H1 & 42 & H008001 & －－ & －－ & －－ & －－ & H3 & 36 \\
\hline H002404 & －－ & －－ & －－ & －－ & 员1 & 43 & ［008101 & －－ & －－ & －－ & －－ & H3 & 37 \\
\hline H002405 & －－ & －－ & －－ & －－ & H2 & 20 & H008201 & －－ & －－ & －－ & －－ & H3 & 38 \\
\hline H002406 & －－ & －－ & －－ & －－ & H2 & 21 & H008301 & －－ & －－ & －－ & －－ & H3 & 39 \\
\hline H002407 & －－ & －－ & －－ & －－ & H2 & 22 & H008302 & －－ & －－ & －－ & －－ & H3 & 40 \\
\hline H002408 & －－ & －－ & －－ & －－ & H2 & 23 & H008303 & －－ & －－ & －－ & & H3 & 41 \\
\hline H002501 & －－ & －－ & －－ & －－ & H1 & 44 & H008304 & －－ & －－ & & & 日3 & 42 \\
\hline H002601 & －－ & －－ & －－ & －－ & H1 & 45 & H008305 & －－ & －－ & & & H3 & 43 \\
\hline H002701 & －－ & －－ & －－ & －－ & H1 & 46 & H008401 & －－ & －－ & & & H3 & 44 \\
\hline H002801 & －－ & －－ & －－ & －－ & H1 & 47 & H008501 & －－ & －－ & －－ & & H3 & 45 \\
\hline H002901 & －－ & －－ & －－ & －－ & H1 & 48 & 1008601 & －－ & －－ & & & H3 & 46 \\
\hline H003001 & －－ & －－ & －－ & －－ & H2 & 13 & H008701 & －－ & －－ & & & ． 13 & 47 \\
\hline H003101 & －－ & －－ & －－ & －－ & 日2 & 14 & H0¢8801 & －－ & －－ & －－ & －－ & H4 & 13 \\
\hline H003201 & －－ & －－ & －－ & －－ & H2 & 15 & ［J08901 & －－ & －－ & －－ & －－ & H4 & 14 \\
\hline H003301 & －－ & －－ & －－ & －－ & 日2 & 16 & H009001 & －－ & －－ & －－ & －－ & 84 & 15 \\
\hline H003401 & －－ & －－ & －－ & －－ & H2 & 17 & H009101 & －－ & －－ & －－ & －－ & H4 & 16 \\
\hline H003501 & －－ & －－ & －－ & －－ & H2 & 18 & H009201 & －－ & －－ & －－ & －－ & 44 & 24 \\
\hline H003601 & －－ & －－ & －－ & －－ & H2 & 19 & H009301 & －－ & －－ & －－ & －－ & H4 & 25 \\
\hline H003701 & －－ & －－ & －－ & －－ & H2 & 2.4 & H009401 & －－ & －－ & －－ & －－ & H4 & 26 \\
\hline H003801 & －－ & －－ & －－ & －－ & H2 & 25 & H009501 & －－ & －－ & －－ & －－ & H4 & 27 \\
\hline H003901 & －－ & －－ & －－ & －－ & H2 & 26 & H009601 & －－ & －－ & & & 14 & 28 \\
\hline H004001 & －－ & －－ & －－ & －－ & H2 & 27 & H009701 & －－ & －－ & & & \(\mathrm{H}_{4}\) & 29 \\
\hline 8004101 & －－ & －－ & －－ & －－ & H2 & 28 & H009801 & －－ & －－ & & & E4 & 30 \\
\hline H004201 & －－ & －－ & －－ & －－ & H2 & 29 & H009901 & －－ & －－ & －－ & －－ & 84 & 31 \\
\hline H004301 & －－ & －－ & －－ & －－ & H2 & 30 & H010001 & －－ & －－ & & & H4 & 32 \\
\hline H004401 & －－ & －－ & －－ & －－ & H2 & 31 & H010101 & －－ & －－ & & & 84 & 33 \\
\hline H004501 & － & －－ & －－ & －－ & H2 & 32 & H010201 & －－ & －－ & & & 84 & 34 \\
\hline H004502 & －－ & －－ & －－ & －－ & H2 & 33 & H010301 & －－ & －－ & & & 84 & 35 \\
\hline H004601 & －－ & －－ & －－ & －－ & H2 & 34 & H010401 & －－ & －－ & & & H4 & 36 \\
\hline H004701 & －－ & －－ & －－ & －－ & H2 & 35 & H010501 & － & －－ & & & H4 & 37 \\
\hline H004801 & －－ & －－ & －－ & －－ & H2 & 36 & E010601 & －－ & －－ & & & H4 & 38 \\
\hline H004901 & －－ & －－ & －－ & －－ & \＃2 & 37 & H010701 & －－ & －－ & －－ & －－ & H4 & 39 \\
\hline H005001 & － & －－ & －－ & －－ & H2 & 38 & H010801 & －－ & －－ & & －－ &  & 40 \\
\hline H00 0004 & － & －－ & －－ & －－ & H4 & 17 & H010901 & －－ & －－ & －－ & －－ & H4 & 41 \\
\hline H005005 & －－ & －－ & －－ & －－ & 园 & 18 & H011001 & －－ & －－ & & & H4 & 42 \\
\hline H005006 & － & －－ & －－ & －－ & H4 & 19 & H011101 & －－ & －－ & & & H4 & 43 \\
\hline H005007 & － & －－ & －－ & －－ & H4 & 20 & H011201 & －－ & －－ & －－ & － & H4 & 44 \\
\hline H005008 & － & －－ & －－ & －－ & H4 & 21 & H011301 & －－ & －－ & & & H4 & 45 \\
\hline H005009 & － & －－ & －－ & －－ & H4 & 22 & H011401 & －－ & －－ & －－ & －－ & H4 & 46 \\
\hline H005010 & － & －－ & －－ & －－ & H4 & 23 & & & & & & & \\
\hline H005101 & － & －－ & －＊ & －－ & H2 & 39 & & & & & & & \\
\hline H005102 & － & －－ & －－ & －－ & H2 & 40 & & & & & & & \\
\hline H005103 & & －－ & －－ & －－ & H2 & 41 & & & & & & & \\
\hline H005201 & － & －－ & －－ & －－ & 日2 & 42 & & & & & & & \\
\hline
\end{tabular}

Table A. 18
LITERATURE COGNITIVE TTEMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COEORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{CORORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM & FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & \[
\mathrm{IT}^{3}{ }^{3}
\] \\
\hline L000101 & -- & -- & -- & -- & L1 & 19 & L007401 & -- & -- & & & & \\
\hline L000201 & -- & -- & -- & -- & L1 & 20 & L007501 & & -- & -- & -- & L3 & 31 \\
\hline L000301 & & -- & -- & -- & L1 & 21 & L007601 & -- & -- & & & 23 & 32 \\
\hline L000401 & & -- & -- & -- & L2 & 22 & L007701 & -- & -- & & & L3 & 33 \\
\hline L000501 & -- & -- & -- & - - & L1 & 23 & L007801 & -- & -- & & & L3 & 34 \\
\hline L000601 & -- & -- & -- & -- & L1 & 24 & L007901 & -- & -- & -- & -- & L3 & 35 \\
\hline L000701 & & & -- & -- & L1 & 25 & L008001 & & & & & L3 & 36 \\
\hline L000801 & -- & -- & -- & -- & L1 & 26 & L008101 & -- & -- & & & L3 & 37 \\
\hline L000901 & -- & -- & -- & -- & L1 & 27 & L008201 & -- & - & & & L3 & 38 \\
\hline L001001 & -- & -- & -- & -- & L1 & 28 & L008301 & -- & & & & L3 & 39 \\
\hline L001101 & & -- & -- & -- & 11 & 28 & L008301 & -- & -- & & -- & L3 & 40 \\
\hline L001201 & & -- & & -- & 11 & 39 & L008401 & -- & -- & -- & & 13 & 41 \\
\hline L001301 & -- & -- & -- & -- & 11 & 31 & L008501 & -- & -- & -- & -- & L3 & 42 \\
\hline L001401 & -- & -- & -- & -- & 1 & 31 & L008601 & -- & -- & -- & & L3 & 43 \\
\hline L001501 & -- & -- & -- & -- & 11 & 33 & L008801 & -- & & & & L3 & 44 \\
\hline L001601 & & -- & -- & -- & 11 & 34 & L008801 & & & & & L3 & 45 \\
\hline L001701 & -- & -- & -- & _- & L1 & 35 & L009901 & -- & -- & & & L3 & 46 \\
\hline L001801 & -- & -- & -- & -- & L1 & 36 & L009101 & & -- & & & L3 & 47 \\
\hline L001901 & -- & -- & -- & -- & L1 & 37 & L009201 & -- & -- & & & L3 & 48 \\
\hline L002001 & & -- & -- & -- & 11 & 38 & L009201 & & & & & L4 & 19 \\
\hline L002101 & & -- & -- & -- & L1 & 39 & L009401 & & & & & L4 & 20 \\
\hline L002201 & -- & -- & -- & -- & L1 & 40 & L009501 & & & & & L4 & 21 \\
\hline L002301 & -- & -- & - - & - - & 1 & 41 & L009501 & -- & & & & L4 & 22 \\
\hline L002401 & -- & -- & -- & -- & L1 & 42 & L009701 & & & -- & -- & L4 & 23 \\
\hline L002501 & & -- & -- & -- & L1 & 43 & L009801 & & -- & & & L. 4 & 24 \\
\hline L002601 & -- & -- & -- & -- & L1 & 44 & L009901 & & & & & L4 & 25 \\
\hline L002701 & -- & -- & -- & -- & L1 & 45 & L010001 & & -- & & & L4 & 26 \\
\hline L002801 & -- & -- & -- & -- & 11 & 46 & L01001 & & -- & -- & -- & L4 & 27 \\
\hline L002901 & -- & -- & -- & -- & L1 & 47 & L010201 & -- & -- & & & L4 & 28 \\
\hline L003001 & -- & -- & - - & - - & L1 & 48 & L010301 & -- & & & & L4 & 29 \\
\hline L003101 & -- & -- & -- & -- & L2 & 19 & L010401 & & & & & L4 & 30 \\
\hline L003201 & & -- & -- & -- & L2 & 20 & L010401 & -- & -- & -- & -- & L4 & 31 \\
\hline L003301 & -- & -- & -- & -- & L2 & 21 & L010601 & -- & & -- & & L4 & 32 \\
\hline L003401 & -- & -- & - - & _ _ & L2 & 22 & L010701 & -- & & & & L4 & 33 \\
\hline L003501 & & -- & -- & -- & L2 & 23 & L010701 & & & & & L4 & 34 \\
\hline L003601 & -- & -- & -- & -- & L2 & 24 & L010901 & -- & -- & -- & -- & L4 & 35 \\
\hline L003701 & -- & -- & -- & - _ & L2 & 25 & L011001 & & & & & L4 & 36 \\
\hline L003801 & -- & & -- & & L2 & 26 & L011001 & & & & & L4 & 37 \\
\hline L003901 & -- & - - & -- & - - & L2 & 27 & Loil101 & & -- & & -- & L4 & 38 \\
\hline L004001 & -- & \(\underline{-}\) & - - & -- & L2 & 27 & L011201 & & -- & & -- & L4 & 39 \\
\hline L004101 & -- & -- & -- & -- & L2 & 28 & L011401 & & & & & L4 & 40 \\
\hline L004201 & -- & -- & -- & -- & L2 & 30 & L011501 & & & & & L4 & 41 \\
\hline L004301 & -- & -- & - _ & -- & 12 & 31 & L011501 & & & & -- & L4 & 42 \\
\hline L004401 & -- & -- & -- & -- & L2 & 32 & L011601 & & & & -- & L4 & 43 \\
\hline L004501 & -- & -- & -- & -- & L2 & 32
33 & L011701 & & & & -- & L4 & 44 \\
\hline L004601 & -- & -- & -- & -- & L2 & 34 & L011801 & & & -- & -- & L4 & 45 \\
\hline L004701 & -- & -- & -- & -- & L2 & 35 & L011901 & & & & -- & L4 & 46 \\
\hline L004801 & -- & -- & -- & -- & L2 & 35 & L012001 & & & & -- & L4 & 47 \\
\hline L004901 & -- & -- & -- & -- & 12 & 36 & L012101 & -- & -- & -- & -- & L4 & 48 \\
\hline L005001 & -- & -- & -- & -- & L2 & 37 & & & & & & & \\
\hline L005101 & -- & -- & -- & -- & L2 & 39 & & & & & & & \\
\hline L005201 & -- & -- & -- & -- & L2 & 40 & & & & & & & \\
\hline L005301 & -- & -- & -- & -- & L2 & 41 & & & & & & & \\
\hline L005401 & -- & -- & -- & -- & L2 & 42 & & & & & & & \\
\hline L005501 & -- & -- & -- & -- & L2 & 43 & & & & & & & \\
\hline L005601 & -- & -- & -- & -- & L2 & 44 & & & & & & & \\
\hline L005701 & -- & -- & -- & -- & L2 & 45 & & & & & & & \\
\hline L005801 & -- & -- & -- & -- & L2 & 46 & & & & & & & \\
\hline L005901 & -- & -- & -- & -- & L2 & 47 & & & & & & & \\
\hline L006001 & -- & -- & -- & -- & L2 & 48 & & & & & & & \\
\hline L006101 & -- & -- & -- & -- & L2 & 49 & & & & & & & \\
\hline L006201 & -- & -- & -- & -- & L3 & 19 & & & & & & & \\
\hline L006301 & -- & -- & - & -- & L3 & 20 & & & & & & & \\
\hline L006401 & -- & -- & -- & -- & L3 & 21 & & & & & & & \\
\hline L006501 & -- & -- & -- & -- & L3 & 22 & & & & & & & \\
\hline L006601 & -- & -- & -- & -- & L3 & 23 & & & & & & & \\
\hline L006701 & -- & -- & -- & -- & L3 & 24 & & & & & & & \\
\hline L006801 & -- & -- & -- & -- & L3 & 25 & & & & & & & \\
\hline L006901 & -- & -- & -- & -- & L3 & 26 & & & & & & & \\
\hline L007001 & -- & -- & -- & -- & L3 & 27 & & & & & & & \\
\hline L007101 & -- & - & -- & -- & L3 & 28 & & & & & & & \\
\hline L007201 & -- & -- & -- & -- & L3 & 29 & & & & & & & \\
\hline L007301 & -- & -- & -- & -- & L3 & 30 & & & & & & & \\
\hline
\end{tabular}

Table A. 19
COMMON BACKGROUND ITEMS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FIELD} & \multicolumn{2}{|l|}{CORORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline & BLOCK & ITEM & BLOCK & ITEM & BLOCK & 1 TEM \\
\hline B000901 & B1 & 7 & B1 & 7 & B1 & 7 \\
\hline B000902 & B1 & 8 & B1 & 8 & B1 & 8 \\
\hline B000903 & B1 & 9 & B1 & 9 & B1 & 9 \\
\hline B0009C4 & B1 & 10 & B1 & 10 & B1 & 10 \\
\hline B000905 & B1 & 11 & B1 & 11 & B1 & 11 \\
\hline B001801 & B1 & 12 & B1 & 12 & 81 & 12 \\
\hline \(\bigcirc 003001\) & B1 & 1 & B1 & 1 & B1 & 1 \\
\hline B003101 & B1 & 2 & B1 & 2 & B1 & 2 \\
\hline B003201 & B1 & 3 & -- & -- & -- & - \\
\hline B003301 & -- & - & B1 & 3 & B1 & 3 \\
\hline B003401 & B1 & 4 & B1 & 4 & B1 & 4 \\
\hline B003 501 & B1 & 5 & B1 & 5 & B1 & 5 \\
\hline B003601 & 81 & 6 & B1 & 6 & B1 & 6 \\
\hline -003701 & B1 & 13 & B1 & 13 & B1 & 13 \\
\hline B003801 & B1 & 14 & -- & -- & -- & -- \\
\hline B003901 & - & -- & B1 & 14 & B1 & 14 \\
\hline B004001 & B1 & 15 & B1 & 15 & B1 & 15 \\
\hline B004 101 & E1 & 16 & -- & -- & -- & -- \\
\hline B004201 & B1 & 18 & B1 & 17 & B1 & 17 \\
\hline B004301 & B1 & 15 & B1 & 18 & B1 & 18 \\
\hline B004401 & B1 & 20 & B1 & 19 & B1 & 19 \\
\hline B004501 & B1 & 21 & B1 & 20 & -- & -- \\
\hline B004601 & B1 & 22 & B1 & 21 & -- & -- \\
\hline B004701 & B1 & 23 & -- & -- & -- & -- \\
\hline B004801 & -- & -- & B1 & 22 & -- & -- \\
\hline B004901 & -- & -- & B1 & 23 & -- & -- \\
\hline B005001 & -- & -- & -- & -- & B1 & 20 \\
\hline B005101 & -- & -- & -- & -- & B1 & 21 \\
\hline B005201 & -- & -- & -- & -- & B1 & 22 \\
\hline B005202 & -- & -- & -- & -- & B1 & 23 \\
\hline B005203 & -- & -- & -- & -- & B1 & 24 \\
\hline B005204 & -- & -- & -- & -- & B1 & 25 \\
\hline B005301 & -- & -- & -- & -- & B1 & 26 \\
\hline B005302 & -- & -- & -- & -- & B1 & 27 \\
\hline B005303 & -- & -- & -- & -- & B1 & 28 \\
\hline B005304 & -- & -- & -- & -- & B1 & 29 \\
\hline B005305 & -- & -- & -- & -- & B1 & 30 \\
\hline B005306 & -- & -- & -- & -- & B1 & 31 \\
\hline B005307 & -- & -- & -- & -- & B1 & 32 \\
\hline B005308 & -- & -- & -- & -- & B1 & 33 \\
\hline B005308 & -- & -- & -- & -- & B1 & 34 \\
\hline B005310 & -- & -- & -- & -- & B1 & 35 \\
\hline B005311 & -- & -- & -- & -- & B1 & 36 \\
\hline B005312 & -- & -- & -- & -- & B1 & 37 \\
\hline B005313 & -- & -- & -- & -- & B1 & 38 \\
\hline B005401 & -- & -- & B1 & 24 & B1 & 39 \\
\hline B005501 & ~- & -- & -- & -- & B1 & 42 \\
\hline B005601 & B1 & 24 & B1 & 26 & B1 & 43 \\
\hline B005701 & B1 & 25 & B1 & 27 & B1 & 44 \\
\hline B005801 & B1 & 26 & B1 & 28 & B1 & 45 \\
\hline B005901 & B1 & 27 & - & -- & - & - \\
\hline B006001 & -- & -- & B1 & 29 & B1 & 46 \\
\hline B006101 & B1 & 28 & -- & -- & -- & -- \\
\hline B006201 & -- & -- & B1 & 30 & B1 & 47 \\
\hline B006301 & -- & -- & -- & -- & B1 & 48 \\
\hline B0G6302 & -- & -- & -- & -- & B1 & 48 \\
\hline B006501 & -- & -- & -- & -- & B1 & 41 \\
\hline
\end{tabular}

Table A. 20
READING BACKGROUND ITEMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM & FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline S00 1001 & R2 & 7 & R2 & 7 & R2 & 7 & S007301 & R5 & 1 & -- & -- & -- & -- \\
\hline S001002 & R2 & 8 & R2 & 8 & R2 & 8 & S007302 & R5 & 2 & -- & -- & & \\
\hline S001003 & R2 & 9 & R2 & 9 & R2 & 9 & S007303 & R5 & 3 & -- & -- & -- & \\
\hline S002701 & B1 & 17 & B1 & 16 & B1 & 16 & S007304 & R 5 & 4 & -- & -- & & \\
\hline S003301 & R3 & 1 & R1 & 19 & R1 & 19 & S007305 & RS & 5 & -- & -- & & \\
\hline S003501 & R3 & 2 & R & -- & R & & S007306 & R 5 & 6 & -- & & & \\
\hline S003502 & R3 & 3 & -- & -- & -- & -- & S007307 & R 5 & 7 & -- & -- & -- & \\
\hline S003503 & R3 & 4 & -- & -- & -- & -- & S007308 & R 5 & 8 & -- & -- & & \\
\hline S003504 & R3 & 5 & -- & -- & -- & -- & S007309 & RS & 9 & -- & -- & & \\
\hline S003505 & R3 & 6 & -- & -- & -- & -- & S007310 & R5 & 10 & -- & & & \\
\hline S003506 & R3 & 7 & -- & -- & -- & -- & S007401 & R6 & 1 & -- & & & \\
\hline S004001 & -- & -- & B1 & 25 & B1 & 40 & S007402 & R6 & 2 & -- & -- & & \\
\hline S004301 & -- & -- & R3 & 1 & R3 & 1 & S007403 & R6 & 3 & -- & -- & -- & \\
\hline S004302 & -- & -- & R3 & 2 & R3 & 2 & S007404 & R6 & 4 & -- & -- & & \\
\hline S004303 & -- & -- & R3 & 3 & R3 & 3 & S007901 & -- & -- & R5 & 1 & R5 & 1 \\
\hline S004304 & -- & -- & R3 & 4 & R3 & 4 & S008001 & -- & -- & R5 & 2 & RS & 2 \\
\hline S004305 & -- & -- & R3 & 5 & R3 & 5 & S008101 & -- & -- & R5 & 3 & RS & 3 \\
\hline S004306 & -- & -- & R3 & 6 & R3 & 6 & S008201 & -- & -- & R5 & 4 & RS & 4 \\
\hline S004307 & -- & -- & R3 & 7 & R3 & 7 & S008301 & -- & - - & RS & 5 & RS & 5 \\
\hline S004308 & -- & -- & R3 & 8 & R3 & 8 & S008401 & -- & - & R5 & 6 & RS & 5 \\
\hline S004309 & -- & -- & R3 & 9 & R3 & 9 & & & & & & & \\
\hline S004310 & -- & -- & R3 & 10 & R3 & 10 & & & & & & & \\
\hline S004311 & -- & -- & R3 & 11 & R3 & 11 & & & & & & & \\
\hline S004401 & R1 & 10 & & -- & R & 1 & & & & & & & \\
\hline S004402 & R1 & 11 & -- & -- & -- & -- & & & & & & & \\
\hline S004501 & - & -- & R3 & 12 & R3 & 12 & & & & & & & \\
\hline S004502 & -- & -- & R3 & 13 & R3 & 13 & & & & & & & \\
\hline S004503 & -- & -- & R3 & 14 & R3 & 14 & & & & & & & \\
\hline S004504 & -- & -- & R3 & 15 & R3 & 15 & & & & & & & \\
\hline S004601 & R2 & 1 & R2 & 1 & R2 & 1 & & & & & & & \\
\hline S004602 & R2 & 2 & R2 & 2 & R2 & 2 & & & & & & & \\
\hline S004503 & R2 & 3 & R2 & 3 & R2 & 3 & & & & & & & \\
\hline S004701 & R2 & 4 & R2 & 4 & R2 & 4 & & & & & & & \\
\hline & -- & - & R4 & 1 & R4 & 1 & & & & & & & \\
\hline S004702 & R2 & 5 & R2 & 5 & R2 & 5 & & & & & & & \\
\hline & -- & - & R4 & 2 & R4 & 2 & & & & & & & \\
\hline S004703 & R2 & 6 & R2 & 6 & R2 & 6 & & & & & & & \\
\hline S004704 & -- & -- & R4 & 3 & R4 & 3 & & & & & & & \\
\hline S004705 & -- & -- & R4 & 4 & R4 & 4 & & & & & & & \\
\hline S004706 & -- & -- & R4 & 5 & R4 & 5 & & & & & & & \\
\hline S004707 & -- & -- & R4 & 6 & R. 4 & 6 & & & & & & & \\
\hline S004708 & - & -- & R4 & 7 & R4 & 7 & & & & & & & \\
\hline Scosiol & R1 & 1 & R1 & 1 & R1 & 1 & & & & & & & \\
\hline SuO5102 & R1 & 2 & R1 & 2 & R1 & 2 & & & & & & & \\
\hline S005103 & R1 & 3 & R1 & 3 & R1 & 3 & & & & & & & \\
\hline S005104 & R1 & 4 & R1 & 4 & R1 & 4 & & & & & & & \\
\hline S005105 & R1 & 5 & R1 & 5 & R1 & 5 & & & & & & & \\
\hline S005106 & R1 & 6 & R1 & 6 & R1 & 6 & & & & & & & \\
\hline S005201 & R1 & 7 & R1 & 7 & R1 & 7 & & & & & & & \\
\hline S005202 & R1 & 8 & R1 & 8 & R1 & 8 & & & & & & & \\
\hline S005203 & R1 & 9 & R1 & 9 & R1 & 9 & & & & & & & \\
\hline S005301 & -- & -- & R1 & 10 & R1 & 10 & & & & & & & \\
\hline S005302 & -- & -- & R1 & 11 & R1 & 11 & & & & & & & \\
\hline S005303 & -- & -- & R1 & 12 & R1 & 12 & & & & & & & \\
\hline S005304 & -- & -- & R1 & 13 & R1 & 13 & & & & & & & \\
\hline S005305 & -- & -- & R1 & 14 & R1 & 14 & & & & & & & \\
\hline S005401 & -- & -- & R1 & 15 & R1 & 15 & & & & & & & \\
\hline S005402 & -- & -- & R1 & 16 & R1 & 16 & & & & & & & \\
\hline S005403 & -- & -- & R1 & 17 & R1 & 17 & & & & & & & \\
\hline S005404 & -- & -- & R1 & 18 & R1 & 18 & & & & & - & & \\
\hline S006901 & R4 & 4 & R6 & 4 & R6 & 4 & & & & & & & \\
\hline S007001 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007002 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007003 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007004 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007005 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007006 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007007 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007008 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007009 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007010 & R4 & 3 & R6 & 3 & R6 & 3 & & & & & & & \\
\hline S007201 & R4 & 1 & R6 & 1 & R6 & 1 & & & & & & & \\
\hline S007202 & R4 & 2 & R6 & 2 & R6 & 2 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{CORORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FiELE & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM & FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline S200901 & M3 & 1 & -- & - & -- & -- & S206601 & -- & -- & M4 & 11 & M4 & 11 \\
\hline S200902 & M3 & 2 & -- & -- & -- & -- & S206701 & M7 & 1 & -- & -- & -- & -- \\
\hline S200903 & M3 & 3 & -- & -- & -- & -- & S206702 & M7 & 2 & -- & -- & -- & -- \\
\hline S201601 & -- & -- & M1 & 1 & M1 & 1 & S206703 & M7 & 3 & -- & -- & -- & -- \\
\hline S201502 & -- & -- & M1 & 2 & M1 & 2 & S206704 & M7 & 4 & -- & -- & -- & -- \\
\hline S201603 & -- & -- & M1 & 3 & M1 & 3 & S206705 & M7 & 5 & -- & -- & -- & -- \\
\hline S201604 & -- & -- & M1 & 4 & M1 & 4 & S206706 & M7 & 6 & -- & -- & -- & -- \\
\hline S201605 & -- & -- & M1 & 5 & M1 & 5 & S207101 & M7 & 7 & -- & -- & -- & -- \\
\hline S201606 & -- & -- & M1 & 6 & M1 & 6 & S207102 & M7 & 8 & -- & -- & -- & -- \\
\hline S201607 & -- & -- & M1 & 7 & M1 & 7 & S207103 & M7 & 9 & -- & -- & -- & -- \\
\hline S201608 & -- & -- & M1 & 8 & M1 & 8 & S207104 & M7 & 10 & -- & -- & -- & -- \\
\hline S201609 & -- & -- & M1 & 9 & M1 & 9 & 3207201 & M5 & 11 & -- & -- & -- & -- \\
\hline S201610 & -- & -- & M1 & 10 & M1 & 10 & S207501 & -- & -- & M6 & 1 & M6 & 1 \\
\hline S201611 & -- & -- & M1 & 11 & M1 & 11 & S207502 & -- & -- & M6 & 2 & M6 & 2 \\
\hline S201612 & -- & -- & M1 & 12 & M1 & 12 & S207503 & -- & -- & M6 & 3 & M6 & 3 \\
\hline S201613 & -- & -- & M1 & 13 & M1 & 13 & S207504 & -- & -- & M6 & 4 & M6 & 4 \\
\hline S201614 & -- & -- & M1 & 14 & M1 & 14 & S207505 & -- & -- & M6 & 5 & M6 & 5 \\
\hline S202201 & -- & -- & M2 & 1 & -- & -- & S207506 & -- & -- & M6 & 6 & M6 & 6 \\
\hline S202202 & -- & -- & M2 & 2 & -- & -- & S207507 & -- & -- & M6 & 7 & M6 & 7 \\
\hline S202203 & -- & -- & M2 & 3 & -- & -- & S207508 & -- & -- & M6 & 8 & M6 & 8 \\
\hline S202204 & -- & -- & M2 & 4 & -- & -- & S207509 & -- & -- & M6 & 9 & M6 & 9 \\
\hline S202205 & -- & -- & M2 & 5 & -- & -- & 5207510 & -- & -- & M6 & 10 & M6 & 10 \\
\hline S2n2206 & -- & -- & M2 & 6 & -- & -- & S207511 & -- & -- & M6 & 11 & -- & -- \\
\hline S2U2207 & -- & -- & M2 & 7 & -- & -- & S 207512 & -- & -- & M6 & 12 & -- & -- \\
\hline S202901 & -- & -- & M3 & 1 & M3 & 1 & S207601 & M6 & 1 & -- & -- & -- & -- \\
\hline S202902 & -- & -- & M3 & 2 & M3 & 2 & S20\%en2 & M6 & 2 & -- & -- & -- & -- \\
\hline S202903 & -- & -- & M3 & 3 & M3 & 3 & S207603 & M6 & 3 & -- & -- & -- & -- \\
\hline S202904 & -- & -- & M3 & 4 & M3 & 4 & S207604 & M6 & 4 & -- & -- & -- & -- \\
\hline S202905 & -- & -- & M3 & 5 & M3 & 5 & S207605 & M6 & 5 & -- & -- & -- & -- \\
\hline S202906 & -- & -- & M3 & 6 & M3 & 6 & S207606 & M6 & 6 & -- & -- & -- & -- \\
\hline S202907 & -- & -- & M3 & 7 & M3 & 7 & S 207607 & M6 & 7 & -- & -- & -- & -- \\
\hline S202908 & -- & -- & M3 & 8 & M3 & 8 & S207608 & M6 & 8 & - & -- & -- & -- \\
\hline S202909 & -- & -- & -- & -- & M3 & 9 & S208501 & -- & -- & 144 & 12 & M4 & 12 \\
\hline S202910 & -- & -- & -- & -- & M3 & 10 & S208601 & -- & -- & M4 & 13 & M4 & 13 \\
\hline S202911 & -- & -- & -- & -- & M3 & 11 & S208701 & -- & -- & M4 & 14 & M4 & 14 \\
\hline S203701 & -- & -- & -- & -- & M2 & 1 & S208801 & -- & -- & M5 & 5 & MS & 5 \\
\hline S203702 & -- & -- & -- & -- & M2 & 2 & S208802 & -- & -- & M5 & 6 & M5 & 6 \\
\hline S203703 & -- & -- & -- & -- & M2 & 3 & S208803 & -- & -- & MS & 7 & M5 & 7 \\
\hline S203704 & -- & -- & -- & -- & M2 & 4 & S208804 & -- & -- & M5 & 8 & M5 & 8 \\
\hline S203705 & -- & -- & -- & -- & M2 & 5 & S208805 & -- & -- & MS & 9 & M5 & 9 \\
\hline S203706 & -- & -- & -- & -- & M2 & 6 & S208806 & -- & -- & M5 & 10 & M5 & 10 \\
\hline S203707 & -- & -- & -- & -- & M2 & 7 & S208901 & -- & -- & M5 & 11 & M9 & 17 \\
\hline S203708 & -- & -- & -- & -- & M2 & 8 & & -- & -- & -- & -- & M5 & 11 \\
\hline S203709 & -- & -- & -- & -- & M2 & 9 & S208902 & -- & -- & M5 & 12 & M9 & 18 \\
\hline S203710 & -- & -- & -- & -- & M2 & 10 & & -- & -- & -- & -- & M5 & 12 \\
\hline S203711 & -- & -- & -- & -- & M2 & 11 & S208903 & -- & -- & M5 & 13 & M9 & 19 \\
\hline S203712 & -- & -- & -- & -- & M2 & 12 & & -- & -- & -- & -- & M5 & 13 \\
\hline S203713 & -- & -- & -- & -- & M2 & 13 & S208904 & -- & -- & M5 & 14 & M9 & 20 \\
\hline S203714 & -- & -- & -- & -- & M2 & 14 & & -- & -- & - & - & MS & 14 \\
\hline S205401 & -- & -- & M4 & 1 & M4 & 1 & S209001 & -- & -- & M5 & 17 & M5 & 17 \\
\hline S205402 & -- & -- & M4 & 2 & M4 & 2 & S209501 & -- & -- & M7 & 1 & M7 & 1 \\
\hline S205403 & -- & -- & M4 & 3 & M4 & 3 & S209502 & -- & -- & M7 & 2 & M7 & 2 \\
\hline S205404 & -- & -- & M4 & 4 & M4 & 4 & S209503 & -- & -- & M7 & 3 & M7 & 3 \\
\hline S205405 & -- & -- & M4 & 5 & M4 & 5 & S209504 & -- & -- & M7 & 4 & M7 & 4 \\
\hline S205406 & -- & -- & M4 & 6 & M4 & 6 & S209505 & -- & -- & M7 & 5 & M7 & 5 \\
\hline S205501 & M4 & 1 & M4 & 7 & M4 & 7 & S209506 & -- & -- & M7 & 6 & M7 & 6 \\
\hline S205502 & M4 & 2 & M4 & 8 & M4 & 8 & S209507 & -- & -- & M7 & 7 & M7 & 7 \\
\hline S205503 & M4 & 3 & M4 & 9 & M4 & 9 & S209508 & -- & -- & M7 & 8 & M7 & 8 \\
\hline S205504 & M4 & 4 & M4 & 10 & M4 & 10 & S209509 & -- & -- & M7 & 9 & M7 & 9 \\
\hline S205601 & M4 & 5 & -- & -- & -- & -- & S209510 & -- & -- & M7 & 10 & M7 & 10 \\
\hline S205701 & M4 & 6 & -- & -- & -- & - & S209511 & -- & -- & M7 & 11 & M7 & 11 \\
\hline S205801 & M4 & 7 & M5 & 15 & M5 & 15 & S209512 & -- & -- & M7 & 12 & M7 & 12 \\
\hline S205901 & M5 & 1 & -- & -- & -- & -- & S209513 & -- & -- & M7 & 13 & M7 & 13 \\
\hline S205902 & M5 & 2 & -- & -- & -- & -- & S209514 & -- & -- & M7 & 14 & M7 & 14 \\
\hline S205903 & MS & 3 & -- & -- & -- & -- & S209515 & -- & -- & M7 & 15 & M7 & 15 \\
\hline S205904 & M5 & 4 & -- & -- & -- & -- & S209516 & -- & -- & M7 & 16 & M7 & 16 \\
\hline S205905 & M5 & 5 & -- & -- & -- & -- & S211001 & -- & -- & M8 & 1 & M8 & 1 \\
\hline S205906 & M5 & 5 & -- & -- & -- & -- & S211002 & -- & -- & M8 & 2 & M8 & 2 \\
\hline S206001 & -- & -- & M5 & 16 & M5 & 16 & S211003 & -- & -- & M8 & 3 & M8 & 3 \\
\hline S206101 & MS & 7 & MS & 1 & M5 & 1 & S211004 & -- & -- & M8 & 4 & M8 & 4 \\
\hline S206102 & M5 & 8 & M5 & 2 & M5 & 2 & S211005 & -- & -- & M8 & 5 & M8 & 5 \\
\hline S206103 & MS & 9 & MS & 3 & M5 & 3 & S211006 & -- & -- & M8 & 6 & M8 & 6 \\
\hline S206104 & MS & 10 & MS & 4 & MS & 4 & S211007 & -- & -- & M8 & 7 & M8 & 7 \\
\hline
\end{tabular}

Table A. 21
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FIELD} & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline & BLOCK & ITEM & BOCK & ITEM & BLOCK & ITEM \\
\hline S211008 & -- & -- & M8 & 8 & M8 & 8 \\
\hline S211009 & -- & -- & M8 & 9 & M8 & 9 \\
\hline S211010 & -- & -- & Ma & 10 & M8 & 10 \\
\hline S211011 & -- & -- & M8 & 11 & M8 & 11 \\
\hline S211012 & -- & -- & M8 & 12 & M8 & 12 \\
\hline S211013 & -- & -- & M8 & 13 & M8 & 13 \\
\hline S211014 & -- & -- & M8 & 14 & M8 & 14 \\
\hline S211015 & -- & -- & M8 & 15 & M8 & 15 \\
\hline S211301 & -- & -- & M9 & 1 & -- & -- \\
\hline S211302 & -- & -- & M9 & 2 & -- & -- \\
\hline S211303 & -- & -- & M9 & 3 & -- & -- \\
\hline S211304 & -- & -- & M9 & 4 & -- & -- \\
\hline S211305 & -- & -- & M9 & 5 & -- & -- \\
\hline S211306 & -- & -- & M9 & 6 & -- & -- \\
\hline S211307 & -- & -- & M9 & 7 & -- & _- \\
\hline S211308 & -- & -- & M9 & 8 & -- & -- \\
\hline S211401 & -- & -- & M9 & 9 & M1 & 3 \\
\hline S211402 & -- & -- & M9 & 10 & M1 & 4 \\
\hline S211403 & -- & -- & M9 & 11 & M1 & 5 \\
\hline S211404 & -- & -- & M9 & 12 & M1 & 6 \\
\hline S211405 & -- & -- & M9 & 13 & M1 & 7 \\
\hline S211406 & -- & -- & M9 & 14 & M1 & 8 \\
\hline S211407 & -- & -- & M9 & 15 & M1 & 9 \\
\hline S211408 & -- & -- & M9 & 16 & M1 & 10 \\
\hline S211409 & -- & -- & -- & 1 & M1 & 1 \\
\hline S211410 & -- & -- & -- & -- & M1 & 2 \\
\hline S211501 & -- & -- & -- & -- & M1 & 1 \\
\hline S211502 & -- & -- & -- & -- & M1 & 2 \\
\hline S211503 & -- & -- & -- & -- & M1 & 3 \\
\hline S211504 & -- & -- & -- & -- & M1 & 4 \\
\hline S211505 & -- & -- & -- & -- & M1 & 5 \\
\hline S211506 & -- & -- & -- & -- & M1 & 6 \\
\hline S211507 & -- & -- & -- & -- & M1 & 7 \\
\hline S211508 & -- & -- & -- & -- & M1 & 8 \\
\hline S211509 & -- & -- & -- & -- & M1 & 9 \\
\hline S211510 & -- & -- & -- & -- & M1 & 10 \\
\hline S211511 & -- & -- & -- & -- & M1 & 11 \\
\hline S212001 & -- & -- & -- & -- & M9 & 1 \\
\hline S212002 & -- & -- & -- & -- & M9 & 2 \\
\hline S212003 & -- & -- & -- & -- & M9 & 3 \\
\hline S212004 & -- & -- & -- & -- & M9 & 4 \\
\hline S212005 & -- & -- & -- & -- & M3 & 5 \\
\hline S212006 & -- & -- & -- & -- & M9 & 6 \\
\hline S212007 & -- & -- & -- & -- & M9 & 7 \\
\hline S212008 & -- & -- & -- & -- & M9 & 8 \\
\hline S212009 & -- & -- & -- & -- & M9 & S \\
\hline S212010 & -- & -- & -- & -- & M9 & 10 \\
\hline S212011 & -- & -- & -- & -- & M9 & 11 \\
\hline S212101 & -- & -- & -- & -- & M9 & 12 \\
\hline S212102 & -- & -- & -- & -- & M9 & 13 \\
\hline S212103 & -- & -- & -- & -- & M9 & 14 \\
\hline S212104 & -- & -- & -- & -- & M9 & 15 \\
\hline S212105 & -- & -- & -- & -- & M3 & 16 \\
\hline
\end{tabular}

SCIENCE BACKGROUND ITEMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} & & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline FIELD & BLOCK & ITEM & block & ITEM & BLOCK & ITEM & FIELD & block & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline S400101 & S3 & 1 & -- & -- & -- & -- & S402101 & 54 & 1 & S4 & & S4 & 1 \\
\hline S400102 & S3 & 2 & -- & -- & -- & -- & S402201 & & & S7 & 2 & S1 & 1 \\
\hline S400103 & S3 & 3 & -- & -- & & & S402202 & -- & -- & S7 & 3 & S1 & 2 \\
\hline S400104 & S3 & 4 & -- & -- & -- & -- & S402203 & -- & -- & S7 & 4 & S1 & 3 \\
\hline S400105 & S3 & 5 & -- & -- & - & & S402204 & - & - & S7 & 5 & S1 & 4 \\
\hline S400106 & S3 & 6 & -- & -- & & -- & 5402301 & -- & -- & S6 & 2 & S6 & 2 \\
\hline S400107 & S3 & 7 & -- & -- & -- & -- & 5402302 & -- & & S6 & 3 & S6 & 3 \\
\hline S400108 & S3 & 8 & -- & -- & -- & & 5402303 & - & -- & S6 & 4 & S6 & 4 \\
\hline S400109 & S3 & 9 & -- & -- & & -- & S402304 & -- & -- & S6 & 5 & S6 & 6 \\
\hline S400110 & S3 & 10 & -- & -- & -- & -- & 5402305 & -- & -- & S6 & \({ }_{7}\) & S6 & \({ }^{6}\) \\
\hline 5400111 & S3 & 11 & & & & -- & S402306 & -- & -- & S6 & 8 & S6 & 8 \\
\hline S40u3~1 & 51 & 1 & -- & -- & -- & -- & S402307 & -- & -- & S6
S6 & 8 & S6
S6 & 8 \\
\hline S400302 & S1 & 2 & -- & -- & & -- & S402308 & & -- & S6 & 10 & S6 & \\
\hline 5400303 & S1 & 3 & -- & -- & -- & -- & S4
S
S02309 & -- & -- & S6
S 7 & 10
1 & S6 & 10 \\
\hline 5400304 & S1 & 4 & -- & -- & -- & -- & S402401
S 402501 & -- & -- & S7 & 6 & S1 & 11 \\
\hline S400305 & S1 & 5 & -- & - & S2 & 1 & S402502 & & & & 7 & S1 & 12 \\
\hline S40070i & & -- & S2 & 1 & S2 & 1 & S402502
S402503 & -- & -- & S7 & 8 & S1 & 14 \\
\hline S400702 & -- & -- & S2 & 2 & S2 & \({ }_{3}^{2}\) & S402503 & -- & -- & S7 & & S1 & 15 \\
\hline S400703 & & -- & S2 & 3 & S2 & 4 & S402601 & -- & -- & S 8 & 1 & S4 & 2 \\
\hline S400801 & -- & -- & S2 & 4 & & 4 & S402601 & -- & -- & S 8 & 2 & S1 & 5 \\
\hline S400802
S 400803 & -- & -- & S2 & 5 & S2 & 6 & S402702 & -- & -- & S 8 & 3 & S1 & 6 \\
\hline S400804 & -- & -- & S2 & 7 & S2 & 7 & S402703 & & -- & S8 & 4 & S1 & 7 \\
\hline S400805 & & -- & S2 & 8 & S2 & 8 & 5402704 & -- & -- & S8 & 5 & S1 & 8 \\
\hline S400806 & -- & -- & S2 & 9 & S2 & 9 & S402705 & & -- & S8 & 6 & S1 & 9 \\
\hline 5400901 & -- & -- & S1 & 1 & S1 & 1 & S402801 & & -- & S 8 & 7 & S9 & 10 \\
\hline S400902 & & -- & S1 & 2 & S1 & 2 & S402802 & -- & -- & S8 & 8 & S9 & 11 \\
\hline S401201 & -- & -- & S1 & 3 & S1 & 3 & S402803 & -- & -- & S8 & \({ }^{9}\) & S9
S9 & 12 \\
\hline S401202 & -- & -- & S1 & 4 & S1 & 4 & S402804 & -- & -- & S8 & 11 & S9 & 14 \\
\hline 5401203 & -- & -- & S1 & 5 & S1 & 6 & S402805
S 402806 & -- & -- & S8 & 11
12 & S9 & 15 \\
\hline S401204 & -- & -- & S1 & \({ }_{7}\) & S1
S1 & \(\stackrel{6}{7}\) & S402806
5402807 & -- & -- & S8 & 13 & S9 & 16 \\
\hline S401205
S401206 & -- & -- & S1 & 8 & S1 & 8 & S402808 & & & S8 & 14 & S9 & 17 \\
\hline S401207 & -- & -- & S1 & 9 & S1 & 9 & 5402901 & -- & & & & S9 & 1 \\
\hline S401208 & & & S1 & 10 & S1 & 10 & S402902 & -- & -- & -- & -- & S9 & 2 \\
\hline S401209 & -- & -- & S1 & 11 & S1 & 11 & S402903 & & & & & S9 & 4 \\
\hline S401301 & -- & -- & S3 & 1 & S3 & 1 & S402904 & -- & -- & -- & -- & S9 & 4 \\
\hline S401302 & -- & -- & S3 & 2 & S3 & 2 & S402905 & -- & -- & -- & -- & S9 & 5 \\
\hline S401303 & -- & -- & S3 & 4 & S3 & 3 & S402906 & & & -- & -- & S9 & \({ }_{7}\) \\
\hline S401304 & -- & -- & 53 & 4 & S3 & 4 & S402907
\(\mathbf{S 4 0 2 9 0 8}\) & -- & & -- & & S9 & 8 \\
\hline 5401305 & -- & -- & S3
s3 & 5 & S3 & 5
6 & S402908
S 402909 & -- & & -- & -- & S9 & 9 \\
\hline S401401 & -- & -- & S3 & 6
7 & S3 & 6 & S402909
\(\mathbf{S 4 0 3 1 0 1}\) & -- & -- & S9 & 6 & S8 & 6 \\
\hline S401402
S401403 & -- & -- & S3 & 7 & \(\stackrel{3}{53}\) & 8 & S403102 & & & S9 & 7 & S8 & 7 \\
\hline S401404 & -- & -- & S3 & 9 & S3 & 9 & S403103 & -- & -- & S9 & 8 & S8 & 8 \\
\hline S401501 & S5 & 1 & - & - & -- & - & S403104 & -- & -- & S9 & 9 & S8 & 9 \\
\hline S401601 & S4 & 2 & S4 & 2 & S4 & 3 & S403105 & & & S9 & 10 & S8 & 10 \\
\hline S401602 & 54 & 3 & S4 & 3 & S4 & 4 & 5403106 & -- & -- & S9 & 11 & S8 & 11 \\
\hline S401603 & S4 & 4 & S4 & 4 & S4 & 5 & S403107 & -- & -- & S9 & 12 & S8 & 12 \\
\hline 5401604 & S4 & 5 & S4 & 5 & S4 & \({ }^{6}\) & S403108 & -- & -- & S9 & 13 & S8 & 13 \\
\hline S401605 & S4 & 6 & S4 & 6 & S4 & 7 & S403201 & S6 & 1 & -- & -- & -- & 1 \\
\hline S401606 & S4 & 7 & S4 & 7 & S4 & 8 & S403301 & & & & & S 1 & 1 \\
\hline S401607 & S4 & 8 & 54 & 8 & S4 & 9 & S403302 & -- & & -- & & S1 & 2 \\
\hline S401608 & S4 & 9 & S4 & 9 & S4 & 10 & S403303 & -- & -- & -- & - & S1 & \\
\hline S401701 & -- & -- & S6 & 1 & S6 & 1 & S403304 & -- & -- & & & S1 & 4 \\
\hline S401801 & S5 & 2 & S5 & 1 & S5 & 1 & S403305 & -- & -- & -- & & S1 & 5 \\
\hline S401901 & & -- & -- & -- & S7 & 2 & S403306 & -- & - & -- & & S1 & 6
7 \\
\hline S401902 & -- & -- & -- & -- & S7
S7 & 2 & S403307 & & & & & S1 & 8 \\
\hline 5401903
5401904 & -- & -- & -- & -- & S7
S7 & 4 & S403308
\(\mathbf{S 4 0 3 3 0 9}\) & -- & -- & -- & -- & S1 & 9 \\
\hline S401905 & -- & -- & -- & -- & S7 & 5 & S403310 & -- & -- & -- & -- & S1 & 10 \\
\hline S401906 & -- & -- & & -- & S7 & 6 & S403401 & -- & -- & -- & -- & S1 & 11 \\
\hline S401907 & -- & -- & -- & -- & S7 & 7 & 5403501 & -- & & & & S7
S7 & 13 \\
\hline S401908 & - & -- & & -- & S7 & 8 & 5403502 & -- & -- & & -- & S7
S7 & 14
15 \\
\hline S401909 & -- & -- & -- & -- & S7 & 9 & 5403503 & -- & & & -- & S7 & 15 \\
\hline S401910 & -- & -- & -- & -- & S7 & 10 & S403504 & -- & & & & S7 & 17 \\
\hline 5401911
5401912 & -- & -- & -- & -- & S7
S7 & 11 & S403601 & S5 & -- & & & -- & 17 \\
\hline S401912
S402001 & -- & -- & S9 & - & S7
S8 & 12
1 & S403701 & S5 & & -- & -- & -- & -- \\
\hline S402002 & -- & -- & S9 & 2 & 58 & 2 & S403801 & S6 & 2 & -- & -- & -- & -- \\
\hline S402003 & -- & -- & S9 & 3 & S8 & 3 & S403901 & S6 & 3 & -- & & -- & - \\
\hline S402004 & -- & -- & S9 & 4 & S8 & 4 & S404001 & S6 & & -- & -- & -- & -- \\
\hline S402005 & -- & -- & S9 & 5 & S8 & 5 & S404101 & S7 & & -- & -- & -- & -- \\
\hline
\end{tabular}

\section*{Table A. 22}
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{COHORT 2} & \multicolumn{2}{|l|}{CORORT 3} \\
\hline FIELD & BLOCK & ITEM & BLOCK & ITEM & BLOCK & ITEM \\
\hline S404102 & S7 & 2 & -- & -- & -- & \\
\hline S404103 & S7 & 3 & -- & -- & -- & -- \\
\hline S404104 & S7 & 4 & -- & -- & -- & \\
\hline S404105 & S7 & 5 & -- & -- & -- & -- \\
\hline S404201 & S7 & 6 & -- & -- & & \\
\hline 5404301 & S7 & 7 & -- & -- & -- & -- \\
\hline
\end{tabular}

Table A. 23
COMPUTER COMPETENCE BACKGROUND ITEMS



Table A. 24
U.S. RISTORY BACKGROUND ITEMS



Table A. 25
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FIELD} & \multicolumn{2}{|l|}{COHORT 1} & \multicolumn{2}{|l|}{CORORT 2} & \multicolumn{2}{|l|}{COHORT 3} \\
\hline & block & I-EM & BLOCK & ITEM & BLOCK & ITEM \\
\hline \multirow[t]{4}{*}{L801404} & -- & -- & -- & -- & 11 & 66 \\
\hline & -- & -- & -- & -- & 12 & 67 \\
\hline & -- & -- & -- & -- & L3 & 66 \\
\hline & -- & -- & -- & -- & 14 & 66 \\
\hline \multirow[t]{4}{*}{L801405} & -- & -- & -- & -- & L1 & 67 \\
\hline & -- & -- & -- & -- & L2 & 68 \\
\hline & -- & -- & -- & -- & 13 & 67 \\
\hline & -- & -- & -- & -- & 14 & 67 \\
\hline \multirow[t]{4}{*}{L801406} & -- & -- & \(\cdots\) & -- & L1 & 68 \\
\hline & -- & -- & -- & -- & L2 & 69 \\
\hline & -- & -- & -- & -- & 13 & 68 \\
\hline & -- & -- & -- & -- & 14 & 68 \\
\hline \multirow[t]{4}{*}{1801407} & -- & -- & -- & -- & L1 & 69 \\
\hline & -- & -- & -- & -- & L2 & 70 \\
\hline & -- & -- & -- & -- & 13 & 69 \\
\hline & -- & -- & -- & -- & 14 & 69 \\
\hline \multirow[t]{4}{*}{L801408} & -- & -- & -- & -- & 11 & 70 \\
\hline & -- & -- & -- & -- & L2 & 71 \\
\hline & -- & -- & -- & -- & L 3 & 70 \\
\hline & -- & -- & -- & -- & L. 4 & 70 \\
\hline \multirow[t]{3}{*}{L801409} & -- & -- & -- & -- & 11 & 71 \\
\hline & -- & -- & -- & -- & L2 & 72 \\
\hline & -- & -- & -- & -- & \({ }_{\text {L }}\) & 71 \\
\hline \multirow[t]{4}{*}{L801410} & -- & -- & -- & -- & L1 & 72 \\
\hline & -- & -- & -- & -- & L2 & 73 \\
\hline & -- & -- & -- & -- & 13 & 72 \\
\hline & -- & -- & -- & -- & 14 & 72 \\
\hline
\end{tabular}

\section*{512}

\section*{APPENDIX B}

\section*{Conditioning Variables Tables}

\section*{Appendix}

B

\section*{CONDITIONING VARIABLES TABLES}

Appendix B contains tables of estimated effects for the conditioning variables used in the construction of plausible values for reading, mathematics, and science.

Tables B. 1 through B. 3 show the effects, by grade/age, for reading.
Tables B.4, B. 6 , and B. 8 give the conditioning variables, by grade/age, used for ail mathematics subscales. The estimated effects for these conditioning variables appear in Tables B.5, B.7, and B.9. Tables B. 10 through B. 20 are for trend in mathematics. Each table gives conditioning variables and their estimated effects for a given age and assessment year.

Similarly, the conditioning variables for the science subscales appear in Tables B. 21, B. 23 , and B. 25 and the estimated effects in Tables B.22, B. 24 , and B. 26 . Tables B. 27 through B. 37 give the conditicaing variables and effects, by age and assessment year, for science trend.

Note that all effect e,timates are in the metrics used in the original calibration of the scale or subscale. The transformations needed to represent these effects in terms of the metric of the final reporting scales appear in the chapters which describe the scaling of each subject area. Note also that certain conditioning variables do not have effect estimates. This is because those variables are exact linear combinations of the other conditioning variables.

Table B. 1
Estimated Effects for Reading Conditioning Variables, Grade 3/Age 9
\begin{tabular}{|c|c|c|c|}
\hline & OVERALL & -1.416868 & OVERALL CONSTANT '1' FOR EVERYONE \\
\hline 2 & GENDER2 & 0.134737 & 2 SEX (FEMALE) \\
\hline 3 & ETHNIC2 & -0.151446 & 3 ETHNICITY (BLACK) \\
\hline 4 & ETHNIC3 & -0.232955 & 4 ETHNICITY (HISPANIC) \\
\hline 5 & ETHNIC4 & -1.638121 & 5 ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & STOC2 & 0.157261 & 6 SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & STOC3 & 0.131141 & 7 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & REGION2 & -0.066794 & 8 REGION (SOUTHEAST) \\
\hline 9 & REGION3 & -0.007434 & REGION (CENTRAL) \\
\hline 10 & REGION4 & -0.066843 & 10 REGION (WEST) \\
\hline 11 & PARED2 & 0.088011 & 11 Parents education (HIGH SCHOOL GRad) \\
\hline 12 & PARED3 & 0.211662 & 12 Parents education (POST HIGH SCHOOL) \\
\hline 13 & PARED4 & 0.242878 & 13 Parents education (COLLEGE GRAD) \\
\hline 14 & PARED & 0.139631 & 14 PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & ITEMS 2 & 0.071657 & 15 ITEMS IN HOME (FOUR OF THE FIVE) \\
\hline 16 & ITEMS3 & 0.123210 & 16 ITEMS IN HOME (FIVE OF THE FIVE) \\
\hline 17 & TV & 0.103606 & 17 HOURS TV WATCHING (LINEAR) \\
\hline 18 & TV**2 & -0.019185 & 18 Hours TV Watching (QUADRATIC) \\
\hline 19 & HW-YES & 0.043739 & 19 HOMEWORK (YES - SOME AMOUNT) \\
\hline 20 & HW-2345 & -0.024127 & 20 HOMEWORK AMOUNT (LINEAR) \\
\hline 21 & LM BY E3 & 0.028126 & 21 Language minority by ethnicity (YES, HISPANIC) \\
\hline 22 & LM BY E4 & 0.334282 & 22 LANGUAGE MINORITY BY ETHNICITY (YES, ASIAN AMER) \\
\hline 23 & LM BY E_ & -0.067490 & 23 LANGUAGE MINORITY BY ETHNICITY (YES, OTHER ETH) \\
\hline 24 & LUNCH\% & -0.080313 & 24 PERCENT IN LUNCH PROGRAM \\
\hline 25 & LUNCH & -0.082898 & 25 LUNCH PROGRAM (MISSING) \\
\hline 26 & \%WHITE49 & -0.142514 & 26 PERCENT WHJTE IN SCHOOL (0-49\% WHITE MINORITY) \\
\hline 27 & \%WHITE79 & -0.041980 & 27 PERCENT WHITE IN SCHOOL ( \(50-79 \%\) INTEGRATED) \\
\hline & \%WHITE00 & & 28 PERCENT WHITE IN SCHOOL (80-100\% PREDOMINANTLY) \\
\hline 28 & E2 X SEX & 0.127858 & 29 FTHNICITY BY GENDER (BLACK FEMALE) \\
\hline 29 & E3 X SEX & 0.098589 & 30 ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 30 & E4 X SEX & 0.040797 & 31 ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline 31 & E2 X PE2 & -0.142674 & 32 ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline 32 & E2 X PE3 & -0.224876 & 33 ETHNICITY BY PAREINT'S ED (BLACK, POST HS) \\
\hline 33 & E2 X PE4 & -0.066695 & 34 ETHNICITY BY Parent's Ed (BLACK, COLLEGE GRAD) \\
\hline 34 & E2 \(\mathrm{XPE}_{-}\) & -0.054574 & 35 ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 35 & E3 X PE2 & -0.044825 & 36 ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 36 & E3 X PE3 & -0.180012 & 37 ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 37 & E3 X PE4 & -0.147884 & 38 EthNiCity by parent's ed (Hispanic, College) \\
\hline 38 & E3 \(\mathrm{XPE}^{\text {P }}\) & 0.014333 & 39 ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline & E4 X PE2 & & 40 ETHNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD) \\
\hline 39 & E4 X PE3 & 1.115009 & 41 ETHNICITY BY Parent's ed (ASIAN AMER, POST HS) \\
\hline 40 & E4 X PE4 & 1.483300 & 42 ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 41 & E4 X PE_ & 1.427857 & 43 ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN) \\
\hline 42 & MA, <MG & -0.399390 & 44 MODAL AGE, LESS THAN MODAL GRADE \\
\hline
\end{tabular}

Table B. 1
(continued)
\begin{tabular}{lcl} 
VARIABLE ESTIMATED \\
LABEL & EFFECT
\end{tabular}

43

MA, MG 0.02907045 MODAL AGE, MODAL GRADE, MISSING
MA, \(>\) MG
\(>M A, M G\) 0.41478446 MODAL AGE, GREATER THAN MODAL GRADE

SCH TYPE
ASK SW?
PRESCH1
\#PARENT1 MOTHER -0.26302847 GREATER THAN MODAL AGE, MODAL GRADE MOWORK 0.02633248 SCHOOL TYPE (NOT PUBLIC) 0.05073149 FAMILY ASKS ABOUT SCHOOLWORK (ALMOST EVERY DAY) 0.07744450 WENT TO PRESCHOOL (YES)
0.01269453 MOTHER WORKS OUTSIDE (YES)

SCI123 0.05496054 SPENT AT LEAST ONCE A WEEK STUDYING SCIENCE SCI45 0.019661 55 SPENT < ONCE A WEEK OR NEVER STUDYING SCIENCE COMPUTER 0.02276456 USE COMPUTERS FOR MATH, READING, ETC. (YES) SUPERVIS 0.07161757 ADULT SUPERVISION OF STUDENT AFTER SCHOOL(YES) MATH Q1 -0.274396 58 MATH QUANTILE (LINEAR -1,0,1) SCI Q1 -0.281302 59 SCIENCE QUANTILE (LINEAR -1,0,1) SAMPLE \(\quad-0.44582360\) BIB SAMPLE

Table B. 2
Estimated Effects for Reading Conditioning Variables, Grade 7/Age 13


Table B. 2
(continued)

VARIABLE LABEL

ESTIMATED

EFFECT

\section*{DESCRIPTION}

MA, \(\langle\) MG \(\quad-0.36295245\) MODAL AGE, LESS THAN MODAL GRADE
MA,MG \(\quad-0.04698046\) MODAL AGE, MODAL GRADE, MISSING MA, \(>\) MG \(\quad 0.12997447\) MODAL AGE, GREATER THAN MODAL GRADE >MA,MG \(\quad-0.28408848\) GREATER THAN MODAL AGE, MODAL GRADE
SCH TYPE \(0 \grave{i} 5383649\) SCHOOL TYPE (NOT PUBLIC)
ASK SW? 0.02289250 FAMILY ASKS ABOUT SCHOOLWORK (ALMOST EVERY DAY)
PRESCH1 0.06026351 WENT TO PRESCHOOL (YES)
\#PARENT1 -0.012825 52. SINGLE/MULTIPLE PARENT HOME (MOTHER, FATHER HOME)
MOTHER \(\quad-0.02573653\) MOTHER AT HOME
MOWORK -0.015841 54 MOTHER WORKS OUTSIDE (YES)
COMPUTER -0.068049 55 USE COMPUTERS FOR MATH, READING, ETC. (YES)
MATH2 \(\quad 0.16457156\) TYPE OF MATH CLASS (REGULAR MATH)
MATH3 0.24188457 TYPE OF MATH CLASS (PRE-ALGEBRA)
MATH45 \(0.1893 ; 758\) TYPE OF MATH CLASS (ALGEBRA)
SCIENCE2 0.15123059 STUDYING IN SCIENCE THIS YEAR (LIFE SCIENCE)
SCIENCE3 0.10870260 STUDYING IN SCIENCE THIS YEAR (PHYSICAL SCIENCE)
SCIENCE' 0.11236861 STUDYING IN SCIENCE THIS YEAR (EARTH SCIENCE)
SCIENGE5 0.19520262 STUDYING IN SCIENCE THIS YEAR (GENERAL SCIENCE)
GRADES 0.23632963 GRADES IN SCHOOL (LINEAR)
MATH Q1 -0.150790 64 MATH QUANTILE (LINEAR -1,0,1)
SCI Q1 -0.260019 65 SCIENCE QUANTILE (LINEAR -1,0,1)
SAMPLE \(\quad-0.11001166\) BIB SAMPLE

Table B. 3
Estimated Effects for Reading Conditioning Variables, Grade 11/Age 17
\begin{tabular}{|c|c|c|}
\hline VARIABLE & ESTIMATED & \\
\hline LABEL & EFFECT & DESCRIPTION \\
\hline OVERALL & -0.459690 & 1 OVERALL CONSTANT ' 1 ' FOR EVERYONE \\
\hline GENDER2 & 0.208740 & 2 SEX (FEMALE) \\
\hline ETHNIC2 & -0.179031 & 3 ETHNICITY (BLACK) \\
\hline ETHNIC3 & -0.190122 & 4 ETHNICITY (HISPANIC) \\
\hline ETHNIC4 & -0.375032 & 5 ETHNICITY (ASIAN AMERICAN) \\
\hline STOC2 & 0.155906 & 6 SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline STOC3 & 0.064686 & 7 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline REGION2 & -0.004313 & 8 REGION (SOUTHEAST) \\
\hline REGION3 & 0.037366 & 9 REGION (CENTRAL) \\
\hline REGION4 & -0.024202 10 & 10 REGION (WEST) \\
\hline PARED2 & -0.015655 11 & 11 PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline PARED3 & 0.06040112 & 12 PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline PARED4 & 0.0893101 & 13 Parents education (COLLEGE GRAD) \\
\hline PARED & -0.215376 14 & 14 Parents education (MISSING, I DON'T KNOW) \\
\hline ITEMS 2 & 0.1087331 & 15 ITEMS IN HOME (FOUR OF THE FIVE) \\
\hline ITEMS3 & 0.1414021 & 16 ITEMS IN HOME (FIVE OF THE FIVE) \\
\hline TV & 0.0287071 & 17 HOURS TV WATCHING (LINEAR) \\
\hline TV**2 & -0.008759 18 & 18 HOURS TV WATCHING (QUADRATIC) \\
\hline HW-NO & -0.405091 1 & 19 HOMEWORK (DON'T HAVE ANY) \\
\hline HW-YES & -0.175868 20 & 20 HOMEWORK (YES - SOME AMOUNT) \\
\hline HW-2345 & -0.003929 21 & 21 HOMEWORK AMOUNT (LINEAR) \\
\hline LM BY E3 & -0.075719 22 & 22 LANGUAGE MINORITY BY ETHNICITY (YES, HISPANIC) \\
\hline LM BY E4 & -0.170266 23 & 23 LANGUAGE MINORITY BY ETHNICITY (YES, ASIAN AMER) \\
\hline LM BY E- & 0.0168832 & 24 LANGUAGE MINORITY BY ETHNICITY (YES, OTHER ETH) \\
\hline LUNCH\% & -0.122057 2 & 25 Percent in lunch program \\
\hline LUNCH & -0.037937 2 & 26 LUNCH PROGRAM (MISSING) \\
\hline \%WHITE49 & 0.0122052 & 27 PERCENT WHITE IN SCHOOL ( \(0-49 \%\) WHITE MINORITY) \\
\hline \%WHITE79 & 0.0368872 & 28 PERCENT WHITE IN SCHOOL (50-79\% INTEGRATED) \\
\hline \%WHite00 & & 29 PERCENT WHITE IN SCHOOL ( \(80-100 \%\) PREDOMINANTLY) \\
\hline E2 X SEX & -0.144274 3 & 30 ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline E3 X SEX & 0.0064743 & 31 ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline E4 X SEX & 0.1106953 & 32 ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline E2 X PE2 & -0.063329 3 & 33 ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline E2 X Pe3 & 0.0478613 & 34 ETHNICITY BY PARENT'S ED (BLACK, POST HS) \\
\hline E2 X PE4 & -0.065619 3 & 35 ETHNICITY BY PaRENT'S ED (BLACK, COLLEGE GRAD) \\
\hline E 2 XPE & 0.103087 & 36 ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline E3 X PE2 & -0.041342 3 & 37 ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline E3 X PE3 & 0.0324513 & 38 ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline E3 X PE4 & 0.0080643 & 39 ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) \\
\hline E3 \(\times\) PE & 0.1792694 & 40 ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline E4 X PE2 & 0.0817024 & 41 ETHNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD) \\
\hline E4 X PE3 & 0.3119604 & 42 ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS) \\
\hline E4 X PE4 & 0.2470004 & 43 ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline E4 X PE_ & 0.388056 & 44 ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN) \\
\hline
\end{tabular}

Table B. 3
(continued)

VARIABLE
LABEL
\(M A,<M G\)
MA, MG
MA, >MG
\(>M A, M G\)
SCH TYPE
ASK SW?
PRESCH1
\#PARENTI
MOTHER
MOWORK
GRADES
PROGRAM2
PROGRAM3
MATH
SCIL NCE
F)ST, EC2

POST.EC3
HRS WORK ENGL23 ENG_ISH5 MATH Q1 SCI Q1

ESTIMATED
EFFECT

\section*{DESCRIPTION}
-0.32964845 MODAL AGE, LESS THAN MODAL GRADE
-0.05365946 MODAL AGE, MODAL GRADE, MISSING 0.02735247 MODAL AGE, GREATER THAN MODAL GRADE
-0.25050348 GREATER THAN MODAL AGE, MODAL GRADE
0.06392749 SCHOOL TYPE (NOT PUBLIC)
-0.03485450 FAMILY ASKS ABOUT SCHOOLWORK (ALMOST EVERY DAY)
0.00174751 WENT TO PRESCHOOL (YES)
0.00833752 SINGLE/MULTIPLE PARENT HOME (MOTHER, FATHER HOME)
-0.04122553 MOTHER AT HOME
0.00068354 MOTHER WORKS OUTSIDE (YES)
0.21590255 GRADES IN SCHOOL (LINEAR)
0.13387256 HIGH SCHOOL PROGRAM (COLLEGE PREPARATORY)
-0.046951 57 HIGH SCHOOL PROGRAM(VOCATIONAL)
0.07571558 NUMBER OF MATH COURSES
0.06768459 NUMBER OF SCIENCE COURSES
0.06602960 TWO-YEAR COLLEGE
0.17802261 FOUR-YEAR COLLEGE
-0.06796862 HOURS OF OUTSIDE WORK
0.12291463 TYPES OF ENGLISH CIASS (ADVANCED\&COLLEGE PREP.)
-0.19383264 TYPES OF ENGLISH CLASS (REMEDIAL)
-0.17527465 MATH QUANTILE (LINEAR -1,0,1)
-0.28803066 SCIENCE QUANTILE (LINEAR -1,0,1)

Table B. 4
Mathematics Conditioning Variables, Grade 3/Age 9

VARIABLE LABEL

\section*{DESCRIPTION}
\begin{tabular}{|c|c|}
\hline 1 & OVERALL \\
\hline 2 & GENDER2 \\
\hline 3 & ETHNIC2 \\
\hline 4 & ETHNIC3 \\
\hline 5 & ETHNIC4 \\
\hline 6 & STOC2 \\
\hline 7 & STOC3 \\
\hline 8 & REGION2 \\
\hline 9 & REGION3 \\
\hline 10 & REGION4 \\
\hline 11 & PARED2 \\
\hline 12 & PARED3 \\
\hline 13 & PARED4 \\
\hline 14 & PARED \\
\hline 15 & ITEMS \(\overline{2}\) \\
\hline 16 & ITEMS3 \\
\hline 17 & TV \\
\hline 18 & TV**2 \\
\hline 19 & HW-YES \\
\hline 20 & HW-2345 \\
\hline 21 & LM BY E3 \\
\hline 22 & LM BY E4 \\
\hline 23 & LM BY E \\
\hline 24 & LUNCH\% \\
\hline 25 & LUNCH \\
\hline 26 & \%WHITE49 \\
\hline 27 & \%WHITE79 \\
\hline & \%WHITE00 \\
\hline 28 & E2 X SEX \\
\hline 29 & E3 X SEX \\
\hline 30 & E4 X SEX \\
\hline 31 & E2 X PE2 \\
\hline 32 & E2 X PE3 \\
\hline 33 & E2 X PE4 \\
\hline 34 & E2 X PE \\
\hline 35 & E3 X PE2 \\
\hline 36 & E3 X PE3 \\
\hline 37 & E3 X PE4 \\
\hline 38 & E3 X PE \\
\hline & E4 X PE2 \\
\hline 39 & E4 X PE3 \\
\hline 40 & E4 X PE4 \\
\hline 41 & E4 X PE \\
\hline 42 & MA, <MG \\
\hline
\end{tabular}

1 OVERALL CONSTANT '1' FOR EVERYONE
2 SEX (FEMALE)
3 ETHNICITY (BLACK)
4 ETHNICITY (HISPANIC)
5 ETHNICITY (ASIAN AMERICAN)
6 SIZE AND TYPE OF COMMUNITY (HIGH METRO)
7 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
8 REGION (SOUTHEAST)
9 REGION (CENTRAL)
10 REGION (WEST)
11 PARENTS EDUCATION (HIGH SCHOOL GRAD)
12 PARENTS EDUCATION (POST HIGH SCHOOL)
13 PARENTS EDUCATION (COLLEGE GRAD)
14 PARENTS EDUCATION (MISSING, I DON'T KNOW)
15 ITEMS IN HOME (FOUR OF THE FIVE)
16 ITEMS IN HOME (FIVE OF THE FIVE)
17 HOURS TV WATCHING (LINEAR)
18 HOURS TV WATCHING (QUADRATIC)
19 HOMEWORK (YES - SOME AMOUNT)
20 HOMEWORK AMOUNT (LINEAR)
21 LANGUAGE MINORITY BY ETHNICITY (YES, H-PANIC)
22 LANGUAGE MINORITY BY ETHNICITY (YES, ASIAN AMER)
23 LANGUAGE MINORITY BY ETHNICITY (YES, OTHER ETH)
24 PERCENT IN LUNCH PROGRAM
25 LUNCH PROGRAM (MISSING)
26 PERCENT WHITE IN SCHOOL ( \(0-49 \%\) WHITE MINORITY)
27 PERCENT WHITE IN SCHOOL (50-79\% INTEGRATED)
28 PERCENT WHITE IN SCHOOL ( \(80-100 \%\) PREDOMINANTLY)
29 ETHNICITY BY GENDER (BLACK FEMALE)
30 ETHNICITY BY GENDER (HISPANIC FEMALE)
31 ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE)
32 ETHNICITY BY PAREN'I'S ED (BLACK, HS GRAD)
33 ETHNICITY BY PARENT'S ED (BLACK, POST HS)
34 ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD)
35 ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN)
36 ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD)
37 ETHNICITY BY PARENT'S ED (HISPANIC, POST HS)
38 ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE)
39 ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN)
40 ETHNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD)
41 ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS)
42 ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD)
43 ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN)
44 MODAL AGE, LESS THAN MODAL GRADE

Table B. 4
(continued)
\begin{tabular}{ll} 
& \begin{tabular}{l} 
VARIABLE \\
LABEL
\end{tabular} \\
43 & MA, MG \\
44 & MA, >MG \\
45 & \(>\) MA, MG \\
46 & SCH TYPE \\
47 & ASK SW? \\
48 & PRESCH: \\
49 & \#PARENT1 \\
50 & MOTHER \\
51 & MOWORK \\
52 & SCI123 \\
53 & SCIT5 \\
54 & COMPUTER \\
55 & SUPERVIS \\
56 & MATH Q1 \\
57 & SCI Q1
\end{tabular}

\section*{DESCRIPTION}

45 MODAL AGE, MODAL GRADE, MISSING
46 MODAL AGE, GREATER THAN MODAL GRADE
47 GREATER THAN MODAL AGE, MODAL GRADE
48 SCHOOL TYPE (NOT PUBLIC)
49 FAMILY ASKS ABOUT SCHOOLWORK (ALMOST EVERY DAY)
50 WENT TO PRESCHOOL (YES)
51 SINGLE/MULTIPLE PARENT HOME (MOTHER, FATHER HOME)
52 MOTHER AT HOME
53 MOTHER WORKS OUTSIDE (YES)
54 SPENT AT LEAST ONCE A WEEK STUDYING SCIENCE
55 SPENT < ONCE A WEEK OR NEVER STUDYING SCIENCE
56 USE COMPUTERS FOR MATH, READING, ETC. (YES)
57 ADULT SUPERVISION OF STUDENT AFTER SCHOOL(YES)
58 MATH QUANTILE (LINEAR -1,0,1)
59 SCIENCE QUANTILE (LINEAR -1,0,1)

Table B. 5
Estimated Effects for Mathematics Conditioning Variables, Grade 3/Age 9
\begin{tabular}{ccc} 
SUBSCALE & SUBSCALE & SUBSCALE \\
3 & 4 & 5
\end{tabular}
\(-0.946172-1.218839-1.392913\)
\(-0.117644-0.055138 \quad 0.001133\)
\(-0.237354-0.090877-0.273892\)
\(-0.230329-0.185513-0.053999\)
-1.129916-1.191336-0.388513 \(\begin{array}{lll}0.173127 & 0.153634 & 0.177416\end{array}\)
\(\begin{array}{lll}0.038667 & 0.042726 & 0.067788\end{array}\)
\(\begin{array}{lll}0.000488 & 0.052812 & 0.089764\end{array}\)
\(0.063241 \quad 0.078478-0.046947\)
\(-0.008171 \quad 0.013199-0.012076\)
\(\begin{array}{lll}0.027463 & 0.118840 & 0.027394\end{array}\)
\(\begin{array}{lll}0.167774 & 0.271684 & 0.255879\end{array}\)
\(0.174402 \quad 0.268882 \quad 0.184006\)
\(0.059968 \quad 0.214283 \quad 0.129780\)
\(0.0596070 .090701 \quad 0.111263\)
\(0.131430 \quad 0.134616 \quad 0.164054\)
\(0.126861 \quad 0.160665 \quad 0.147785\)
-0.018847-0.023137-0.022627
\(-0.032778 \quad 0.272767 \quad 0.421672\)
-0.026220 -0.031712 -0.009785
-0.020154 -0.138456 0.051248
\(0.339933 \quad 0.506240 \quad 0.330273\)
-0.010525 0.122951-0.012716
-0.153557-0.222950-0.260143
\(-0.056131-0.044131-0.036394\)
\(-0.079226-0.030625-0.010398\)
\(-0.020886-0.028026-0.002443\)
\(0.128932 \quad 0.111914 \quad 0.106072\)
-0.032425 -0.030307-0.039899
\(-0.161538 \quad 0.002850 \quad 0.070964\)
\(-0.046617-0.183305-0.069007\)
\(-0.010292-0.132254-0.113742\)
\(-0.100050-0.279062-0.061269\)
\(-0.045574-0.247596 \quad 0.002515\)
\(0.032819 \quad 0.143784-0.232536\)
\(0.091916-0.010643-0.092038\)
\(0.022051-0.015300-0.191471\)
\(0.094694-0.130126-0.150769\)
\(1.092026 \quad 0.470541 \quad 0.283398\)
\(\begin{array}{lll}0.616160 & 0.926217 & 0.045507\end{array}\)
\(\begin{array}{lll}0.669838 & 0.984378 & 0.100432\end{array}\)
\(0.967825 \quad 1.193762 \quad 0.375092\)
\(-0.617882-0.614600-1.001589\)
\(0.000186 \quad 0.056692 \quad 0.034156\)
\(0.318059 \quad 0.350188 \quad 0.509326\)

Table B. 5
(continued)
\begin{tabular}{ccc} 
SUBSCALE & SUBSCALE & SUBSCALE \\
3 & 4 & 5
\end{tabular}
\(46 \quad-0.203138-0.137937-0.153053\)
\(47 \quad-0.045163-0.050615-0.096315\)
48
49
50
51
52
53
54
55
56
57
\begin{tabular}{rrr}
-0.203138 & -0.137937 & -0.153053 \\
-0.045163 & -0.050615 & -0.096315 \\
0.013182 & -0.015853 & 0.032462 \\
0.055456 & 0.108480 & 0.097324 \\
0.053331 & 0.095496 & 0.094727 \\
0.089618 & 0.006504 & -0.024782 \\
-0.003609 & -0.014105 & 0.033141 \\
-0.160670 & -0.190548 & -0.255744 \\
-0.181168 & -0.244880 & -0.305094 \\
0.006140 & -0.010925 & 0.015374 \\
0.070747 & 0.023675 & 0.045945 \\
-0.188164 & -0.199973 & -0.187535
\end{tabular}

Mathematics Conuitioning Variables, Grade 7/Age 13
\begin{tabular}{|c|c|}
\hline & VARIABLE \\
\hline & LABEL \\
\hline 1 & OVERALL \\
\hline 2 & GENDER2 \\
\hline 3 & ETHNIC2 \\
\hline 4 & ETHNIC3 \\
\hline 5 & ETHNIC4 \\
\hline 6 & STOC2 \\
\hline 7 & STOC3 \\
\hline 8 & REGION2 \\
\hline 9 & REGION3 \\
\hline 10 & REGION4 \\
\hline 11 & PARED2 \\
\hline 12 & PARED3 \\
\hline 13 & PARED4 \\
\hline 14 & PARED \\
\hline 15 & ITEMS 2 \\
\hline 16 & ITEMS 3 \\
\hline 17 & TV \\
\hline 18 & TV**2 \\
\hline 19 & HW-NO \\
\hline 20 & HW-YES \\
\hline 21 & HW-2345 \\
\hline 22 & LM BY E3 \\
\hline 23 & LM BY E4 \\
\hline 24 & LM BY E_ \\
\hline 25 & LUNCH\% \\
\hline 26 & LUNCH \\
\hline 27 & \%WHITE49 \\
\hline 28 & \%WHITE79 \\
\hline & \%WHITE00 \\
\hline 29 & E2 X SEX \\
\hline 30 & E3 X SEX \\
\hline 31 & E4 X SEX \\
\hline 32 & E2 X PE2 \\
\hline 33 & E2 X PE3 \\
\hline 34 & E2 X PE4 \\
\hline 35 & E2 X PE \\
\hline 36 & E3 X PE2 \\
\hline 37 & E3 X PE3 \\
\hline 38 & E3 X PE4 \\
\hline 39 & E3 X PE \\
\hline \% & E4 X PE2 \\
\hline 41 & E4 X PE3 \\
\hline 42 & E4 X PE4 \\
\hline 43 & E4 X PE \\
\hline
\end{tabular}

DESCRIPTION
1 OVERALL CONSTANT '1' FOR EVERYONE
2 SEX (FEMALE)
3 ETHNICITY (BLACK)
4 ETHNICITY (HISPANIC)
5 ETHNICITY (ASIAN AMERICAN)
6 SIZE AND TYPE OF COMMUNITY (HIGH METRO)
7 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
8 REGION (SOUTHEAST)
9 REGION (CENTRAL)
10 REGION (WEST)
11 PARENTS EDUCATION (HIGH SCHOOL GRAD)
12 PARENTS EDUCATION (POST HIGH SCHOOL)
13 PARENTS EDUCATION (COLLEGE GRAD)
14 PARENTS EDUCATION (MISSING, I DON'T KNOW)
15 ITEMS IN HOME (FOUR OF THE FIVE)
16 ITEMS IN HOME (FIVE OF THE FIVE)
17 HOURS TV WA CH ING (LINEAR)
18 HOURS TV WATCHING (QUADRATIC)
19 HOMEWORK (DON'T HAVE ANY)
20 HOMEWORK (YES - SOME AMOUNT)
21 HOMEWORK AMOUNT (LINEAR)
22 LANGUAGE MINORITY BY ETHNICITY (YES, HISPANIC)
23 LANGUAGE MINORITY BY ETHNICITY (YES, ASIAN AMER)
24 LANGUAGE MINORITY BY ETHNICITY (YES, OTHER ETH)
25 PERCENT IN LUNCH PROGRAM
26 LUNCH PROGRAM (MISSING)
27 PERCENT WHITE IN SCHOOL (0-49\% WHITE MINORITY)
28 PERCENT WHITE IN SCHOOL (50\%-79\%)
29 PERCENT WHITE IN SCHOOL (80-100\% PREDOMINANTLY)
30 ETHNICITY BY GENDER (BLACK FEMALE)
31 ETHNICITY BY GENDER (HISPANIC FEMALE)
32 ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE)
33 ETHNICITY BY PARENT'S ED (BLACK, HS GRAD)
34 ETHNICITY BY PARENT'S ED (BLACK, POST HS)
35 ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD)
36 ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN)
37 ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD)
38 ETHNICITY BY PARENT'S ED (HISPANIC, POST HS)
39 ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE)
40 ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN)
41 ETHNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD)
42 ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS)
43 ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD)
44 ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN)

Table B. 6
(continued)

VARIABLE
LABEL
MA, \(\langle M G\)
MA, MG
MA, >MG
\(>M A, M G\)
SCH TYPE ASK SW?
PRESCH1
\#PaRENT1
MOTHER
MOWORK COMPUTER MATH2 Math3 MATH45 SCIENCE2 SCIENCE3 SCIENCE4 SCIENCE5 GRADES MATH Q1 SCI Q1

\section*{DESCRIPTION}

45 MODAL AGE, LESS THAN MODAL GRADE
46 MCDAL AGE, MODAL GRADE, MISSING
47 MOLAL AGE, GREATER THAN MODAL GRADE
48 GREATER THAN MODAL AGE, MODAL GRADE
49 SCHOOL TYPE (NOT PUBLIC)
50 FAMILY ASKS ABOUT SCHOOLWORK (ALMOST EVERY DAY)
51 WENT TO PRESCHOOL (YES)
52 SINGLE/MULTIPLE PARENT HOME (MOTHER, FATHER HOME)
53 MOTHER AT HOME
54 MOTHER WORKS OUTSIDE (YES)
55 USE COMPUTERS FOR MATH, READING, ETC. (YES)
56 TYPE OF MATH CLASS (REGULAR MATH)
57 TYPE OF MATH CLASS (PRE-ALGEBRA)
58 TYPE OF MATH CLASS (ALGEBRA)
59 STUDYING IN SCIENCE THIS YEAR (LIFE SCIENCE)
60 STUDYing in science this year (Physical science)
61 STUDYIÑ IN SCIENCE THIS YEAR (EARTH SCIENCE)
62 STUDYing IN SCIENCE THIS YEAR (GENERAL SGIENCE)
63 GRADES IN SCHOOL (LINEAR)
64 MATH QUANTILE (LINEAR -1,0,1)
65 SCIENCE QUANTILE (LINEAR -1,0,1)

Table B. 7
Estimated Effects for Mathematics Conditioning Variables, Grade 7/Age 13
\begin{tabular}{|c|c|c|c|}
\hline SCA & SUBSCALE & SUBSCALE & SUBSCALE \\
\hline 3 & 4 & 5 & 6 \\
\hline -0.352342 & -0.237241 & -0.232741 & -1.566806 \\
\hline -0.118358 & -0.121051 & 0.027736 & -0.138846 \\
\hline -0.243163 & -0.241068 & -0.192695 & -0.157660 \\
\hline -0.143504 & -0.086834 & -0.087586 & 0.001369 \\
\hline 0.154143 & -0.123063 & 0.329942 & -0.345517 \\
\hline 0.106950 & 0.043702 & 0.072136 & -0.007275 \\
\hline 0.041103 & 0.005016 & 0.027964 & 0.002061 \\
\hline -0.101002 & -0.076939 & -0.068503 & -0.121620 \\
\hline -0.019602 & 0.003319 & -0.066997 & -0.101269 \\
\hline -0.133251 & -0.104762 & -0.067039 & -0.239011 \\
\hline -0.015131 & 0.076167 & -0.039755 & 0.118204 \\
\hline 0.109763 & 0.215349 & 0.087665 & 0.247897 \\
\hline 0.149055 & 0.215896 & 0.092551 & 0.259444 \\
\hline -0.053523 & -0.008094 & -0.054022 & 0.173222 \\
\hline 0.082457 & 0.020266 & 0.062806 & 0.085506 \\
\hline 0.065393 & 0.048085 & 0.074417 & 0.161452 \\
\hline 0.073241 & 0.057704 & 0.078217 & 0.032170 \\
\hline -0.014776 & -0.011898 & -0.010180 & -0.009676 \\
\hline -0.147903 & -0.230917 & -0.150158 & 0.055594 \\
\hline -0.080464 & -0.141038 & -0.087860 & 0.117139 \\
\hline -0.006627 & -0.024537 & -0.000802 & -0.008386 \\
\hline 0.058210 & 0.017234 & 0.072507 & -0.002178 \\
\hline 0.061216 & -0.023127 & -0.049094 & -0.273219 \\
\hline -0.090200 & -0.051471 & -0.086291 & 0.030243 \\
\hline -0.098591 & -0.070908 & -0.101800 & -0.432306 \\
\hline -0.006329 & -0.008319 & -0.050810 & -0.061885 \\
\hline -0.073191 & -0.042237 & -0.111685 & -0.027993 \\
\hline -0.002039 & -0.006013 & -0.015316 & 0.084651 \\
\hline 0.001871 & 0.016668 & -0.064368 & 0.045342 \\
\hline 0.027987 & 0.017813 & 0.009011 & -0.025125 \\
\hline -0.183716 & -0.048277 & -0.239876 & 0.125414 \\
\hline 0.0560 .9 & 0.004230 & 0.187129 & -0.033398 \\
\hline -0.013261 & 0.014572 & 0.096781 & -0.261570 \\
\hline -0.134803 & -0.105469 & -0.010082 & -0.231216 \\
\hline 0.079497 & 0.026672 & 0.088876 & -0.187968 \\
\hline 0.013273 & -0.019971 & 0.018582 & 0.009769 \\
\hline 0.007303 & 0.024266 & -0.092669 & -0.234611 \\
\hline -0.058938 & -0.063571 & -0.045748 & -0.058699 \\
\hline -0.011958 & -0.024379 & 0.054089 & -0.053586 \\
\hline 0.023058 & 0.089013 & -0.511295 & -0.484603 \\
\hline 0.132417 & 0.296604 & -0.068088 & 0.211198 \\
\hline -0.021448 & 0.395627 & 0.022164 & 0.878078 \\
\hline 0.043843 & 0.513521 & 0.048291 & 0.527336 \\
\hline -0.351336 & -0.447323 & -0.4296RL & -0.283039 \\
\hline 0.015146 & -0.072972 & 0.002604 & 0.099541 \\
\hline
\end{tabular}

Table B. 7 (continued)
\begin{tabular}{rrrr} 
SUBSCALE & SUBSCALE & \multicolumn{1}{r}{ SUBSCALE } & \multicolumn{1}{c}{ SUBSCALE } \\
3 & 4 & \multicolumn{1}{c}{5} & \multicolumn{1}{c}{6} \\
& & & \\
0.250522 & 0.185706 & 0.310623 & 0.454944 \\
-0.172210 & -0.257649 & -0.155813 & -0.062705 \\
-0.024782 & 0.024806 & 0.008822 & 0.020517 \\
-0.067612 & -0.066211 & -0.051669 & -0.079223 \\
0.033094 & 0.025928 & 0.013399 & 0.039496 \\
0.041589 & 0.016149 & 0.007752 & 0.041884 \\
-0.011835 & -0.040056 & 0.017938 & 0.062273 \\
0.007768 & -0.014835 & -0.006762 & -0.053299 \\
-0.075113 & -0.089896 & -9.068931 & -0.119231 \\
0.075070 & 0.101699 & 0.001479 & 0.046058 \\
0.262637 & 0.290710 & 0.199434 & 0.311969 \\
0.129170 & 0.211722 & 0.021191 & 0.089921 \\
0.071305 & 0.052191 & 0.106246 & 0.127636 \\
0.084178 & 0.009127 & 0.036155 & 0.056185 \\
0.061501 & 0.008557 & 0.078339 & 0.049026 \\
0.117946 & 0.066933 & 0.079968 & 0.057133 \\
0.225022 & 0.253259 & 0.227615 & 0.306723 \\
-0.145286 & -0.196210 & -0.118398 & -0.193678 \\
-0.202314 & -0.177616 & -0.169222 & -0.270378
\end{tabular}

Table B. 8
Mathematics Conditioning Variables, Grade 11/Age 17
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{VARIABLE} \\
\hline & LABEL & & DESCRIPTION \\
\hline 1 & OVERALL & & OVERALL CONSTANT ' 1 ' FOR EVERYONE \\
\hline 2 & GENDER2 & & SEX (FEMALE) \\
\hline 3 & ETHNIC2 & & ETHNICITY (BLACK) \\
\hline 4 & ETHNIC3 & & ETHNICITY (HISPANIC) \\
\hline 5 & ETHNIC4 & & ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & STOC2 & & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & STOC3 & & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & REGION2 & & REGION (SOUTHEAST) \\
\hline 9 & REGION3 & & REGION (CENTRAL) \\
\hline 10 & REGION4 & 10 & REGION (WEST) \\
\hline 11 & PARED2 & & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 12 & PARED 3 & 12 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & PARED4 & 13 & Parents education (COLLEGE GRad) \\
\hline 14 & PARED & 14 & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & ITEMS2 & 15 & ITEMS IN HOME (FOUR OF THE FIVE) \\
\hline 16 & ITEMS3 & 16 & ITEMS IN HOME (FIVE OF THE FIVE) \\
\hline 17 & TV & 17 & HOURS TV WATCHING (LINEAR) \\
\hline 18 & TV**2 & 18 & hours tV watching (Quadratic) \\
\hline 19 & HW-NO & 19 & HOMEWORK (DON'T HAVE ANY) \\
\hline 20 & HW-YES & 20 & HOMEWORK (YES - SOME AMOUNT) \\
\hline 21 & HW-2345 & 21 & HOMEWORK AMOUNT (LINEAR) \\
\hline 22 & LM BY E3 & 22 & Language minority by ethnicity (YES, hispanic) \\
\hline 23 & LM BY E4 & 23 & LANGUAGE MINORITY BY ETHNICITY (YES, ASIAN AMER) \\
\hline 24 & LMBYE_ & 24 & LANGUAGE MINORITY BY ETHNICITY (YES, OTHER ETH) \\
\hline 25 & LUNCH\% & 25 & PERCENT IN LUNCH PROGRAM \\
\hline 26 & LUNCH & & LUNCH PROGRAM (MISSING) \\
\hline 27 & \%WHITE49 & 27 & PERCENT WHITE IN SCHOOL ( \(0-49 \%\) WHITE MINORITY) \\
\hline \multirow[t]{2}{*}{28} & \%WHITE79 & 28 & PERCENT WHITE IN SCHOOL (50-79\% INTEGRATED) \\
\hline & \%WHITE00 & 29 & PERCENT WHITE IN SCHOOL (80-100\% PREDOMINANTLY) \\
\hline 29 & E2 X SEX & 30 & ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline 30 & E3 X SEX & 31 & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 31 & E4 X SEX & 32 & ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline 32 & E2 X PE2 & 33 & ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline 33 & E2 X PE3 & 34 & ETHNICITY BY PARENT'S ED (BLACK, POST HS) \\
\hline 34 & E2 X PE4 & 35 & ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD) \\
\hline 35 & E2 \(2 \times \mathrm{PE}\) & 36 & ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 36 & E3 X PE2 & 37 & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 37 & E3 X PE3 & 38 & ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 38 &  & 39 & ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) \\
\hline 39 & \(\begin{array}{llll}\mathrm{E} 3 & \mathrm{X} & \mathrm{PE} \\ \mathrm{E} 4 & \mathrm{X} & \text { PE }\end{array}\) & 40 & ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline 40 & E4 X PE2 & 41 & ETHNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD) \\
\hline 42 & E4 X PE3 & 42 & ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS) \\
\hline 42 & E4 X PE4 & 43 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline
\end{tabular}

Table B. 8 (continued)

VARIABLE LABEL

E4 X PE MA, <MG MA, MG MA, \(>\) MG \(>M A, M G\) SCH TYPE ASK SW? PRESCH1
\#Parentl
MOTHER
MOWORK
GRADES
PROGRAM2
PROGRAM3
MATH
SCIENCE
POSTSEC2
POSTSEC3
HRS WORK
ENGL23
ENGLISH5
MATH Q1
SCI Q1

\section*{DESCRIPTION}

44 ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN)
45 MODAL AGE, LESS THAN MODAL GRADE
46 MODAL AGE, MODAL GRADE, MISSING
47 MODAL AGE, GREATER THAN MODAL GRADE
48 GREATER THAN MODAL AGE, MODAL GRADE
49 SCHOOL TYPE (NO'C PUBLIC)
50 FAMILY ASKS ABOUT SCHOOLWORK (ALMOST EVERY DAY)
51 WENT TO PRESCHOOL (YES)
52 SINGLE/MULTIPLE PARENT HOME (MOTHER, FATHER HOME)
53 MOTHER AT HOME
54 MOTHER WORKS OUTSIDE (YES)
55 GRADES IN SCHOOL (LINEAR)
56 HIGH SCHOOL PROGRAM (COLLEGE PREPARATORY)
57 HIGH SCHOOL PROGRAM (VOCATIONAL)
58 NUMBER OF MATH COURSES
59 NUMBER OF SCIENCE COURSES
60 TWO-YEAR COLLEGE
61 FOUR-YEAR COLLEGE
62 HOURS OF OUTSIDE WORK
63 TYPES OF ENGLISH CLASS (ADVANCED\&COLLEGE PREP.)
64 TYPES OF ENGLISH CLASS(REMEDIAL)
65 MATH QUANTILE (LINEAR \(-1,0,1\) )
66 SCIENCE QUANTILE (LINEAR \(-1,0,1\) )

Table B. 9
Estimated Effects for Mathematics Conditioning Variables, Grade 11/Age 17
\begin{tabular}{|c|c|c|c|c|}
\hline \[
S C A
\] & BSA & CA & \[
3 \mathrm{SCA}
\] & CA \\
\hline & & & & \\
\hline 246885 & -0.193 & -0 & & \\
\hline -0.344944 & -0.270933 & -0.16007 & -0.4703 & \\
\hline -0.191312 & -0.13703 & -0.17102 & & \\
\hline 0.294510 & -0.0843 & . & & \\
\hline 09 & & 586 & . 148188 & . 208643 \\
\hline 0.137500 & 0.05046 & . 06309 & 0.042328 & \\
\hline 52084 & -0.01622 & . 041018 & & \\
\hline 64 & 53202 & & & \\
\hline -0.010277 & -0.023525 & -0.012635 & -0.062159 & -0.086379 \\
\hline 018629 & 0.018233 & -0.04151 & 0 & \\
\hline 391 & . 05674 & & & \\
\hline 0.066504 & 0.053733 & -0 & & \\
\hline 0 & -0.08007 & -0.13271 & -0.097598 & \\
\hline 714 & 0.04610 & 0.0633 & 0.068467 & \\
\hline 68 & & . 04118 & & \\
\hline -0.006456 & 0.01547 & 980 & 0.030363 & -0.014262 \\
\hline 0.003765 & -0.007944 & -0.005793 & -0. & -0.003715 \\
\hline -0.317430 & -0.175180 & -0.133 & & \\
\hline 5279 & 0.001 & -0.020 & -0 & \\
\hline -0.027925 & -0.024972 & -0.00585 & -0.006740 & \\
\hline 355 & 0.030421 & 0 & 0.093909 & - \\
\hline 67295 & -0.19084 & -0.1674 & & \\
\hline 0.095753 & -0.061741 & -0.043180 & -0 & \\
\hline -0.118837 & -0.109148 & -0.00 & -0. & . 258239 \\
\hline -0.028970 & -0.03772 & . 0 & & \\
\hline -0.032063 & -0.00694 & -0 & & \\
\hline -0 & 0.02 & 0.023390 & 0.012689 & \\
\hline 0.069319 & 0.04413 & 0.0648 & & \\
\hline & 03828 & 0.064913 & & \\
\hline 0.287757 & -0.05438 & -0.02 & 0.157593 & . \\
\hline & -0.10042 & 0.01701 & -0.017924 & \\
\hline -0.213154 & -0.0604 & -0.10 & & \\
\hline -0 & -0.062576 & -0.05469 & -0.128184 & \\
\hline & 0.015014 & 0.17053 & 0.046204 & \\
\hline 0.060255 & -0.082799 & . 0450 & & \\
\hline & -0.086 & -0.0525 & & \\
\hline 0.038466 & . 023252 & . 03817 & -0.20105 & -0.070557 \\
\hline . 192027 & -0.04570 & . 111 & & \\
\hline 24880 & 0414 & & -0.381340 & \\
\hline -0.26 & 0.359645 & -0.13306 & -0.478293 & 0.049367 \\
\hline -0.132709 & 0.349036 & . 100 & & \\
\hline 013802 & 0.236105 & & & \\
\hline -0.133187 & -0.216247 & -0.122409 & -0.253036 & \\
\hline -0.010745 & -0.0 & -0. & & \\
\hline
\end{tabular}

Table B. 9 (continued)
\begin{tabular}{ccccc} 
SUBSCALE & SUBSCALE & SUBSCALE & SUBSCALE & SUBSCALE \\
3 & 4 & 5 & 6 & 7
\end{tabular}
```

-0.020861 0.023623 -0.026568 -0.182436 -0.090257
-0.114376-0.141685 -0.129027-0.269012 -0.292650
-0.046394-0.093190-0.019327-0.077206-0.019410
-0.043236-0.030714-0.006119-0.052606 -0.051349
0.003831}00.000824 0.011364 0.030711 0.035063
0.036420 0.002728-0.000217 -0.003587-0.006095
-0.088439-0.066550-0.042036 -0.143390-0.106678
0.038097}00.004660 0.004990 0.071296 0.053183
0.197311 0.148064
0.092162 0.077809
0.040549 0.001035-0.033087 0.015966 -0.056789
0.117385
0.056018
-0.059698 0.001888 0.014762 -0.034046 0.022275
0.057070
-0.027140 -0.048412-0.077096 -0.080121 -0.086530
0.082593 0.063262 0.059468
-0.077388-0.132642-0.012501-0.185554-0.020404
-0.175084 -0.203456 -0.123231-0.195708-0.156517
-0.258420-0.198467-0.154683-0.296144-0.233239

```

Tab1e B. 10
Estimated Effects for Mathematics Trend Conditioning Variables 1977-78: Age 9
\begin{tabular}{|c|c|c|c|}
\hline & ESTIMATED EFFECT & VARIABLE
LabEL & DESCRIPTION \\
\hline 1 & -0.273301 & OVERALL & OVERALL CONSTANT ' 1 ' FOR EVERYONE \\
\hline 2 & 0.026875 & GENDER2 & SEX (FEMALE) \\
\hline 3 & -0.705243 & ETHNIC2 & OBSERVED ETHNICITY (BLACK) \\
\hline 4 & -0.218671 & ETHNIC3 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & 0.299975 & ETHNIC4 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & 0.453148 & STOC2 & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & 0.210676 & STOC3 & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & -0.304078 & REGION2 & REGION (SOUTHEAST) \\
\hline 9 & -0.018972 & REGION3 & REGION (CENTRAL) \\
\hline 10 & -0.267138 & REGION4 & REGION (WEST) \\
\hline 11 & 0.283547 & PARED2 & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 12 & 0.461085 & PARED3 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & 0.444294 & PARED4 & PARENTS EDUCATION (COLLEGE GRAD) \\
\hline 14 & 0.123491 & PARED & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & -0.899835 & < MODALG & MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & 0.466793 & > MODALG & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & 0.297460 & HOMEITM3 & ARTICLES IN HOME (YES TO 3) \\
\hline 18 & 0.445589 & HOMEITM4 & ARTICLES IN HOME (YES TO 4) \\
\hline 19 & 0.139820 & E2 X SEX & ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline 20 & -0.110746 & E3 X SEX & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 21 & -0.094134 & E4 X SEX & ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline 22 & -0.026872 & E2 X PE2 & ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline 23 & -0.165483 & E2 X PE3 & ETHNLCITY BY PARENT'S ED (BLACK, POST HS) \\
\hline 24 & -0.014514 & E2 X PE4 & ETHNLCITY BY PARENT'S ED (BLACK, COLLEGE GRAD) \\
\hline 25 & 0.047939 & \(\mathrm{E} 2 \times \mathrm{PE}\) & ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 26 & 0.290944 & E3 X PE2 & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 27 & -0.095222 & E3 X PE3 & ETHNLCITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 28 & -0.275784 & E3 X PE4 & ETHNLCITY RY PARENT'S ED (HISPANIC, COLLLEGE) \\
\hline 29 & 0.090747 & E3 X PE & ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline 30 & -0.090926 & E4 X PE4 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 31 & 0.018214 & E4 X PE & ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN) \\
\hline 32 & 0.010844 & SCH.PRIV & SCHOOL TYPE (PRIVATE) \\
\hline
\end{tabular}

Estimated Effects for Mathematics Trend Conditioning Variables 1977-78: Age 13
\begin{tabular}{ccl} 
& \begin{tabular}{c} 
ESTIMATED \\
EFFECT
\end{tabular} & \begin{tabular}{l} 
VARIABLE \\
LABEL
\end{tabular} \\
1 & -0.506104 & OVERALL \\
2 & -0.058437 & GEMDER2 \\
3 & -0.757338 & ETHNIC2 \\
4 & -0.329396 & ETHNIC3 \\
5 & -0.106764 & ETHNIC4 \\
6 & 0.475734 & STOC2 \\
7 & 0.264444 & STOC3 \\
8 & -0.334031 & REGION2 \\
9 & 0.008634 & REGION3 \\
10 & -0.205949 & REGION4 \\
11 & 0.273782 & PARED2 \\
12 & 0.507748 & PARED3 \\
13 & 0.693130 & PARED4 \\
14 & -0.011754 & PARED \\
15 & -0.760385 & < MODALG \\
16 & 0.782461 & > MODALG \\
17 & 0.269945 & HOMEITM3 \\
18 & 0.441897 & HOMEITM4 \\
19 & 0.193220 & E2 X SEX \\
20 & 0.159007 & E3 X SEX \\
21 & -0.137822 & E4 X SEX \\
22 & -0.186209 & E2 X PE2 \\
23 & -0.233521 & E2 X PE3 \\
24 & -0.359043 & E2 X PE4 \\
25 & -0.175012 & E2 X PE \\
26 & -0.150425 & E3 X PE2 \\
27 & -0.174618 & E3 X PE3 \\
28 & -0.244380 & E3 X PE4 \\
29 & -0.209913 & E3 X PE \\
30 & 0.847664 & E4 X PE4 \\
31 & 0.252726 & E4 XPE \\
32 & 0.036806 & SH H.PRIV
\end{tabular}
DESCRIPTION
OVERALL CONSTANT ' 1 ' FOR EVERYONE
SEX (FEMALE)
OBSERVED ETHNICITY (BLACK)
OBSERVED ETHNICITY (HISPANIC)
OBSERVED ETHNICITY (ASIAN AMERICAN)
SIZE AND TYPE OF COMMUNITY (HIGH METRO)
SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
REGION (SOUTHEAST)
REGION (CENTRAL)
REGION (WEST)
PARENTS EDUCATION (HIGH SCHOOL GRAD)
PARENTS EDUCATION (POST HIGH SCHOOL)
PARENTS EDUCATION (COLLEGE GRAD)
PARENTS EDUCATION (MISSING, I DON'T KNOW)
MODAL GRADE (LESS TH'N MODAL GRADE)
MODAL GRADE (GREATER THAN MODAL GRADE)
ARTICLES IN HOME (YES TO 3)
ARTICLES IN HOME (YES TO 4)
ETHNICITY BY GENDER (BLACK FEMALE)
ETHNICITY BY GENDER (HISPANIC FEMALE)
ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE)
ETHNICITY BY PARENT'S ED (BLACK, HS GRAD)
ETHNICITY BY PARENT'S ED (BLACK, POST HS)
ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD)
ETHNICITY BY PRENT''S ED (BLACK, UNKNOWN)
ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD)
ETHNICITY BY PARENT''S ED (HISPANIC, POST HS)
ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE)
ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN)
ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD)
ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN)
SCHOOL TYPE (PRIVATE)

Table B. 12
Estimated Effects for Mathematics Trend Conditioning Variables
1977-78: Age 17
\begin{tabular}{|c|c|c|c|}
\hline & ESTIMATED & VARIABLE & \\
\hline & EFFECT & IABEL & DESCRIPTION \\
\hline 1 & -0.781467 & OVERALL & OVERALL CONSTANT '1' FOR EVERYONE \\
\hline 2 & -0.206773 & GENDER2 & SEX (FEMALE) \\
\hline 3 & -0.431460 & ETHNIC2 & OBSERVED ETHNICITY (BLACK) \\
\hline 4 & -0.005593 & ETHNIC3 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & 0.134567 & ETHNIC4 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & 0.352374 & STOC2 & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & 0.221161 & STOC3 & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & -0.066068 & REGION2 & REGION (SOUTHEAST) \\
\hline 9 & 0.058216 & REGION3 & REGION (CENTRAL) \\
\hline 10 & -0.042895 & REGION4 & REGION (WEST) \\
\hline 11 & 0.084179 & PARED2 & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 12 & 0.199708 & PARED3 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & 0.305552 & PARED4 & Parents education (COLLEGE GRad) \\
\hline 14 & -0.040135 & PARED & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & -0.363890 & < MODALLG & MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & 0.078896 & > MODALG & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & 0.178779 & HOMEITM3 & ARTICLES IN HOME (YES TO 3) \\
\hline 18 & 0.22151 & HOMEITM4 & ARTICLES IN HOME (YES TO 4) \\
\hline 19 & -0.053206 & E2 X SEX & ETHNICITY FY GENDER (BLACK FEMALE) \\
\hline 20 & -0.285367 & E3 X SEX & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 21 & 0.090859 & E4 X SEX & ETHNICITY BY GENDER (ASIAN AMERICAN Female) \\
\hline 22 & -0.174525 & E2 X PE2 & ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline 23 & -0.065219 & 2 \(2 \times \mathrm{PE} 3\) & ETHNICITY BY PARENT'S FD (BLACK, POST HS) \\
\hline 24 & -0.225030 & E2 X PE4 & ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD) \\
\hline 25 & -0.140388 & E2 X PE & ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 26 & -0.066370 & E3 X PE \(2 \overline{ }\) & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 27 & -0.189053 & E3 X PE3 & ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 28 & -0.140345 & E3 X PE4 & ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) \\
\hline 29 & -0.319494 & E3 X PE & ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline 30 & -0.429663 & E4 X PE2 & ETHNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD) \\
\hline 31 & 0.506253 & E4 X PE3 & ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS) \\
\hline 32 & 0.105962 & E4 X PE4 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 33 & -0.038407 & SCH.PRIV & SCHOOL TYPE (PRIVATE) \\
\hline 34 & 0.026481 & TV.0-2 & TV WATCHING ( \(0-2\) HoURS) \\
\hline 35 & -0.029427 & TV.3-5 & TV WATCHING ( \(3-5\) HOURS) \\
\hline 35 & -0.155838 & TV.6+ & TV WATCHING ( \(6+\) HOURS) \\
\hline 37 & -0.205242 & HW-NO & HOMEWORK (NONE ASSIGNED) \\
\hline 38 & -0.128222 & HW-YES & HOMEWORK (YES - SOME AMOUNT) \\
\hline 39 & 0.045070 & HW-2345 & HOMEWORK AMCUNT (LINEAR) \\
\hline 40 & -0.211903 & HOMELNG1 & OTHER Languagé at home (OFTEN) \\
\hline 41 & -0.060369 & HOMELNG2 & OTHER LAivguage at home (SOMETIMES) \\
\hline 42 & -0.087101 & HL2 X E2 & HOME LANG BY ETHNICITY (OFTEN, BLACK) \\
\hline 43 & -0.167821 & HL1 X E2 & HOME LANG BY ETHNICITY (SOMETIMES, BLACK) \\
\hline 44 & 0.158570 & HL2 X E3 & HOME LANG BY ETHNICITY (OFTEN, HISPANIC) \\
\hline 45 & -0.117209 & HL1 X E3 & HOME LANG BY ETHNICITY (SOMETIMES, HISPANIC) \\
\hline
\end{tabular}

Table B. 12
(continued)
\begin{tabular}{cccl} 
& \begin{tabular}{c} 
ESTIMATED \\
EFFECT
\end{tabular} & \begin{tabular}{c} 
VARIABLE \\
LABEL
\end{tabular} & \multicolumn{1}{c}{ DESCRIPTION } \\
46 & -0.191573 & NMATH1 & HIGHEST LEVEL MATH TAKEN (PRE-ALGEBRA) \\
47 & 0.228896 & NMATH2 & HIGHEST LEVEL MATH TAKEN (ALGEBRA) \\
48 & 0.682312 & NMATH3 & HIGHEST LEVEL MATH TAKEN (GEOMETRY) \\
49 & 1.029129 & NMATH4 & HIGHEST LEVEL MATH TAKEN (ALGEBRA-2) \\
50 & 1.321908 & NMATH5 & HIGHEST LEVEL MATH TAKEN (CALCULUS) \\
51 & 0.076033 & COMPUTER & COMPUTER CLASS TAKEN (YES)
\end{tabular}

Estimated Effects for Mathematics Trend Conditioning Variables 1981-82: Age 9
\begin{tabular}{|c|c|c|c|}
\hline & ESTIMATED EFFECT & VARIABLE LABEL & DESCRIPTION \\
\hline 1 & -0.862638 & OVERALL & OVERALL CONSTANT '1' FOR EVERYONE \\
\hline 2 & 0.006737 & GENDER2 & SEX (FEMALE) \\
\hline 3 & -0.363383 & ETHNIC2 & OBSERVED ETHNICITY (BLACK) \\
\hline 4 & -0.252489 & ETHNIC3 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & 0.226445 & ETHNIC4 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & 0.497516 & STOC2 & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & 0.177121 & STOC3 & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & -0.245979 & REGION2 & REGION (SOUTHEAST) \\
\hline 9 & -0.124888 & REGION3 & REGION (CENTRAL) \\
\hline 10 & -0.150039 & REGION4 & REGION (WEST) \\
\hline 11 & 0.258322 & PARED2 & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 12 & 0.446228 & PARED3 & PARENTS EDUCATION (F'OST HIGH SCHOOL) \\
\hline 13 & 0.451693 & PARED4 & PARENTS EDUCATION (COLLEGE GRAD) \\
\hline 14 & 0.241492 & PARED & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & -0.875036 & < MODĀLG & MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & 0.662891 & > MODALG & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & 0.193038 & HOMEITM3 & ARTICLES IN HOME (YES TO 3) \\
\hline 18 & 0.315100 & HOMEITM4 & ARTICLES IN HOME (YES TO 4) \\
\hline 19 & -0.042492 & E2 X SEX & ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline 20 & -0.053017 & E3 X SEX & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 21 & 0.072069 & E4 X SEX & ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline 22 & -0.049272 & E2 X PE2 & 'ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline 23 & -0.220469 & E2 X PE3 & ETHNICITY BY PARENT'S ED (BLACK, POST HS) \\
\hline 24 & -0.200338 & E2 X PE4 & ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD) \\
\hline 25 & -0.167562 & E2 X PE & ETHNICITY EY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 26 & -0.138775 & E3 X PE2 & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 27 & -0.355953 & E3 X PE3 & ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 28 & -0.350525 & E3 X PE4 & ETHNICI'TY BY PARENT'S ED (HISPANIC, COLLEGE) \\
\hline 29 & -0.300426 & E3 \(\mathrm{XPE}^{\text {P }}\) & ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline 30 & 0.0797;3 & E4 X PE4 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 31 & -0.048421 & E4 X PE & ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN) \\
\hline 32 & 0.103982 & SCH.PRIV & SCHOOL TYPE (PRIVATE) \\
\hline 33 & 0.648663 & TV.0-2 & TV Watching ( \(0-2\) Hours) \\
\hline 34 & 0.831681 & TV.3-5 & TV WATCHING ( \(3-5\) HOURS) \\
\hline 35 & 0.648024 & TV. \(6+\) & TV WATCHING ( \(6+\) HOURS) \\
\hline 36 & -0.137906 & HOMELNG1 & OTHER Language at home (Often) \\
\hline 37 & 0.008072 & HOMELNG2 & OTHER LANGUAGE AT HOME (SOMETIMES) \\
\hline 38 & -0.075129 & HL2 X E2 & HOME LANG BY ETHNICITY (OFTEN, BLACK) \\
\hline 39 & -0.142182 & HL1 X E2 & HOME LANG BY ETHNICITY (SOMETIMES, BLACK) \\
\hline 40 & 0.332070 & HL2 X E3 & HOME LANG BY ETHNICITY (OFTEN, HISPANIC) \\
\hline 41 & 0.156723 & HL1 X E3 & HOME LANG BY ETHNICITY (SOMETIMES, HISPANIC) \\
\hline
\end{tabular}

Table B. 14
Estimated Effects for Mathematics Trend Conditioning Variables 1981-82: Age 13
\begin{tabular}{|c|c|c|c|}
\hline & ESTIMATED & Variable & \\
\hline & EFFECT & LABEL & DESCRIPTION \\
\hline 1 & -1.256225 & OVERALL & OVERALL CONSTANT '1' FOR EVERYONE \\
\hline 2 & -0.171860 & GENDER2 & SEX (FEMALE) \\
\hline 3 & -0.654193 & ETHNIC2 & OBSERVED ETHNICITY (BLACK) \\
\hline 4 & -0.258215 & ETHNIC3 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & 0.024942 & ETHNIC4 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & 0.410391 & STOC2 & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & 0.185483 & STOC3 & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & -0.213830 & REGION2 & REGION (SOUTHEAST) \\
\hline 9 & 0.031711 & REGION3 & REGION (CENTRAL) \\
\hline 10 & -0.119684 & REGION4 & REGION (WEST) \\
\hline 11 & 0.039412 & PARED2 & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 12 & 0.243169 & PARED3 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & 0.336603 & PARED4 & PARENTS EDUCATION (COLLEGE GRAD) \\
\hline 14 & 0.048628 & PARED & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & -0.644180 & < MODALLG & MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & 0.708098 & > MODALG & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & 0.158271 & HOMEITM3 & ARTICLES IN HOME (YES TO 3) \\
\hline 18 & 0.283477 & HOMEITM4 & ARTICLES IN HOME (YES TO 4) \\
\hline 19 & 0.068129 & E2 X SEX & ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline 20 & -0.097227 & E3 X SEX & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 21 & 0.012726 & E4 X SEX & ETHNICITY BY Gender (ASIAN AMERICAN FEMALE) \\
\hline 22 & 0.060793 & E2 X PE2 & ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline 23 & -0.207382 & E2 X PE3 & ETHNICITY BY PARENT'S ED (BLACK, POST HS) \\
\hline 24 & -0.177626 & \(\mathrm{E} 2 \times \mathrm{PE} 4\) & ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD) \\
\hline 25 & -0.169596 & E2 \(\times\) PE & ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 26 & -0.019598 & E3 \(\times\) PE2 & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 27 & -0.043324 & E3 X PE3 & ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 28 & -0.179968 & E3 X PE4 & ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) \\
\hline 29 & -0.174095 & E3 \(\times\) PE & ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline 30 & 0.193170 & E4 X PE4 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 31 & -0.014947 & E4 X PE & ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN) \\
\hline 32 & 0.036300 & SCH.PRIV & SCHOOL TYPE (PRIVATE) \\
\hline 33 & -0.101233 & TV.0-2 & TV WATCHING (0-2 HOURS) \\
\hline 34 & -0.117255 & TV.3-5 & TV WATCHING ( \(3-5\) HOURS) \\
\hline 35 & -0.228167 & TV. \(6+\) & TV WATCHING ( \(6+\) HOURS) \\
\hline 36 & 0.231025 & HW-NO & HOMEWORK (NONE ASSIGNED) \\
\hline 37 & 0.444984 & HW-YES & HOMEWORK (YES - SOME AMOUNT) \\
\hline 38 & -0.032439 & HW-2345 & HOMEWORK AMOUNT (LINEAR) \\
\hline 39 & -0.227167 & HOMELNG1 & Other language at home (OFTEN) \\
\hline 40 & -0.022530 & HOMELNG2 & OTHER LANGUAGE AT HOME (SOMETIMES) \\
\hline 41 & 0.073600 & HL2 X E2 & HOME LANG BY ETHNICITY (OFTEN, BLACK) \\
\hline 42 & 0.039274 & HL1 X E2 & HOME LANG BY ETHNICITY (SOMETIMES, BLACK) \\
\hline 43 & 0.279979 & HL2 X E3 & HOME LANG BY ETHNICITY (OFTEN, HISPANIC) \\
\hline 44 & 0.133273 & HL1 X E3 & HOME LANG BY ETHNICITY (SOMETIMES, HISPANIC) \\
\hline 45 & 0.360884 & GRADES & GRADES IN SCHOOL \\
\hline
\end{tabular}

Table B. 15

Estimated Effects for Mathematics Trend Conditioning Variables 1981-82: Age 17
\begin{tabular}{|c|c|c|c|}
\hline & ESTIMATED & VARIABLE & \\
\hline & EFFECT & LABEL & DESCRIPTION \\
\hline 1 & -1.583301 & OVERALL & OVERALL CONSTANT '1' FOR EVERYONE \\
\hline 2 & -0.271300 & GENDER2 & SEX (FEMALE) \\
\hline 3 & -0.537188 & ETHNIC2 & OBSERVED ETHNICITY (BLACK) \\
\hline 4 & -0.314424 & ETHNIC3 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & 0.274670 & ETHNIC4 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & 0.364567 & STOC2 & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & 0.199603 & STOC3 & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & -0.027483 & REGION2 & REGION (SOUTHEAST) \\
\hline 9 & 0.041125 & REGION3 & REGION (CENTRAL) \\
\hline 10 & -0.090060 & REGION4 & REGION (WEST) \\
\hline 11 & 0.104941 & PARED2 & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 12 & 0.178396 & PARED3 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & 0.229555 & PARED4 & PARENTS EDUCATION (COLLEGE GRAD) \\
\hline 14 & -0.056325 & PAR,ED & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & -0.224271 & < MODALG & MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & 0.019933 & > MODALG & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & 0.068540 & HOMEITM3 & ARTICLES IN HOME (YES TO 3) \\
\hline 18 & 0.100033 & HOMEITM4 & ARTICLES IN HOME (YES TO 4) \\
\hline 19 & 0.137157 & E2 X SEX & ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline 20 & 0.046145 & E3 X SEX & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 21 & 0.153455 & E4 X SEX & ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline 22 & -0.079989 & E2 X PE2 & ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline 23 & -0.038142 & E2 X PE3 & ETHNICITY BY PARENT'S ED (BLACK, POST HS) \\
\hline 24 & -0.037173 & E2 X PE4 & ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD) \\
\hline 25 & -0.067290 & E2 X PE & ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 26 & -0.012681 & E3 X PE2 & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 27 & 0.073736 & E3 X PE3 & ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 28 & 0.002859 & E3 X PE4 & ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) \\
\hline 29 & -0.131598 & E3 X PE & ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline 30 & -0.117925 & E4 X PE2 & ETKNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD) \\
\hline 31 & -0.169627 & E4 X PE3 & ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS) \\
\hline 32 & -0.109758 & E4 X PE4 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 33 & -0.116926 & SCH. PRIV & SCHOOL TYPE (PRIVATE) \\
\hline 34 & 0.170632 & TV.0-2 & TV WATCHING (0-2 HOURS) \\
\hline 35 & 0.101777 & TV. 3-5 & TV WATCHING (3-5 HOURS) \\
\hline 36 & 0.003121 & TV. \(6+\) & TV WATCHING ( \(6+\) HOURS) \\
\hline 37 & 0.041748 & HW-NO & HOMEWORK (NONE ASSIGNED) \\
\hline 38 & 0.236337 & HW-YES & HOMEWORK (YES - SOME AMOUNT) \\
\hline 39 & -0.023902 & HW-2345 & HOMEWORK AMOUNT (LINEAR) \\
\hline 40 & -0.165789 & HOMELNG1 & OTHER LANGUAGE AT HOME (OFTEN) \\
\hline 41 & -0.001730 & HOMELNG? & OTHER LANGUAGE AT HOME (SOMETIMES) \\
\hline 42 & 0.086177 & HL2 X E2 & HOME LANG BY ETHNICITY (OFTEN, BLACK) \\
\hline 43 & -0.185237 & HL1 X E2 & HOME LANG BY ETHNICITY (SOMETIMES, BLACK) \\
\hline 44 & 0.211456 & HL2 X E3 & HOME LANG BY ETHNICITY (OFTEN, HISPANIC) \\
\hline 45 & -0.050424 & HL1 X E3 & HOME LANG BY ETHNICITY (SOMETIMES, HISPANIC) \\
\hline
\end{tabular}

Table B. 15
(continued)
\begin{tabular}{lcll} 
& ESTIMATED & VARIABLE & \\
& EFFECT & LABEL & \multicolumn{1}{c}{ DESCRIPTION } \\
46 & -0.125447 & NMATH1 & HIGHEST LEVEL MATH TAKEN (PRE-ALGEBRA) \\
47 & 0.244314 & NMATH2 & HIGHEST LEVEL MATH TAKEN (ALGEBRA) \\
48 & 0.443787 & NMATH3 & HIGHEST LEVEL MATH TAKEN (GEOMETRY) \\
49 & 0.744452 & NMATH4 & HIGHEST LEVEL MATH TAKEN (ALGEBRA-2) \\
50 & 0.929301 & NMATH5 & HIGHEST LEVEL MATH TAKEN (CALCULUS) \\
51 & 0.017961 & COMPUTER & COMPUTER CLASS TAKEN (YES) \\
52 & 0.221734 & GRADES & GRADES IN SCHOOL \\
53 & 0.249394 & HSPROG2 & HIGH SCHOOL PROGRAM (COLLEGE PREP) \\
54 & -0.073426 & HSPROG3 & HIGH SCHOOL PROGRAM (VOC/TECH)
\end{tabular}

Estimated Effects for Mathematics Trend Conditioning Variables
1986: Age 9, Bridge A
\begin{tabular}{|c|c|c|c|}
\hline & ESTIMATED & VARIABLE & \\
\hline & EFFECT & LABEL & DESCRIPTION \\
\hline 1 & -0.725251 & OVERALL & OVERALL CONSTANT '1' FOR EVERYONE \\
\hline 2 & -0.067436 & GENDER2 & SEX (FEMALE) \\
\hline 3 & -0.011334 & ETHNIC2 & OBSERVED ETHNICITY (BLACK) \\
\hline 4 & 0.661119 & Ethnic3 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & 0.091786 & ETHNIC4 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & 0.446555 & STOC2 & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & 0.186656 & STOC3 & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & -0.087980 & REGION2 & REGION (SOUTHEAST) \\
\hline 9 & 0.020318 & REGION3 & REGION (CENTRAL) \\
\hline 10 & -0.176899 & REGION4 & REGION (WEST) \\
\hline 11 & 0.434227 & PARED2 & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 12 & 0.558842 & PARED3 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & 0.608261 & PARED4 & PARENTS EdUCATION (COLLEGE GRAD) \\
\hline 14 & 0.369200 & PARED & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & -0.900207 & < MODALG & MODAL GRADE (LESS THAN MODAL GRade) \\
\hline 16 & 0.662656 & > MODALG & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & 0.196782 & HOMEITM3 & ARTICLES IN HOME (YES TO 3) \\
\hline 18 & 0.320011 & HOMEITM4 & ARTICLES IN HOME (YES TO 4) \\
\hline 19 & 0.060679 & E2 X SEX & ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline 20 & -0.049282 & E3 X SEX & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 21 & -0.006737 & E4 X SEX & ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline 22 & -0.430534 & E2 X PE2 & ETHNICITY BY PARENT'S ED (BLACK, HS GRad) \\
\hline 23 & -0.438015 & E2 X PE3 & ETHNICITY BY Parent's Ed (BLACK, POST HS) \\
\hline 24 & -0.474353 & E2 X PE4 & ETHNICITY BY Parent's ed (black, COLLEGE GRad) \\
\hline 25 & -0.393091 & E2 X PE & ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 26 & -0.854606 & E3 X PE2 & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 27 & -0.772768 & E3 X PE3 & ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 28 & -0.794394 & E3 X PE4 & ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) \\
\hline 29 & -0.742478 & E3 \(\times\) PE & ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline 30 & 0.220517 & E4 X PE 4 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 31 & 0.138926 & E4 X PE & ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN) \\
\hline 32 & 0.013411 & SCH.PRIV & SCHOOL TYPE (PRIVATE) \\
\hline 33 & 0.414963 & TV.0-2 & TV WATCHING (0-2 HOURS) \\
\hline 34 & 0.491512 & TV.3-5 & TV WATCHING ( \(3-5\) HOURS) \\
\hline 35 & 0.303934 & TV. \(6+\) & TV WATCHING ( \(6+\) HOURS) \\
\hline 36 & -0.322312 & HOMELNG1 & OTHER LANGUAGE AT HOME (ALWAYS) \\
\hline 37 & 0.044631 & HOMELNG2 & OTHER LANGUAGE AT HOME (SOMETIMES) \\
\hline 38 & -0.010885 & HL2 X E2 & HOME LANG BY ETHNICITY (OFTEN, BLACK) \\
\hline 39 & -0.102755 & HL1 X E2 & HOME LANG BY ETHNICITY (SOMETIMES, BLACK) \\
\hline 40 & 0.179859 & HL2 X E3 & HOME LANG BY ETHNICITY (OFTEN, HISPANIC) \\
\hline 41 & -0.083553 & HL1 X E3 & HOME LANG BY ETHNICITY (SOMETIMES, HISPANIC) \\
\hline 42 & 0.109314 & COMPUTER & ARE YOU STUDYING COMPUTERS? (YES) \\
\hline 43 & -0.088235 & DRACE2 & DERIVED RACE (BLACK) \\
\hline 44 & -0.240777 & DRACE3 & DERIVED RACE (HISPANIC) \\
\hline 45 & 0.271526 & DRACE4 & DERIVED RACE (ASIAN AMERICAN) \\
\hline
\end{tabular}

Table B. 17
Estimated Effects for Mathematics Treri Conditioning Variables 1986: Age 3, Bridge B
\begin{tabular}{cl} 
ESTIMATED & VARIABLE \\
EFFECT & LABEL \\
-1.296606 & OVERALL \\
0.052957 & GENDER2 \\
-0.252366 & ETHNIC2 \\
0.067568 & ETHNIC3 \\
0.892365 & ETHNIC4 \\
0.782783 & STCC2 \\
0.520928 & STCC3 \\
-0.073264 & REGION2 \\
-0.075212 & REGION3 \\
-0.144994 & REGION4 \\
0.218180 & PARED2 \\
0.526834 & PARED3 \\
0.475034 & PARED4 \\
0.278631 & PARED \\
-1.344181 & < MODALG \\
0.684191 & > MODALG \\
0.235841 & HOMEITM3 \\
0.266246 & HOMEITM4 \\
-0.152639 & E2 X SEX \\
-0.197325 & E3 X SEX \\
-0.403283 & E4 X SEX \\
-0.074566 & E2 X PE2 \\
-0.140388 & E2 X PE3 \\
-0.099987 & E2 X PE4 \\
-0.063112 & E2 X PE \\
-0.112575 & E3 X PE2 \\
-0.580280 & E3 X PE3 \\
-0.247772 & E3 X PE4 \\
-0.228473 & E3 X PE \\
-0.546176 & E4 X PE4 \\
-0.449937 & E4 XPE \\
-0.055567 & SCH. PRIV \\
0.347712 & TV.0-2 \\
0.394897 & TV. 3-5 \\
0.215672 & TV.6+ \\
-0.232707 & HOMELNG1 \\
0.102350 & HOMELNG2 \\
0.150033 & HL2 X E2 \\
-0.087639 & HL1 X E2 \\
0.322346 & HL2 X E3 \\
-0.065818 & HL1 X E3 \\
0.006116 & COMPUTER \\
-0.068882 & DRACE2 \\
-0.165760 & DRACE3 \\
-0.121774 & DRACE4 \\
&
\end{tabular}
```

 DESCRIPTION
 OVERALL CONSTANT '1' FOR EVERYONE
SEX (FEMALE)
OBSERVED ETHNICITY (BLACK)
OBSERVED ETHNICITY (HISPANIC)
OBSERVED ETHNICITY (ASIAN AMERICAN)
SIZE AND TYPE OF COMMUNITY (HIGH METRO)
SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
REGION (SOUTHEAST)
REGION (CENTRAL)
REGION (WEST)`
PARENTS EDUCATION (HIGH SCHOOL GRAD)
PARENTS EDUCATION (POST HIGH SCHOOL)
PARENTS EDUCATION (COLLEGE GRAD)
PARENTS EDUCATION (MISSING, I DON'T KNOW)
MODAL GRADE (LESS THAN MODAL GRADE)
MODAL GRADE (GREATER THAN MODAL GRADE)
ARTICLES IN HOME (YES TO 3)
ARTICLES IN HOME (YES TO 4)
ETHNICITY BY GENDER (BLACK FEMALE)
ETHNICITY BY GENDER (HISPANIC FEMALE)
ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE)
ETHNICITY BY PARENT'S ED (BLACK, HS GRAD)
ETHNICITY BY PARENT'S ED (BLACK, POST HS)
ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD)
ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN)
ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD)
ETHNICITY BY PARENT'S ED (HISPANIC, POST HS)
ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE)
ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE)
ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD)
ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN)
SCHOOL TYPE (PRIVATE)
TV WATCHING (0-2 HOURS)
TV WATCHING (3-5 HOURS)
TV WATCHING (}6+\mathrm{ HOURS)
OTHER LANGUAGE AT HOME (ALWAYS)
OTHER LANGUAGE AT HOME (SOMETIMES)
HOME LANG BY ETHNICITY (OFTEN, BLACK)
HOME LANG BY ETHNICITY (SOMETIMES, BLACK)
HOME LANG BY ETHNICITY (OFTEN, HISPANIC)
HOME LANG BY ETHNICITY (SOMETIMES, HISPANIC)
ARE YOU STUDYING COMPUTERS? (YES)
DERIVED RACE (BIACK)
DERIVED RACE (HISPANIC)
DERIVED RACE (ASIAN AMERICAN)

```

Table B. 18
Estimated Effects for Mathematics Trend Conditioning Variables 1986: Age 13, Bridge A
\begin{tabular}{|c|c|c|c|}
\hline & ESTIMATED EFFECT & VARIABLE LABEL & DESCRIPTION \\
\hline 1 & -0.968790 & OVERALL & OVERALL CONSTANT ' 1 ' FOR EVERYONE \\
\hline 2 & -0.209290 & GENDER2 & SEX (FEMALE) \\
\hline 3 & -0.452350 & ETHNIC2 & OBSERVED ETHNICITY (BLACK) \\
\hline 4 & -0.214310 & ETHNIC3 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & 0.000880 & ETHNIC4 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & 0.479050 & STOC2 & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & 0.225560 & STOC3 & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & -0.065080 & REGION2 & REGION (SOUTHEAST) \\
\hline 9 & -0.035780 & REGION3 & REGION (CENTRAL) \\
\hline 10 & -0.135580 & REGION4 & REGION (WEST) \\
\hline 11 & -0.031800 & PARED2 & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 12 & 0.074200 & PARED3 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & 0.114010 & PARED4 & PARENTS EDUCATION (COLLEGE GRAD) \\
\hline 14 & -0.162160 & PARED & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & -0.483090 & < MODALL & MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & 0.316280 & > MODALG & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & 0.090490 & HOMEITM3 & ARTICLES IN HOME (YES TO 3) \\
\hline 18 & 0.178190 & HOMEITM4 & ARTICLES IN HOME (YES TO 4) \\
\hline 19 & 0.081260 & E2 X SEX & ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline 20 & 0.002940 & E3 X SEX & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 21 & 0.219890 & E4 X SEX & ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline 22 & 0.086210 & E2 X PE2 & ETHNICITY BY PARENT'S ED (BLACK, HS GRad) \\
\hline 23 & -0.033540 & E2 X PE3 & ETHNICITY BY PARENT'S ED (BLACK, POST HS) \\
\hline 24 & 0.030460 & E2 X PE4 & ETHNICITY BY PARENT'S Ed (BLACK, COLLEGE GRAD) \\
\hline 25 & 0.251810 & \(\mathrm{E} 2 \times \mathrm{PE}\) & ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 26 & -0.052030 & E3 X PE2 & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 27 & 0.130550 & E3 X PE3 & ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 28 & -0.097660 & E3 X PE4 & ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) \\
\hline 29 & -0.038730 & E3 \(\mathrm{XPE}^{\text {P }}\) & ETHNICITY BY ©PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline 30 & 0.219560 & E4 X PE4 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 31 & 0.175790 & E4 X PE & ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN) \\
\hline 32 & -0.087090 & SCH. PRIV & SCHOOL TYPE (PRIVATE) \\
\hline 33 & -0.523890 & TV.0-2 & TV Watching ( \(0-2\) Hours) \\
\hline 34 & -0.502250 & TV.3-5 & TV WATCHING ( \(3-5\) HOURS) \\
\hline 35 & -0.689270 & TV. \(6+\) & TV WATCHING ( \(6+\) HOURS) \\
\hline 36 & -0.059210 & HW-NO & HOMEWORK (NONE ASSIGINED) \\
\hline 37 & 0.115340 & HW-YES & HOMEWORK (YES - SOME AMOUNT) \\
\hline 38 & -0.023640 & HW-2345 & HOMEWORK AMOUNT (LINEAR) \\
\hline 39 & -0.189330 & HOMELNG1 & OTHER LANGUAGE AT HOME (MOSTLY, ALWAYS) \\
\hline 40 & 0.075950 & HOMELNG2 & OTHER LANGUAGE AI HOME (OCCASIONALLY, \(1 / 2\) TIME) \\
\hline 41 & 0.028270 & HL2 X E2 & HOME LANG BY ETHNICITY (OFTEN, BLACK) \\
\hline 42 & 0.061320 & HL1 X E2 & HOME LANG BY ETHNICITY (SOMETIMES, BLACK) \\
\hline 43 & 0.159450 & HL2 X E3 & HOME LANG BY ETHNICITY (OFTEN, HISPANIC) \\
\hline 44 & 0.136840 & HL1 X E3 & HOME LANG BY ETHNICITY (SOMETIMES, HISPANIC) \\
\hline 45 & 0.359350 & GRADES & GRADLS IN SCHOOL \\
\hline
\end{tabular}

Table B. 18
(continued)
\begin{tabular}{lcll} 
& ESTIMATED & VARIABLE & \\
EFFECT & LABEL & \multicolumn{1}{c}{ DESCRIPTION } \\
46 & 0.455550 & TMATH2 & TYPE OF MATH CLASS (REGULAR MATH) \\
47 & 0.645330 & TMATH3 & TYPE OF MATH CLASS (PRE-ALGEBRA) \\
48 & 0.898040 & TMATH45 & TYPE OF MATH CLASS (ALGEBRA, OTHER) \\
49 & -0.003550 & COMPUTER & ARE YOU STUDYING COMPUTERS? (YES) \\
50 & -0.038190 & DRACE2 & DERIVED RACE (BLACK) \\
51 & -0.181510 & DRACE3 & DERIVED RACE (HISPANIC) \\
52 & 0.258680 & DRACE4 & DERIVED RACE (ASIAN AMERICAN)
\end{tabular}

Table B. 19
Estimated Effects for Mathematics Trend Conditioning Variables 1986: Age 13, Bridge B
\begin{tabular}{|c|c|c|}
\hline ESTIMATED & VARIABLE & \\
\hline EFFECT & LABEL & DESCRIPTION \\
\hline -2.314038 & OVERALL & OVERALL CONSTANT '1. FOR EVERYONE \\
\hline -0.217852 & GENDER2 & SEX (FEMALE) \\
\hline -0.495203 & ETHNIC2 & OBSERVED ETHNICITY (BLACK) \\
\hline 0.479798 & ETHNIC3 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 0.159407 & ETHNIC4 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 0.272203 & STOC2 & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 0.159015 & STOC3 & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline -0.200327 & REGION2 & REGION (SOUTHEAST) \\
\hline -0.130221 & REGION3 & REGION (CENTRAL) \\
\hline -0.290191 & REGION4 & REGION (WEST) \\
\hline -0.026075 & PARED2 & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 0.155467 & Pared 3 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 0.207214 & PARED4 & PARENTS EDUCATION (COLLEGE GRAD) \\
\hline 0.088771 & PARED & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline -0.640996 & < MODALG & MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 0.231757 & > MODALG & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 0.169866 & HOMEITM3 & ARTICLES IN HOME (YES TO 3) \\
\hline 0.239980 & HOMEITM4 & ARTICLES IN HOME (YES TO 4) \\
\hline 0.130466 & E2 X SEX & ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline -0.101624 & E3 X SEX & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline -0.481779 & E4 X SEX & ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline 0.062448 & E2 X PE2 & ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline 0.129460 & E2 X PE3 & ETHNICITY BY PARENT'S ED (BLACK, POST HS) \\
\hline -0.101520 & E2 X PE4 & ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD) \\
\hline 0.057715 & E2 \(\times\) PE & ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline -0.187339 & E3 3 PE2 & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline -0.114956 & E3 X PE3 & ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline -0.346426 & E3 X PE4 & ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) \\
\hline -0.231446 & E3 X PE & ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) \\
\hline 0.436624 & E4 X PE4 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 0.427622 & E4 X PE_ & ETHNICITY BY PARLNT'S ED (ASIAN AMER, UNKNOWN) \\
\hline 0.163995 & SCH.PRIV & SCHOOL TYPE (PRIVATE) \\
\hline 0.885902 & TV.0-2 & TV WATCHING (0-2 HOURS) \\
\hline 0.834638 & TV.3-5 & TV Watching ( \(3-5\) HOURS) \\
\hline 0.734312 & TV. \(6+\) & TV WATCHING ( \(6+\) HOURS) \\
\hline 0.036860 & HW-NO & HOMEWORK (NONE ASSIGNED) \\
\hline 0.131824 & HW-YES & HOMEWORK (YES - SOME AMOUNT) \\
\hline -0.001523 & HW-2345 & HOMEWORK AMOUVT (LINEAR) \\
\hline -0.327862 & HOMELNG1 & OTHER LANGUAGE AT HOME (MOSTLY, ALWAYS) \\
\hline 0.037094 & HOMELNG2 & OTHER LANGUAGE AT HOME (OCCASIONALLY, \(1 / 2\) TIME) \\
\hline 0.331032 & HL2 X E2 & HOME LANG BY ETHNICITY (OFTEN, BLACK) \\
\hline 0.075593 & HL1 X E2 & HOME LANG BY ETHNICITY (SOMETIMES, BLACK) \\
\hline 0.246166 & HL2 X E3 & HOME LANG BY ETHNICITY (OFTEN, HISPANIC) \\
\hline 0.051226 & HL1 X E3 & HOME LANG BY ETHNICITY (SOMETIMES, HISPANIC) \\
\hline 0.380695 & GRADES & GRADES IN SCHOOL \\
\hline
\end{tabular}

Table B. 19
(continued)
\begin{tabular}{lcll} 
& ESTIMATED & VARIABLE & \\
& EFFECT & LABEL & \multicolumn{1}{c}{ DESCRIPTION } \\
46 & 0.299062 & TMATH2 & TYPE OF MATH CLASS (REGULAR MATH) \\
47 & 0.530130 & TMATH3 & TYPE OF MATH CLASS (PRE-ALGEBRA) \\
48 & 0.373462 & TMATH45 & TYPE OF MATH CLASS (ALGEBRA, OTHER) \\
49 & 0.038474 & COMPUTER & ARE YOU STUDYING COMPUTERS? (YES) \\
50 & -0.195711 & DRACE2 & DERIVED RACE (BLACK) \\
51 & -0.416190 & DRACE3 & DERIVED RACE (HISPANIC) \\
52 & -0.144319 & DRACE4 & DERIVED RACE (ASIAN AMERICAN)
\end{tabular}

Table B. 20
Estimated Effects for Mathematics Trend Conditioning Variables 1986: Age 17
\begin{tabular}{|c|c|c|c|}
\hline & & VARIABLE & \\
\hline & EFFECT & LABEL & DESCRIPTION \\
\hline 1 & -2.485863 & OVERALL & OVERALL CONSTANT '1' FOR EVERYONE \\
\hline 2 & -0.203894 & GENDER2 & SEX (FEMALE) \\
\hline 3 & 0.124491 & ETHNIC2 & OBSERVED ETHNICITY (BLACK) \\
\hline 4 & -0.431167 & ETHNIC3 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & 0.212997 & ETHNIC4 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & 0.413316 & STOC2 & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & 0.352628 & STOC3 & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & -0.005895 & REGION2 & REGION (SOUTHEAST) \\
\hline 9 & 0.019766 & REGION3 & REGION (CENTRAL) \\
\hline 10 & -0.045038 & REGION4 & REGION (WEST) \\
\hline 11 & 0.030552 & PARED2 & PARENTS EDUCATION (HIGH SCHOOL GRAD) \\
\hline 12 & 0.101183 & PARED3 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & 0.121523 & Pared4 & PARENTS EDUCATION (COLLEGE GRAD) \\
\hline 14 & -0.060429 & PARED & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & -0.205362 & < MODALG & MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & -0.061003 & > MODALG & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & 0.018149 & HOMEITM3 & ARTICLES IN HOME (YES TO 3) \\
\hline 18 & 0.053439 & HOMEITM4 & ARTICLES IN HOME (YES TO 4) \\
\hline 19 & 0.053462 & E2 X SEX & ETHNICITY BY GENDER (BLACK FEMALE) \\
\hline 20 & 0.096039 & E3 X SEX & ETHNICITY BY GENDER (HISPANIC FEMALE) \\
\hline 21 & -0.172182 & E4 X SEX & ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE) \\
\hline 22 & -0.045511 & E2 X PE2 & ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) \\
\hline 23 & -0.019722 & E2 X PE3 & ETHNICITY BY PARENT'S ED (BLACK, POST HS) \\
\hline 24 & -0.025977 & E2 X PE4 & ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD) \\
\hline 25 & -0.026264 & E2 X PE & ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) \\
\hline 26 & 0.241818 & E3 X PE2 & ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) \\
\hline 27 & 0.249675 & E3 X PE3 & ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) \\
\hline 28 & 0.296959 & E3 X PE4 & ETHNICITY BY PARENT' \({ }^{\text {c ed ( }}\) (HISPANIC, COLLEGE) \\
\hline 29 & 0.009964 & E3 XPE & ETHNICITY BY PARENT'S ED (HISPANIC, UNYNOWN) \\
\hline 30 & -0.231579 & E4 X PE2 & ETHNICITY BY PARENT' \(\subseteq\) ED (ASIAN AMER, HS GRAD) \\
\hline 31 & 0.203965 & E4 X PE3 & ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS) \\
\hline 32 & 0.062122 & E4 X PE4 & ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD) \\
\hline 33 & -0.090388 & SCH.PRIV & SCHOOL TYPE (PRIVATE) \\
\hline 34 & 1.027634 & TV.0-2 & TV WATCHING ( \(0-2\) Hours) \\
\hline 35 & 0.972085 & TV.3-5 & TV WATCHING ( \(3-5\) HOURS) \\
\hline 36 & 0.815760 & TV.6+ & TV WATCHING ( \(6+\) HOURS) \\
\hline 37 & -0.088868 & HW-NO & HOMEWORK (NONE ASSIGNED) \\
\hline 38 & 0.258237 & HW-YES & HOMEWORK (YES - SOME AMOUNT) \\
\hline 39 & -0.079234 & HW-2345 & HOMEWORK AMOUNT (LINEAR) \\
\hline 40 & -0.077022 & HOMELNG1 & OTHER LANGUAGE AT HOME (MOSTLY, ALWAYS) \\
\hline 41 & 0.028441 & HOMELNG2 & OTHER LANGUAGE AT HOME (OCCASIONALLY, \(1 / 2\) TIME) \\
\hline 42 & 0.063506 & HL2 X E2 & HOME LANG BY ETHNICITY (OFTEN, BLACK) \\
\hline 43 & 0.034244 & HL1 X E2 & HOME LANG BY ETHNICITY (SOMETIMES, BLACK) \\
\hline 44 & 0.399629 & HL2 X E3 & HOME LANG BY ETHNICITY (OFTEN, HISPANIC) \\
\hline 45 & 0.294080 & HL1 X E3 & HOME LANG BY ETHNICITY (SOMETIMES, HISPANIC) \\
\hline
\end{tabular} 547

Table B. 20 (continued)
\begin{tabular}{lcll} 
& ESTIMATED & VARIABLE & \\
& EFFECT & LABEL & \multicolumn{1}{c}{ DESCRIPTION } \\
46 & -0.134802 & NMATH1 & HIGHEST LEVEL MATH TAKEN (PRE-ALGEBRA) \\
47 & 0.097243 & NMATH2 & HIGHEST LEVEL MATH TAKEN (ALGEBRA) \\
48 & 0.324996 & NMATH3 & HIGHEST LEVEL MATH TAKEN (GEOMETRY) \\
49 & 0.689081 & NMATH4 & HIGHEST LEVEL MATH TAKEN (ALGEBRA-2) \\
50 & 1.223782 & NMATH5 & HIGHEST LEVEL MATH TAKEN (CALCULUS) \\
51 & 0.020003 & COMPUTER & COMPUTER CLASS TAKEN (YES) \\
52 & 0.292099 & GRADES & GRADES IN SCHOOL \\
53 & 0.226475 & HSPROG2 & HIGH SCHOOL PROGRAM (COLLEGE PREP) \\
54 & -0.056057 & HSPROG3 & HIGH SCHOOL PROGRAM (VOC/TECH) \\
55 & -0.531790 & DRACE2 & DERIVED RACE (BLACK) \\
56 & -0.345698 & DRACE3 & DERIVED RACE (HISPANIC) \\
57 & -0.125825 & DRACE4 & DERIVED RACE (ASIAN AMERICAN)
\end{tabular}

Table B. 21
Science Conditioning Variables, Grade 3/Age 9

\section*{VARIABLE LABEL}

OVERALL GENDER2 ETHNIC2 ETHNIC3
ETHNIC4
STOC2
STOC3
REGION2
REGION3
REGION4
PARED2
PARED3
PARED4
PARED
ITEMS \(\overline{2}\)
ITEMS3
TV
TV**2
HW-YES
HW-2345
LM BY E3
LM BY E4
LM BY E LUNCH\% LUNCH \%WHITE49
\%WHITE79
\%WHITE00
E2 X SEX
E3 X SEX
E4 X SEX
E2 X PE2
E2 X PE3
E2 X PE4
E2 X PE
E3 X PE2
E3 X PE3
E3 X PE4
E3 X PE
E4 X PE2
E4 X PE3
E4 X PE4
E4 X PE
MA, <MG

DESCRIPTION
1 OVERALL CONSTANT '1' FOR EVERYONE
2 SEX (FEMALE)
3 ETHNICITY (BLACK)
4 ETHNICITY (HISPANIC)
5 ETHNICITY (ASIAN AMERICAN)
6 SIZE AND TYPE OF COMMUNITY (HIGH METRO)
7 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
8 REGION (SOUTHEAST)
9 REGION (CENTRAL)
10 RFGION (WEST)
11 PARENTS EDUCATION (HIGH SCHOOL GRAD)
12 PARENTS EDUCATION (POST HIGH SCHOOL)
13 PARENTS EDUCATION (COLLEGE GRAD)
14 PARENTS EDUCATION (MISSING, I DON'T KNOW)
15 ITEMS IN HOME (FOUR OF THE FIVE)
16 ITEMS IN HOME (FIVE OF THE FIVE)
17 HOURS TV WATCHING (LINEAR)
18 HOURS TV WATCHING (QUADRATIC)
19 HOMEWORK (YES - SOME AMOUNT)
20 HOMEWORK AMOUNT (LINEAR)
21 LANGUAGE MINORITY BY ETHNICITY (YES, HISı .NIC)
22 LANGUAGE MINORITY BY ETHNICITY (YES, ASIAN AMER)
23 LANGUAGE MINORITY BY ETHNICITY (YES, OTHER ETH)
24 PERCENT IN LUNCH PROGRAM
25 LUNCH PROGRaM (MISSING)
26 PERCENT WHITE IN SCHOOL ( \(0-49 \%\) WHITE MINORITY)
27 PERCENT WHITE IN SCHOOL (50-79\% INTEGRATED)
28 PERCENT WHITE IN SCHOOL ( \(80-100 \%\) PREDOMINANTLY)
29 ETHNICITY BY GENDER (BLACK FEMALE)
30 ETHNICITY BY GENDER (HISPANIC FEMALE)
31 ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE)
32 ETHNICITY BY PARENT'S ED (BLACK, HS GRAD)
33 ETHNICITY BY PARENT'S ED (BLACK, POST HS)
34 ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD)
35 ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN)
36 ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD)
37 ETHNICITY BY PARENT'S ED (HISPANIC, POST HS)
38 ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE)
39 ETHNICIT BY PARENT'S ED (HISPANIC, UNKNOWN)
40 ETHNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD)
41 ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS)
42 ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD)
43 ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN)
44 MODAL AGE, LESS THAN MODAL GRADE

Table B. 21
(continued)
variable
LABEL
MA, MG
\(M A,>M G\)
\(>M A, M G\)
SCH TYPE
ASK SW?
PRESCHI
\#PARENTI
MOTHER
MOWORK
SCI123
SCI45
COMPUTER
SUPERVIS
MATH Q1
SCI Q1

\section*{DESCRIPTION}

45 MODAL AGE, MODAL GRADE, MISSING
46 MODAL AGE, GREATER THAN MODAL GRADE
47 GREATER THAN MODAL AGE, MODAL GRADE
48 SCHOOL TYPE (NOT PUBLIC)
49 FAMILY ASKS ABOUT SCHOOLWORK (ALMOST EVERY DAY)
50 WENT TO PRESCHOOL (YES)
51 SINGLE/MULTIPLE PARENT HOME (MOTHER, FATHER HOME)
52 MOTHER AT HOME
53 MOTHER WORKS OUTSIDE (YES)
54 SPENT AT LEAST ONCE A WEEK STUDYING SCIENCE
55 SPENT < ONCE A WEEK OR NEVER STUDYING SCIENCE
56 USE COMPUTERS FOR MATH, READING, ETC. (YES)
57 ADULT SUPERVISION OF STUDENI AFTER SCHOOL(YES)
58 MATH QUANTILE (LINEAR -1,0,1)
59 SCIENCE QUANTILE (LINEAR -1,0,1)

Table B. 22
Estimated Effects for : : ience Conditioning Variables, Grade 3/Age 9
\begin{tabular}{ccc} 
SUBSCALE & SUBSCALE & SUBSCALE \\
1 & 3 & 6
\end{tabular}
\begin{tabular}{rrrr}
1 & -1.027950 & -1.539603 & -0.411865 \\
2 & -0.036995 & 0.034485 & -0.324613 \\
3 & 0.004488 & -0.220916 & -0.298918 \\
4 & -0.046322 & -0.253478 & -0.148369 \\
5 & -0.512803 & 0.493381 & 0.639191 \\
6 & 0.317467 & 0.165716 & 0.231756 \\
7 & 0.195622 & 0.106610 & 0.173982 \\
8 & -0.051878 & 0.049463 & 0.023004 \\
9 & -0.058628 & 0.014442 & -0.037485 \\
10 & -0.099356 & 0.006751 & 0.061045 \\
11 & 0.209816 & 0.033078 & 0.202342 \\
12 & 0.418804 & 0.311525 & 0.394688 \\
13 & 0.371804 & 0.320744 & 0.347548 \\
14 & 0.228783 & 0.271383 & 0.135759 \\
15 & 0.052308 & 0.070849 & 0.111309 \\
16 & 0.081124 & 0.228607 & 0.170024 \\
17 & 0.078107 & 0.235255 & 0.216679 \\
18 & -0.014847 & -0.032669 & -0.034084 \\
19 & 0.078969 & -0.076431 & 0.112195 \\
20 & -0.001100 & -0.027368 & -0.021323 \\
21 & 0.090482 & 0.152099 & 0.185703 \\
22 & 0.099780 & 0.127217 & 0.040464 \\
23 & -0.133542 & -0.152438 & -0.230931 \\
24 & -0.259334 & -0.166585 & -0.382387 \\
25 & -0.137761 & -0.072979 & -0.158428 \\
26 & -0.141557 & -0.134732 & -0.198346 \\
27 & -0.028554 & -0.066428 & -0.108059 \\
28 & 0.092295 & 0.008121 & 0.106356 \\
29 & 0.107580 & 0.099879 & -0.055230 \\
30 & 0.312742 & -0.301925 & -0.162949 \\
31 & -0.336560 & -0.108481 & -0.399386 \\
32 & -0.479056 & -0.371290 & -0.380324 \\
33 & -0.345508 & -0.209929 & -0.205010 \\
34 & -0.311267 & -0.236645 & -0.136088 \\
35 & -0.174188 & -0.054116 & -0.390267 \\
36 & -0.255924 & -0.261684 & -0.282314 \\
37 & -0.287467 & -0.240709 & -0.287834 \\
38 & -0.226640 & -0.167789 & -0.100105 \\
39 & 0.383161 & -1.628189 & -1.164638 \\
40 & 0.150046 & -1.295492 & -1.460198 \\
41 & 0.440562 & -0.886048 & -0.438206 \\
42 & 0.050570 & -0.759013 & -0.815707 \\
43 & -0.468759 & -0.652030 & -0.636868 \\
44 & 0.105295 & -0.003158 & 0.035390 \\
& & &
\end{tabular}

Table B. 22
(continued)
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { SUBSCALE } \\
1
\end{gathered}
\] & SUBSCALE 3 & \[
\begin{gathered}
\text { SUBSCALE } \\
6
\end{gathered}
\] \\
\hline 45 & 0.314602 & 0.128585 & 0.272590 \\
\hline 46 & -0.035222 & -0.168017 & -0.225379 \\
\hline 47 & -0.070884 & -0.131958 & -0.151235 \\
\hline 48 & -0.034763 & -0.005629 & -0.070424 \\
\hline 49 & 0.144045 & 0.082908 & 0.120839 \\
\hline 50 & 0.147113 & 0.137197 & 0.067721 \\
\hline 51 & 0.052701 & 0.059180 & 0.198927 \\
\hline 52 & -0.038439 & 0.029265 & 0.002207 \\
\hline 53 & -0.258651 & 0.263742 & -0.051063 \\
\hline 54 & -0.385471 & 0.166218 & -0.213505 \\
\hline 55 & 0.033335 & 0.039578 & 0.043706 \\
\hline 56 & 0.065488 & 0.118883 & 0.100908 \\
\hline 57 & -0.280087 & -0.249134 & -0.327255 \\
\hline
\end{tabular}
-500-
55.

Table B. 23
Science Conditioning Variables, Grade 7/Age 13
\begin{tabular}{|c|c|}
\hline 1 & OVERALL \\
\hline 2 & GENDER2 \\
\hline 3 & ETHNIC2 \\
\hline 4 & ETHNIC3 \\
\hline 5 & ETHNIC4 \\
\hline 6 & STOC2 \\
\hline 7 & STOC3 \\
\hline 8 & REGION2 \\
\hline 9 & REGION3 \\
\hline 10 & REGION4 \\
\hline 11 & PARED2 \\
\hline 12 & PARED3 \\
\hline 13 & PARED4 \\
\hline 14 & PARED \\
\hline 15 & ITEMS2 \\
\hline 16 & ITEMS 3 \\
\hline 17 & TV \\
\hline 18 & TV**2 \\
\hline 19 & HW-NO \\
\hline 20 & HW-YES \\
\hline 21 & HW-2345 \\
\hline 22 & LM BY E3 \\
\hline 23 & LM BY E4 \\
\hline 24 & LM BY E \\
\hline 25 & LUNCH\% \\
\hline 26 & LUNCH \\
\hline 27 & \%WHITE49 \\
\hline 28 & \%WHITE79 \\
\hline & \%WHITE00 \\
\hline 29 & E2 X SEX \\
\hline 30 & E3 X SEX \\
\hline 31 & E4 X SEX \\
\hline 32 & E2 X PE2 \\
\hline 33 & E2 X PE3 \\
\hline 34 & E2 X PE4 \\
\hline 35 & E2 X PE \\
\hline 36 & E3 X PE2 \\
\hline 37 & E3 X PE3 \\
\hline 38 & E3 X PE4 \\
\hline 39 & E3 X PE \\
\hline 40 & E4 X PE2 \\
\hline 41 & E4 X PE3 \\
\hline 42 & E4 X PE4 \\
\hline 43 & E4 X PE \\
\hline
\end{tabular}

VARIABLE LABEL

OVERALL GENDER2

4 ETHNTC3

\section*{5}

\section*{DESCRIPTION}

1 OVERALL CONSTANT ' 1 ' FOR EVERYONE
2 SEX (FEMALE)
3 ETHNICITY (BLACK)
4 ETHNICITY (HISPANIC)
5 ETHNICITY (ASIAN AMERICAN)
6 SIZE AND TYPE OF COMMUNITY (HIGH METRO)
7 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
8 REGION (SOUTHEAST)
9 REGION (CENTRAL)
10 REGION (WEST;
11 PARENTS EDUCATION (HIGH SCHOOL GRAD)
12 PARENTS EDUCATION (POST HIGH SCHOOL)
13 Parents education (CGLLEGE GRad)
14 PARENTS EDUCATION (MISSING, I DON'T KNOW)
15 ITEMS IN HOME (FOUR OF THE FIVE)
16 ITEMS IN HOME (FIVE OF THE FIVE)
17 HOURS TV WATCHING (LINEAR)
18 HOURS TV WATCHING (QUADRATIC)
19 HOMEWORK (DON'T HAVE ANY)
20 HOMEWORK (YES - SOME AMOUNT)
21 HOMEWORK AMOUNT (LINEAR)
22 LANGUAGE MINORITY BY ETHNICITY (YES, HISPANIC)
23 LANGUAGE MINORITY BY ETHNICITY (YES, ASIAN AMER)
24 LANGUAGE MINORITY BY ETHNICITY (YES, OTHER ETH)
25 PERCENT IN LUNCH PROGRAM
26 LUNCH PROGRAM (MISSING)
27 F'ERCENT WHITE IN SCHOOL ( \(0-49 \%\) WHITE MINORITY)
28 PERCENT WHITE IN SCHOOL ( \(50 \%\)-79\%)
29 PERCENT WHITE IN SCHOOL (80-100\% PREDOMINANTLY)
30 ETHNICITY BY GENDER (BLACK FEMALE)
31 ETHNICITY BY GENDER (HISPANIC FEMALE)
32 ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE)
33 ETHNICITY BY PARENT'S ED (BLACK. HS GRAD)
34 ETHNICITY BY PARENT'S ED (BLACK, POST HS)
35 ETHNICITY BY PARENT'S ED (BLACK, COLLEGE GRAD)
36 ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN)
37 ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD)
38 ETHNICITY BY PARENT'S ED (HISPANIC, POST HS)
39 ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE)
40 ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN)
41 ETHNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD)
42 ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS)
43 ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD)
44 ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN)

Table B. 23
(continued)

VARIABLE LABEL

MA, <MG
MA,MG
MA, >MG
\(>M A, M G\)
SCH TYPE
ASK SW?
PRESCH1
\#PARENT1
MOTHER
MOWORK
COMPUTER
MATH2
MATH3
MATH45
SCIENCE2
SCIENCE3
SCIENCE4
SCIENCE5
GRADES
MATH Q1
SCI Q1

\section*{DESCRIPTION}

45 MODAL AGE, LESS THAN MODAL GRADE
46 MODAL AGE, MODAL GRADE, MISSING
47 MODAL AGE, GREATER THAN MODAL GRADE
48 GREATER THAN MODAL AGE, MODAL GRADE
49 SCHOOL TYPE (NOT PUBLIC)
50 FAMILY ASKS ABOUT SCHOOLWORK (ALMOST EVERY DAY)
51 WENT TO PRESCHOOL (YES)
52 SINGLE/MULTIPLE PARENT HOME (MOTHER, FATHER HOME)
53 MOTHER AT HOME
5/: MOTHER WORKS OUTSIDE (YES)
55 USE COMPUTERS FOR MATH, READING, ETC. (YES)
56 TYPE OF MATH CLASS(REGULAR MATH)
57 TYPE OF MATH CLASS (PRE-ALGEBRA)
58 TYPE OF MATH CLASS (ALGEBRA)
59 STUDYING IN SCIENCE THIS YEAR (LIFE SCIENCE)
50 STUDYING IN SCIENCE THIS YEAR (PHYSICAL SCIENCE)
61 STUDYING IN SCIENCE THIS YEAR (EARTH SCIENCE)
62 STUDYING IN SCIENCE THIS YEAR (GENERAL SCIENCE)
63 GRADES IN SCHOOL (LINEAR)
64 MATH QUANTILE (LINEAR -1,0,1)
65 SCIENCE QUANTILE (LINEAR \(-1,0,1\) )

Table B. 24
Estimated Effects for Science Conditioning Variables, Grade 7/Age 13
\begin{tabular}{ccccc} 
SUBSCALE & SUBSCALE & SUBSCALE & SUBSCALE & SUBSCALE \\
1 & 2 & 3 & 4 & 5
\end{tabular}
\begin{tabular}{rrrrr}
-0.921900 & -0.728416 & -0.964766 & -0.403002 & -1.045989 \\
-0.188817 & -0.289175 & -0.024590 & -0.526984 & -0.298524 \\
-0.344867 & -0.609363 & -0.174167 & -0.326886 & -0.870624 \\
-0.278339 & -0.327569 & -0.227757 & -0.063358 & -0.233576 \\
-1.058032 & -1.822311 & 0.789686 & -1.016836 & 0.330024 \\
0.160177 & 0.145207 & 0.004400 & 0.087345 & 0.145490 \\
0.095899 & 0.068574 & 0.013040 & 0.118676 & 0.100085 \\
0.029778 & -0.017066 & -0.015193 & -0.049297 & 0.019044 \\
0.057041 & 0.026123 & 0.062015 & 0.041668 & 0.102655 \\
-0.033711 & -0.067379 & -0.032482 & -0.047574 & 0.011705 \\
0.029428 & -0.054719 & 0.093961 & 0.102967 & 0.071009 \\
0.176754 & 0.151999 & 0.197954 & 0.223748 & 0.241014 \\
0.194384 & 0.101753 & 0.232376 & 0.214939 & 0.296519 \\
-0.044960 & -0.063955 & 0.086042 & 0.039230 & 0.059112 \\
0.085018 & 0.038272 & 0.063404 & 0.153887 & 0.121538 \\
0.094808 & 0.104775 & 0.095784 & 0.156526 & 0.161213 \\
0.080265 & 0.040780 & 0.144271 & 0.053809 & 0.087588 \\
-0.013240 & -0.006388 & -0.021666 & -0.010680 & -0.017068 \\
0.036270 & -0.210399 & -0.041576 & -0.490439 & -0.078815 \\
0.100315 & -0.227302 & 0.053470 & -0.428770 & -0.170859 \\
0.007153 & 0.013630 & 0.026170 & -0.018446 & 0.020861 \\
-0.125860 & 0.019754 & 0.025339 & -0.043756 & -0.023216 \\
-0.225117 & -0.352867 & -0.321131 & -0.125152 & -0.625920 \\
0.035864 & -0.040543 & -0.069561 & 0.125382 & 0.002168 \\
-0.029924 & -0.206254 & -0.059946 & 0.024705 & -0.032774 \\
-0.029282 & -0.183671 & -0.066899 & -0.008394 & -0.030263 \\
-0.176457 & -0.144600 & -0.113581 & -0.244936 & -0.240365 \\
-0.031899 & -0.364580 & -0.013255 & -0.036387 & -0.040290 \\
0.034209 & 0.121098 & -0.060865 & -0.013686 & 0.072926 \\
0.075908 & 0.176640 & -0.013788 & 0.027655 & 0.102128 \\
0.202159 & -0.175074 & -0.530370 & -0.266771 & -0.102259 \\
0.037020 & 0.134764 & -0.139545 & -0.119350 & 0.488599 \\
0.125354 & 0.062806 & -0.026240 & 0.079002 & 0.788805 \\
-0.028683 & 0.133492 & -0.116936 & -0.137285 & 0.385568 \\
0.022668 & 0.019560 & -0.181972 & -0.094152 & 0.491215 \\
0.096676 & -0.280242 & -0.026605 & 0.033987 & 0.088311 \\
0.140235 & -0.005111 & 0.133751 & -0.068758 & \(-0.1169 r 7\) \\
-0.071345 & -0.151671 & -0.057318 & -0.088970 & -0.19816 \\
0.216444 & -0.047763 & -0.031577 & -0.022252 & -0.032317 \\
1.187678 & 2.276199 & -0.795834 & 0.792370 & -0.362707 \\
0.906998 & 1.792808 & -0.384851 & 1.839425 & -0.510366 \\
1.264378 & 2.124688 & -0.732842 & 1.537907 & 0.112796 \\
1.105844 & 2.423252 & -0.545686 & 1.579802 & -0.025581 \\
-0.406121 & -0.436965 & -0.429181 & -0.448541 & -0.552704 \\
& 0
\end{tabular}

Table B. 24
(continued)
\begin{tabular}{lrrrrr} 
& SUBSCALE & SUBSCALE & \multicolumn{1}{c}{ SUBSCALE } & SUBSCALE & \multicolumn{1}{c}{ SUBSCALE } \\
& 1 & 2 & \multicolumn{1}{c}{3} & 4 & 5 \\
& 1 & & & & \\
45 & -0.010292 & -0.054944 & -0.070840 & -0.090188 & -0.137412 \\
46 & 0.301273 & 0.088229 & 0.099190 & 0.352348 & 0.174274 \\
47 & -0.181314 & -0.265747 & -0.270989 & -0.232510 & -0.313463 \\
48 & -0.020186 & 0.013735 & 0.012268 & -0.071327 & 0.017841 \\
49 & -0.032842 & -0.081746 & -0.063706 & -0.085566 & 0.011082 \\
50 & 0.049921 & 0.048095 & 0.055173 & 0.053287 & 0.017543 \\
51 & 0.060310 & -0.005693 & 0.008395 & -0.021667 & 0.066283 \\
52 & 0.061615 & -0.061938 & -0.013836 & -0.009469 & 0.011801 \\
53 & -0.026106 & -0.019550 & -0.001362 & -0.070962 & -0.066507 \\
54 & -0.101173 & -0.074390 & -0.110376 & -0.066353 & -0.089433 \\
55 & -0.130518 & 0.083639 & 0.017161 & 0.178218 & 0.101881 \\
56 & 0.008173 & 0.276039 & 0.229248 & 0.326113 & 0.290042 \\
57 & -0.102004 & 0.236990 & 0.001423 & 0.264171 & 0.162667 \\
58 & 0.256450 & 0.224210 & 0.171521 & 0.161651 & 0.197056 \\
59 & 0.091923 & 0.214919 & 0.206680 & 0.139448 & 0.144136 \\
60 & 0.147674 & 0.184529 & 0.147927 & 0.139468 & 0.091654 \\
61 & 0.269343 & 0.304336 & 0.237593 & 0.247061 & 0.288282 \\
62 & 0.252771 & 0.231289 & 0.224300 & 0.186930 & 0.285746 \\
63 & -0.260643 & -0.212966 & -0.291113 & -0.294428 & -0.280580 \\
64 & -0.135874 & -0.179473 & -0.186960 & -0.060628 & -0.128474
\end{tabular}

Table B. 25
Science Conditioning Variables, Grade 11/Age 17

VARIABLE LABEL

OVERALL GENDER2 ETHNIC2 ETHNIC3 ETHNIC4 STOC2
STOC3
REGION2
REGION3
REGION4
PARED2
PARED3
PARED4
PARED
ITEMS 2
ITEMS 3
TV
TV**2
HW-NO
HW-YES
HW-2345
LM BY E3
LM BY E4
LM BY E_
LUNCH\%
LUNCH
2WHITE49
zWHITE79
\%WHITE00
E2 X SEX
E3 X SEX
E4 X SEX
E2 X PE2
E2 X PE3
E2 X PE4
E2 X PE
E3 \(\times\) PE 2
E3 X PE3
E3 X PE4
E3 X PE
E4 X PE2
E4 X PE3
E4 X PE4
E4 X PE_

\section*{DESCRIPTION}

1 OVERALL CONSTANT '1' FOR EVERYONE
2 SEX (FEMALE)
3 ETHNICITY (BLACK)
4 ETHNICITY (HISPANIC)
5 ETHNICITY (ASIAN AMERICAN)
6 SIZE AND TYPE OF COMMUNITY (HIGH METRO)
7 SIZE AND TYPE OF COMMUNITY (NOT HIGK OR LOW)
8 REGION (SOUTHEAST)
3 REGION (CENTRAL)
10 REGION (WEST)
11 PARENTS EDUCATION (HIGH SCHOOL GRAD)
12 PARENTS EDUCATION (POST HIGH SCHOOL)
13 PARENTS EDUCATION (COLLEGE GRAD)
14 PARENTS EDUCATION (MISSING, I DON'T KNOW)
15 ITEMS IN HOME (FOUR OF THE FIVE)
16 ITEMS IN HOME (FIVE OF THE FIVE)
1.7 HOURS TV WATCHING (LINEAR)

18 HOURS TV WATCHING (QUADRATIC)
19 HOMEWORK (DON'T HAVE ANY)
20 HOMEWORK (YES - SOME AMOUNT)
21 HOMEWORK AMOUNT (LINEAR)
22 LANGUAGE MINORITY BY ETHNICITY (YES, HISPANIC)
23 LANGUAGE MINORITY BY ETHNICITY (YES, ASIAN AMER)
24 LANGUAGE MINORITY BY ETHNICITY (YES, OTHER ETH)
25 PERCENT IN LUNCH PROGRAM
26 LUNCH PROGRAM (MISSING)
27 PERCENT WHITE IN SCHOOL ( \(0-49 \%\) WHITE MINORITY)
28 PERCENT WHITE IN SCHOOL ( \(50-79 \%\) INTEGRATED)
29 PERCENT WHITE IN SCHOOL ( \(80-100 \%\) PREDOMINANTLY)
30 ETHNICITY BY GENDER (BLACK FEMALE)
31 ETHNICITY BY GENDER (HISPANIC FEMALE)
32 ETHNICITY BY GENDER (ASIAN AMERICAN FEMALE)
33 ETHNICITY BY PARENT'S ED (BLACK, HS GRAD)
34 ETHNICITY BY PARENT'S ED (BLACK, POST HS)
35 ETHNICITY BY f.RENT'S ED (BLACK, COLLEGE GRAD)
36 ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN)
37 ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD)
38 ETHNICITY BY PARENT'S ED (HISPANIC, POST HS)
39 ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE)
40 ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN)
41 ETHNICITY BY PARENT'S ED (ASIAN AMER, HS GRAD)
42 ETHNICITY BY PARENT'S ED (ASIAN AMER, POST HS)
43 ETHNICITY BY PARENT'S ED (ASIAN AMER, COLL GRAD)
44 ETHNICITY BY PARENT'S ED (ASIAN AMER, UNKNOWN)
55.

Table B. 25
(continued)
\begin{tabular}{|c|c|c|c|}
\hline & VARIABLE & & \\
\hline & LABEL & & DESCRIPTION \\
\hline 44 & MA, \(\triangle\) MG & 45 & MODAL AGE, LESS THAN MODAL GRADE \\
\hline 45 & MA, MG & 46 & MODAL AGE, MODAL GRADE, MISSING \\
\hline 46 & MA, \(>\) MG & 47 & MODAL AGE, GRFATER THAN MODAL GRADE \\
\hline 47 & >MA, MG & 48 & GREATER THAN MODAL AGE, MODAL GRADE \\
\hline 48 & SCH TYPE & 49 & SCHOOL TYPE (NOT PUBLIC) \\
\hline 49 & ASK SW? & 50 & FAMILY ASKS ABOUT SCHOOLWORK (ALMOS' EVERY DAY) \\
\hline 50 & PRESCHI & 51 & WENT TO PRESCHOOL (YES) \\
\hline 51 & \#PARENT1 & 52 & SINGLE/MULTYPLE PARENT HOME (MOTHER, FAi'HER HOME) \\
\hline 52 & MOTHER & 53 & MOTHER AT HOME \\
\hline 53 & MOWORK & 54 & MOTHER WORKS OUTSIDE (YES) \\
\hline 54 & GRADES & 55 & GRADES IN SCHOOL (LINEAR) \\
\hline 55 & PROGRAM2 & 56 & HIGH SCHOOL PROGRAM (COLLEGE PREPARATORX) \\
\hline 56 & PROGRAM3 & 57 & HIGH SCHGOL PROGRAM(VOCATIONAL) \\
\hline 57 & MATH & 58 & NUMBER OF MATH COURSES \\
\hline 58 & SCIENCE & 59 & NUMBER OF SCIENCE COURSES \\
\hline 59 & Postsec2 & 60 & TWO-YEAR COLLEGE \\
\hline 60 & POSTSEC3 & 61 & FOUR-YEAR COLLEGE \\
\hline 61 & HRS WORK & 62 & HOURS OF OUTSIDE WORK \\
\hline 62 & ENGL23 & 63 & TYPES OF ENGLISH CLASS (ADVANCED\&COLLEGE PREP.) \\
\hline 63 & ENGLISH5 & 64 & TYPES OF ENGLISH CLASS (REMEDIAL) \\
\hline 64 & MATH QI & 65 & MATH QUANTILE (LINEAR -1,0,1) \\
\hline 65 & SCI Q1 & 66 & SCIENCE QUANTILE (LINEAR -1,0,1) \\
\hline
\end{tabular}

Table B. 26
Estimated Effects for Science Conditioning Variables, Grade 11/Age 17
\begin{tabular}{ccccc} 
SUBSCALE & SUBSCALE & SUBSCALE & SUBSCALE & SUBSCALE \\
1 & 2 & 3 & 4 & 5
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 0.043593 & 0.063372 & 0.106473 & , & - \\
\hline 2 & -0.16109? & -0.289228 & -0.099476 & -0.716864 & -0.460884 \\
\hline 3 & -0.362475 & -0.338893 & -0.173738 & -0.620345 & -0.432612 \\
\hline 4 & -0.230492 & -0.553346 & -0.453106 & -0.383723 & 0.004074 \\
\hline 5 & 0.257795 & 0.697624 & -0.327383 & -0.135944 & 0.107313 \\
\hline 6 & 0.181303 & 0.155107 & 0.141684 & 0.207503 & 35 \\
\hline 7 & 0.096863 & 0.059891 & 0.029983 & 0.038749 & 0.158398 \\
\hline 8 & -0.011213 & 0.047387 & 0.017864 & 0.015855 & -0.005260 \\
\hline 9 & -0.004681 & 0.027787 & 0.082975 & 0.007021 & 2 \\
\hline 10 & 0.020535 & -0.066603 & 0.030213 & 0.049925 & 85 \\
\hline 11 & 0.07245 ? & -0.066689 & -0.064837 & -0.055517 & 35 \\
\hline 12 & 0.179656 & 0.031182 & 6 & 0.063548 & 0.265283 \\
\hline 13 & 0.149746 & 0 & 0. & 0.106435 & 0.240836 \\
\hline 14 & -0.022815 & -0.18605 & -0.092720 & 0.085932 & 0.302199 \\
\hline 15 & 0.131464 & 0.142492 & 0.106207 & 0.094887 & 0.129853 \\
\hline 16 & 0.124030 & 0.134147 & 0.123985 & 0.114555 & 0.156846 \\
\hline 17 & -0.001005 & -0.082887 & -0.028116 & -0.038275 & -0.041108 \\
\hline 18 & -0.004810 & 0.006694 & -0.002735 & 0.000991 & 0.000820 \\
\hline 19 & -0.108159 & -0.699705 & -0.340852 & -0.523118 & -0.079568 \\
\hline 20 & -0.007321 & -0.596946 & -0.197045 & -0.458036 & -0.056911 \\
\hline 21 & -0.009901 & -0.002791 & -0.010068 & -0.027996 & 0.009185 \\
\hline 22 & -0.159796 & 0.179664 & 0.004145 & 0.048460 & -0.213472 \\
\hline 23 & -0.124145 & -0.547254 & 0.023533 & -0.316701 & -0.044378 \\
\hline 24 & 0.144437 & -0.232710 & -0.081140 & -0.010936 & 2 \\
\hline 2 & -0.232195 & -0.111559 & -0.039114 & -0.001650 & \\
\hline 26 & -0.001776 & 0.019039 & -0.020661 & -0.029408 & -0. \\
\hline 2 & -0.069033 & -0.124319 & -0.079437 & -0.088034 & -0.073965 \\
\hline 28 & -0.014637 & -0.000283 & 0.003928 & -0.024071 & 0.030897 \\
\hline 29 & 0.032172 & -0.048967 & 0.132354 & 0.195481 & 0.059742 \\
\hline 30 & 0.169771 & 0.171371 & 0.215543 & 0.141315 & 0.245622 \\
\hline 31 & -0.311658 & -0.486529 & 0.106844 & -0.457785 & 0.166015 \\
\hline 3 & -0.128565 & -0.165027 & -0.153785 & -0.012574 & -0.176237 \\
\hline 33 & -0.040215 & -0.121918 & -0.110535 & -0.107906 & -0.213 \\
\hline 34 & -0.106096 & -0.105798 & -0.210725 & 0.024428 & -0 \\
\hline 3 & 0.03794 & 0.049074 & -0.386862 & -0.077424 & - \\
\hline 36 & -0.08532 & 0.102463 & 0.126362 & -0.133838 & - \\
\hline 37 & -0.0010 & 0.332671 & 0.180225 & -0.024222 & -0.299538 \\
\hline & -0.119561 & -0.051860 & 0.131508 & -0.004487 & -0.17145 \\
\hline 3 & 0.046925 & 0.202801 & 0.344202 & -0.172031 & -0.48879 \\
\hline 40 & -0.292711 & -0.706969 & 0.148923 & 0.220247 & -0.969625 \\
\hline 41 & -0.138596 & -0.565604 & 0.149780 & -0.231619 & -0.312820 \\
\hline 42 & -0.045111 & -0.370719 & 0.320102 & 0.355094 & -0.221272 \\
\hline 45 & -0.789749 & -0.553608 & 0.192032 & -0.320634 & -0.824142 \\
\hline 4 & -0.141423 & -0.195838 & -0.267417 & 0.184574 & -0.115384 \\
\hline
\end{tabular}

Table B. 26
(continued)
\begin{tabular}{rrrrr} 
SUBSCALE & SUBSCALE & \multicolumn{1}{c}{ SUBSCALE } & \multicolumn{1}{c}{ SUBSCALE } & \multicolumn{1}{r}{ SUBSCALE } \\
1 & 2 & 3 & 4 & \multicolumn{1}{c}{5} \\
& & & 4 & \\
-0.006500 & -0.051797 & -0.051633 & 0.007075 & 0.039927 \\
-0.013307 & -0.100688 & -0.018166 & 0.038639 & -0.053074 \\
-0.173344 & -0.219757 & -0.222941 & -0.102418 & -0.100814 \\
-0.111604 & -0.130452 & -0.115449 & -0.179906 & -0.111902 \\
-0.039574 & -0.046300 & -0.025739 & -0.017585 & -0.048514 \\
0.003232 & 0.108885 & -0.004211 & -0.009670 & -0.002218 \\
0.021146 & -0.014706 & 0.027883 & -0.024738 & -0.027867 \\
-0.060182 & -0.100502 & -0.105426 & 0.016892 & 0.039096 \\
-0.008129 & -0.036518 & 0.004197 & -0.032206 & -0.040905 \\
0.137860 & 0.222743 & 0.213212 & 0.150295 & 0.156734 \\
0.165642 & 0.138009 & 0.135968 & 0.134767 & 0.152624 \\
-0.008978 & 0.001769 & -0.023027 & 0.066621 & -0.009418 \\
0.059011 & 0.100075 & 0.095915 & 0.103744 & 0.084779 \\
0.084300 & 0.216691 & 0.096578 & 0.108890 & 0.100083 \\
-0.015932 & 0.011491 & 0.008584 & -0.041987 & -0.024621 \\
0.092601 & 0.191483 & 0.087915 & 0.013643 & 0.086432 \\
-0.002879 & -0.058677 & -0.078214 & -0.045114 & -0.017600 \\
0.091970 & 0.133598 & 0.074131 & 0.053897 & 0.014220 \\
-0.261116 & -0.286074 & -0.079385 & -0.087793 & -0.274558 \\
-0.221969 & -0.157411 & -0.284129 & -0.281330 & -0.252945 \\
-0.226724 & -0.321484 & -0.280146 & -0.270467 & -0.255174
\end{tabular}

Table B. 27

\section*{Estimated Effects for Science Trend Conditioning Variables 1976-77: Age 9}

VARIABLE

OVERAII GENDER2 ETHNIC2 ETHNIC3 ETHNIC4 STOC2
STOC3
REGION2
REGION3
REGION4
PARED2
PARED3
PARED4
PARED
< MODALG
> MODALG
HOMEITM3
HOMEITM4
SCH.PRIV

LABEL GAMMA DESCRIPTION
\[
-0.5823861 \text { OVERALL CONSTANT '1' FOR EVERYONE }
\]
\[
-0.113465 \quad 2 \text { SEX (FEMALE) }
\]
\[
-1.0276363 \text { OBSERVED ETHNICITY (BLACK) }
\]
\[
\text { -0.588893 } 4 \text { OBSERVED ETHNICITY (HISPANIC) }
\]
\[
-0.3650095 \text { OBSERVED ETHNICITY (ASIAN AMERICAN) }
\]
\[
0.7327916 \text { SIZE AND TYPE OF COMMUNITY (HIGH METRO) }
\]
\[
0.4047077 \text { SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) }
\]
\[
\text { -0.167073 } 8 \text { REGION (SOUTHEAST) }
\]
\[
0.1105899 \text { REGION (CENTRAL) }
\]
\[
0.09863510 \text { REGION (WEST) }
\]
\[
0.29065011 \text { PARENTS EDUCATION (HIGH SCHOOL GRAD) }
\]
\[
0.49887612 \text { PARENTS EDUCATION (POST HIGH SCHOOL) }
\]
\[
0.40264213 \text { PARENTS EDUCATION (COLLEGE GRAD) }
\]
\[
0.12146514 \text { PARENTS EDUCATION (MISSING, I DON'T KNOW) }
\]
\[
\text { -0.614894 } 15 \text { MODAL GRADE (LESS THAN MODAL GRADE) }
\]
\[
0.45419816 \text { MODAL GRADE (GREATER THAN MODAL GRADE) }
\]
\[
0.21589917 \text { ARTICLES IN HOME (YES TO 3) }
\]
\[
0.48211118 \text { ARTICLES IN HOME (YES TO 4) }
\]
\[
0.13364719 \text { SCHOOL TYPE (PRIVATE) }
\]

Table B. 28
Estimated Effects for Science Trend Conditioning Variables
1976-77: Age 13

VARIABLE
LABEL
OVERALL GENDER2
-0.7573671 OVERALL CONSTANT ' 1 ' FOR EVERYONE -0.201317 2 SEX (FEMALE) ETHNIC2 \(-0.776877 \quad 3\) OBSERVED ETHNICITY (BLACK) ETHNIC3 -0.533988 4 OBSERVED ETHNICITY (HISPANIC) ETHNIC4 -0.218238 OBSERVED ETHNICITY (ASIAN AMERICAN) STOC2 STOC3 REGION2
-0.204287 8 REGION (SOUTHEAST)
REGION3 -0.034224 9 REGION (CENTRAL)
REGION4 -0.111973 10 REGION (WEST)
PARED2 0.18510911 PARENTS EDUCATION (HIGH SCHOOL GRAD)
PARED3 0.43345212 PARENTS EDUCATION (POST HIGH SCHOOL)
PARED4 0.48397213 PARENTS EDUCATION (COLLEGE GRAD)
_ARED_ \(\quad 0.03302014\) PARENTS EDUCATION (MISSING, I DON'T KNOW)
< MODALG -0.53716215 MODAL GRADE (LESS THAN MODAL GRADE)
> MODALG 0.59376816 MODAL GRADE (GREATER THAN MODAL GRADE)
HOMEITM3 0.17976317 ARTICLES IN HOME (YES TO 3)
HOMEITM4 0.41480818 ARTICLES IN HOME (YES TO 4)
SCH.PRIV 0.16211019 SCHOOL TYPE (PRIVATE)
SCH.MISS 20 SCHOOL TYPE (MISSING)

Table B. 29
Estimated Effects for Science Trend Conditioning Variables
1976-77: Age 17


Table B. 30
Estimated Effects for Science Trend Conditioning Variables 1981-82: Age 9

\section*{VARIABLE} EFFECT
-0.144616 1 OVERALL CONSTANT ' 1 ' FOR EVERYONE
OVERALL
GENDER2
ETHNIC:
ETHNIC3
ETHNIC4 STOC2 STOC3 REGION2 REGION3 REGION4 PARED2 PARED3 PARED4 PARED < MODALG > MODALG HOMEITM3 HOMEITM4
17 SCH.PRIV -0.05173819 SCHOOL TYPE (PRIVATE)
\(-0.050074 \quad 2\) SEX (FEMALE)
-0.8732233 OBSERVED ETHNICITY (BLACK)
-0.8313624 OBSER.VED ETHNICITY (HISPANIC)
-0.3527245 OBSERVED ETHNICITY (ASIAN AMERICAN)
0.5199936 SIZE AND TYPE OF COMMUNITY (HIGH METRO)
0.1652227 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
-0.007397 8 REGION (SOUTHEAST)
0.0128919 REGION (CENTRAL)
- 0.04779910 REGION (WEST)
0.32955411 PARENTS EDUCATION (HIGH SCHOOL GRAD)
0.46706212 PARENTS EDUCATION (POST HIGH SCHOOL)
0.51405813 PARENTS EDUCATION (COLLEGE GRAD)
0.17406514 PARENTS EDUCATION (MISSING, I DON'T KNOW)
-0.702701 15 MODAL GRADE (LESS THAN MODAL GRADE)
0.72368316 MODAL GRADE (GREATER THAN MODAL GRADE)

17 ARTICLES IN HOME (YES TO 3)
18 ARTICLES IN HOME (YES TO 4)
-0.05173819 SCHOOL TYPE (PRIVATE)

Table B. 31
Estimated Effects for Science Trend Conditioning Variables 1981-82: Age 13

\section*{VARIABLE \\ LABEL}

ESTIMATED EFFECT

OVERALL GENDER2
ETHNIC2
ETHNIC3 ETHNIC4 STOC2 STOC3 REGION2 REGION3 REGION4 PARED2 PARED3 PARED4 PARED < MODALG \(>\) MODALG HOMEITM3 HOMEITM4 SCH.PRIV SCH.MISS
-0. 268114
-0.709938
-0.496880
-0.009130
0.47484
0.194103

DESCRIPTION
-0.125149 8 REGION (SOUTHEAST)
0.0386799 REGION (CENTRAL)
0.00238610 REGION (WEST)
0.22873411 PARENTS EDUCATION (HIGH SCHOOL GRAD)
0.51364612 PARENTS EDUCATION (POST HIGH SCHOOL)
0.58210913 PARENTS EDUCATION (COLLEGE GRAD)
0.06496414 PARENTS EDUCATION (MISSING, I DON'T KNOW)
-0.603198 15 MODAL GRADE (LESS THAN MODAL GRADE)
0.84873616 MODAL GRADE (GREATER THAN MODAL GRADE)

17 ARTICLES IN HOME (YES TO 3)
18 ARTICLES IN HOME (YES TO 4)
0.07110619 SCHOOL TYPE (PRIVATE)

20 SCHOOL TYPE (MISSING)

Table B. 32
Estimated Effects for Science Trend Conditioning Variables
1981-82: Age 17

VARIABLE LABEL

OVERALL
GENDER2
ETHNIC2
ETHNIC3
ETHNIC4 STOC2 STOC3 REGION2 REGION3 REGION4 PARED2

\section*{PARED3}

\section*{PARED4}

PARED_
\(<\) MODALG > MODALG HOMEITM3 HOMEITM4 SCH.PRIV SCH.MISS

ESTIMATED EFFECT DESCRIPTION
DESCRIPTION\(\begin{array}{rr}0.247207 & 1 \\ -0.441003 & 2 \\ \text { SEXERALL CONS } \\ \text { (FEMALE) }\end{array}\)-1.038798 3 OBSERVED ETHNICITY (BLACK)-0.650045 4 OBSERVED ETHNICITY (HISPANIC)-0.384856 5 OBSERVED ETHNICITY (ASIAN AMERICAN)0.3598966 SIZE AND TYPE OF COMMUNITY (HIGH METRO)0.2103547 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)0.0241588 REGION (SOUTHEAST)
\[
0.0627739 \text { REGION (CENTRAL) }
\]
\[
0.01508710 \text { REGION (WEST) }
\]
\[
0.13855511 \text { PARENTS EDUCATION (HIGH SCHOOL GRAD) }
\]
\[
0.42981312 \text { PARENTS EDUCATION (POST HIGH SCHOOL) }
\]
\[
0.61767013 \text { PARENTS EDUCATION (COLLEGE GRAD) }
\]
\[
\text { -0.190094 } 14 \text { PARENTS EDUCATION (MISSING, I DON'T KNOW) }
\]
\[
-0.62498315 \text { MODAL GRADE (LESS THAN MODAL GRADE) }
\]
\[
0.09869916 \text { MODAL GRADE (GREATER THAN MODAL GRADE) }
\]
\[
17 \text { ARTICLES IN HOME (YES TO 3) }
\]
\[
18 \text { ARTICLES IN HOME (YES TO 4) }
\]
\[
\text { - } 0.00915419 \text { SCHOOL TYPE (PRIVATE) }
\]
\[
20 \text { SCHOOL TYPE (MISSING) }
\]

Table B. 33
Estimated Effects for Science Trend Conditioning Variables 1986: Age 9, Bridge A
\begin{tabular}{|c|c|c|c|c|}
\hline & VARIABLE & ESTIMATED & & \\
\hline & LABEL & EFFECT & & DESCRIPTION \\
\hline 1 & OVERALL & -0.379284 & 1 & OVERALL CONSTANT ' 1 ' FOR EVERYONE \\
\hline 2 & GENDER2 & -0.161779 & & SEX (FEMA \({ }^{\text {a }}\) ) \\
\hline 3 & ETHNIC2 & -0.669729 & 3 & OBSERVED ETHNICITY ( \({ }^{\text {a }}\) (ACK) \\
\hline 4 & ETHNIC3 & -0.489115 & 4 & OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & ETHNIC4 & -0.102341 & 5 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & STOC2 & 0.703567 & & SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & STOC3 & 0.464462 & & SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & REGION2 & -0.115330 & 8 & REGION (SOUTHEAS'I) \\
\hline 9 & REGION3 & -0.041812 & 9 & REGION (CENTRAL) \\
\hline 10 & REGION4 & -0.090698 & 10 & REGION (WEST) \\
\hline 11 & PARED2 & 0.169671 & 11 & PARENTS EDUCATJON (HIGH SChOOL GRAD) \\
\hline 12 & PARED3 & 0.429293 & 12 & PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & PARED 4 & 0.385039 & 13 & Parents education (COLLEGE GRad) \\
\hline 14 & PARED & 0.122934 & 14 & PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & < MODALG & -0.629587 & 15 & MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & > MODALG & 0.403331 & 16 & MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & HOMEITM3 & 0.258453 & 17 & ARTICLES IN HOME (YES TO 3) \\
\hline 18 & HOMEITM4 & 0.349804 & 18 & ARTICLES IN HOME (YES TO 4) \\
\hline 19 & SCH.PRIV & -0.023166 & & SCHOOL TYPE (PRIVATE) \\
\hline
\end{tabular}
\[
-515-\quad 56 \%
\]

Table B. 34
Estimated Effects for Science Trend Conditioning Variables
1986: Age 9, Bridge B
\begin{tabular}{cc} 
VARIABLE & ESTIMATED \\
LABEL & EFFFCT
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 1 & OVERALL & -0.769386 & OVERALL CONSTANT '1' FOR EvERYONE \\
\hline 2 & GENDER2 & -0.038277 & 2 SEX (FEMALE) \\
\hline 3 & ETHNIC2 & -0.739842 & 3 OBSERVED ETHNICITY (BLACK) \\
\hline 4 & ETHNIC3 & -0.586415 & 4 OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & ETHNIC4 & -0.103627 & OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & STOC2 & 0.891562 & 6 SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & STOC3 & 0.548884 & 7 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & REGION2 & -0.129702 & 8 REGION (SOUTHEAST) \\
\hline 9 & REGION3 & 0.011742 & 9 REGİUN (CENTRAL) \\
\hline 10 & REGION4 & -0.119800 & 10 REGION (WEST) \\
\hline 11 & PARED2 & -0.004067 & 11 Parents education (HIGH SCHOOL GRAD) \\
\hline 12 & PARED3 & 0.271551 & 12 PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & PARED4 & 0.218143 & 13 Parents education (COLLEGE GRad) \\
\hline 14 & PARED & 0.045211 & 14 PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & < MODALG & -0.871979 & 15 MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & > MODALG & 0.411836 & 16 MODAL GRADE (GREATER THAN MODAL GRade) \\
\hline 17 & homeitm3 & 0.219618 & 17 ARTICLES IN HOME (YES TO 3) \\
\hline 18 & HOMEITM4 & 0.336150 & 18 ARTICLES IN HOME (YES TO 4) \\
\hline 19 & SCH.PRIV & -0.074180 & 19 SCHOOL TYPE (PRIVATE) \\
\hline
\end{tabular}

Table B. 35
Estimated Effects for Science Trend Conditioning Variables 1986: Age 13, Bridge A

\section*{VARIABLE LABEL}

ESTIMATED EFFECT

\section*{DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline 1 & OVERALL & -0.693683 & 1 OVERALL CONSTANT '1' FOR EVERYONE \\
\hline 2 & GENDER2 & -0.219859 & 2 SEX (FEMALE) \\
\hline 3 & ETHNIC2 & -0.691137 & 3 OBSERVED ETHNICITY (BLACK) \\
\hline 4 & ETHNIC3 & -0.492987 & 4 OBSERVED ETHNICITY (HISPANIC) \\
\hline 5 & ETHNIC4 & -0.099713 & 5 OBSERVED ETHNICITY (ASIAN AMERICAN) \\
\hline 6 & STOC2 & 0.414012 & 6 SIZE AND TYPE OF COMMUNITY (HIGH METRO) \\
\hline 7 & STOC3 & 0.246599 & 7 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) \\
\hline 8 & REGION2 & -0.033529 & 8 REGION (SOUTHEAST) \\
\hline 9 & REGION3 & -0.023863 & 9 REGION (CENTRAL) \\
\hline 10 & REGION4 & -0.078740 & 10 FEGION (WEST) \\
\hline 11 & PARED2 & 0.138635 & 11 Parents education (HIGH SChool grad) \\
\hline 12 & PARED3 & 0.329713 & 12 PARENTS EDUCATION (POST HIGH SCHOOL) \\
\hline 13 & PARED4 & 0.428845 & 13 Parents education (COLLEGE GRad) \\
\hline 14 & PARED & 0.054985 & 14 PARENTS EDUCATION (MISSING, I DON'T KNOW) \\
\hline 15 & < MODALG & -0.458554 & 15 MODAL GRADE (LESS THAN MODAL GRADE) \\
\hline 16 & > MODALG & 0.267685 & 16 MODAL GRADE (GREATER THAN MODAL GRADE) \\
\hline 17 & HOMEITM3 & 0.201938 & 17 ARTICLES IN HOME (YES TO 3) \\
\hline 18 & HOMEITM4 & 0.340467 & 18 ARTICLES IN HOME (YES TO 4) \\
\hline 19 & SCH.PRIV & 0.010178 & 19 SCHOOL TYPE (PRIVATE) \\
\hline & SCH.MISS & & 20 SCHOOL TYPE (MISSING) \\
\hline
\end{tabular}

Table B. 36
Estimated Effects for Science Trend Conditioning Variables 1986: Age 13, Bridge B

ESTIMATED
EFFECT

\section*{VARIABLE LABEL}

OVERALL GENDER2 ETHNIC2 ETHNIC3 ETHNIC4 STOC2 STOC3 REGION2 REGION3 REGION4 PARED2 PARED3 PARED 4 PARED < MODALG > MODALG HOMEITM3 HOMEITM4 SCH.PRIV SCH.MISS

DESCRIPTION
-0.915927 1 OVERALL CONSTANT '1' FOR EVERYONE -0.198725 2 SEX (FEMALE)
-0.639180 3 OBSERVED ETHNICITY (BLACK)
-0.289440 4 OBSERVED ETHNICITY (HISPANIC)
-0.147956 5 OBSERVED ETHNICITY (ASIAN AMERICAN)
-0.176897 8 REGION (SOUTHEAST)
-0.010910 9 REGION (CENTRAL)
-0.224578 10 REGION (WEST)
0.44490213 PARENTS EDUCATION (COLLEGE GRAD)
-0.672904 15 MODAL GRADE (LESS THAN MODAL GRADE)
0.22759217 ARTICLES IN HOME (YES TO 3)
0.39818718 ARTICLES IN HOME (YES TO 4)
0.18819219 SCHOOL TYPE (PRIVATE)
0.3638756 SIZE AND TYPE OF COMMUNITY (HIGH METRO) 0.3217607 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
0.10159411 PARENTS EDUCATION (HIGH SCHOOL GRAD)
0.41479212 PARENTS EDUCATION (POST HIGH SCHOOL)
0.12851614 PARENTS EDUCATION (MISSING, I DON'T KNOW)
0.13629716 MODAL GRADE (GREATER THAN MODAL GRADE)

20 SCHOOL TYPE (MISSING)

Table B. 37
Estimated Effects for Science Trend Conditioning Variables
1986: Age 17

VARIABLE LABEL

ESTIMATED EFFECT

DESCRIPTION

1

OVERALL GENDER2 ETHNIC2 ETHNIC3 ETHNIC4 STOC2 STOC3 REGION2 REGION3 REGION4 PARED2
PARED3
PARED4
PARED
\(<\) MODĀLG
\(>\) MODALG
\(-0.317737\)
-0.3078102 SEX (FEMALE)
-0.6242083 OBSERVED ETHNICITY (BLACK)
-0.3619684 OBSERVED ETHNICITY (HISPANIC)
0.0187435 OBSERVED ETHNICITY (ASIAN AMERICAN)
0.4345846 SIZE AND TYPE OF COMMUNITY (HIGH METRO)
0.4439497 SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
-0.089567 8 REGION (SOUTHEAST)
0.0176829 REGION (CENTRAL)
-0.16550110 REGION (WEST)
0.21439311 PARENTS EDUCATION (HIGH SCHOOL GRAD)
0.51628512 PARENTS EDUCATION (POST HIGH SCHOOL)
0.60917913 PARENTS EDUCATION (COLLEGE GRAD)
-0.33053614 PARENTS EDUCATION (MISSING, I DON'T KNOW)
-0.46866715 MODAL GRADE (LESS THAN MODAL GRADE)
HODALG 0.16028416 MODAL GRADE (GREATER THAN MODAL GRADE)
HOMEITM3 0.21904517 ARTICLES IN HOME (YES TO 3)
HOMEITM4 0.40551118 ARTICLES IN HOME (YES TO 4)
SCH.PRIV 0.30130019 SCHOOL TYPE (PRIVATE)
SCH.MISS . 20 SCHOOL TYPE (MISSING)

\section*{APPENDIX C}

\section*{WARM Variables Tables}

\section*{Appendix C}

\title{
WARM VARIABLES TABLES
}

Bruce Kaplan
Educational Testing Service

Appendix C contains 12 tables showing the relationship between NAEP items and WARM scores for reading (Tables C.l through C.4), mathematics (Tables C. 5 through C.8), and science (Tables C. 9 through C.12). Certain of these WARM scores were used in the subject area reports. Other WARM variables were excluded from the reports because of their minimal relationships with the proficiency values.

The first three tables for each learning area (one table for each grade/age) contain the items used to construct each WARM score. Each WARM variable and short description is followed by a list of the NAEP items used in its construction. Each NAEP item is shown with its corresponding short description, the block in which it appears, and its location within the block.

The WARM variable names (for example, RW1Ax) are created from:
- the initial le ter of the learning area ( \(R\) for reading, \(M\) for mathematics, or \(S\) for science);
- the WARM variable identifier (W);
- the cohort number ( 1 for grade 3/age 9, 2 for grade 7/age 13 , or 3 for grade 11/age 17);
- the WARM score identifier (A, B, C, D, E, F, G, or H) ; and
- the plausible value identifier (x), representing plausible values 1 though 5.

The remaining tables show how NAEP item responses were rescored to calculate WARM scores for reading (Table C.4), mathematics (Table C.8), and science (Table C.12). All items used to construct WARM scores for a given learning area are listed in NAEP ID order. If an item was used to construct a particular WARM score for one or more cohorts, the appropriate WARM score identifier (A through H) appears in the appropriate COHORT column(s) (1, 2, or 3). Each item in a learning area was used to construct only one WARM score for a given cohort.

The right side of Tables C.4, C.8, and C. 12 shows how each NAEP item was rescored to calculate the WARM score. The column headings indicate the
original item responses (1 through 8 , and MISSING). Listed below these headings are the values to which the responses were recoded.

For example, in Table \(C .4\), reading item \(S 003301\) was used to calculate reading WARM score \(C\) for cohort 2 (grade \(7 /\) age 13 ) and cohort 3 (grade 11/age 17). Original item responses 1, 2, and 3 were respectively recoded as 1 , 3 , and 5 .

\(5: 4\)

Table C. 1
Reading WARM Variables
Grade 3/Age 9

S004701
S004703
S005102
S005103

HOW OFTEN DOES TEACHER LIST OF QUESTS AS YOU READ
R2
R2
R1
R1

RW1Bx - Reading habits
S003502
S003504
S003505 S003506 S007201 S007202 S007302 S007303 S007305

HOW OFTEN DO YOU TELL A FRIEND ABOUT A GOOD BOOK

\section*{HOW OFTEN DO YOU SPEND YOUR OWN MONEY ON BOOKS}

R3
HOW OFTEN DO YOU READ BOOK BASED ON MOVIE YOU SAW
R3
HOW OFTEN DO YOU READ BOOKS BY AN AUTHOR YOU LIKE
R3
HOW OFTEN YOU TALK AT HOME ABOUT SOMETHING READ
R4
HOW OFTEN YOU TALK W/FRIEND ABOUT SOMETHING READ
R4
HOW OFTEN DO YOU READ PART OF NEWSPAPER
R5
HOW OFTEN DO YOU READ PART OF MAGAZINE
R5
HOW OFTEN DO YOU READ BIOGRAPHY

6
7
1
2
2
3

RW1Cx - Instruction
S004601
WITH NEW READING HOW OFTEN TEACHER POINT HARD WORD
k2
WITH NEW READING HOW OFTEN TEACHER PREVIEW READING
R2 HOW OFTEN DOES TEACHER TELL HOW TO FIND MAIN IDEA

R2

RW1Dx - Individual reading
S003501 HOW OFTEN DO YOU READ FOR FUN ON YOUR OWN TIME
\begin{tabular}{ll} 
R3 & 2 \\
R1 & 8 \\
R5 & 1
\end{tabular}

S007301 HOW OFTEN DO YOU READ PART OF NOVEL OR STORY

RW1Ex - Reading aloud
S004401 HOW OFTEN DOES SOMEONE READ ALOUD TO YOU
R1

Table C. 2
Reading WARM Variables
Grade 7/Age 13
\begin{tabular}{llllr} 
& BLOCK & ITEM \\
RW2Ax - Study habits & & \\
SO05102 & HOW OFTEN WHEN STUDY FOR TEST: TAKE NOTES ON READ & R1 & 2 \\
S005103 & HOW OFTEN WHEN STUDY FOR TEST: MAKE OUTLINES & R1 & 3 \\
S005104 & HOW OFTEN WHEN STUDY FOR TEST: QUES IN TEXTBOOK & R1 & 4 \\
SO05105 & HOW OFTEN WHEN STUDY FOR TEST: ANSWER OWN QUESTNS & R1 & 5 \\
SO05106 & HOW OFTEN WHEN STUDY FOR TEST: QUESTION OTHERS & R1 & 6 \\
S005301 & HOW OFTEN GO TO LIBRARY TO READ ON OWN & R1 & 10 \\
SO05302 & HOW OFTEN GO TO LIBRARY TO LOOK UP FACT FOR SCHOOL & R1 & 11 \\
SO05303 & HOW OFTEN GO TO LIBRARY TO FIND BOOKS FOR HOBBIES & R1 & 12 \\
SO05304 & HOW OFTEN GO TO LIBRARY FOR QUIET PLACE TO READ & R1 & 13
\end{tabular}

RW2Bx - Reading habits

S004601 S004602 S004603 S004701 S004702 S004703

WITH NEW READING HOW OFTEN TEACHER POINT HARD WORD WITH NEW READING HOW OFTEN TEACHER PREVIEW READING WITH NEW READING HOW OFTEN TEACHER READ PART ALOUD HOW OFTEN DOES TEACHER LIST OF QUESTS AS YOU READ HOW OFTEN DOES TEACHER TELL HOW TO FIND MAIN IDEA HOW OFTEN DOES TEACHER TELL HOW TO READ FASTER

R2 1
R2 2
R2 3
R2/R4 4/1
R2/R4 \(5 / 2\)
R2 6

\section*{RW2Cx - Instruction}

S004301 HOW OFTEN DO YOU READ A STORY OR NOVEL
R1
19
SO04302 HOW OFTEN DO YOU READ A POEM R3 2
S004303 HOW OFTEN DO YOU READ A PLAY R3
3
SO04307 HOW OFTEN DO YOU READ A BIOGRAPHY
SO04309 HOW OFTEN DO YOU READ A BOOK ABOUT OTHER TIMES
R3
SOO4311 HOW OFTEN DO YOU READ WORDS OF A SONG
R3
SO04503 HOW OFTEN DOES FAMILY READ BOOKS
R3
11
SO05201 HOW OFTEN DO YOU READ ALOUD IN SCHOOL
SOO5202 HOW OFTEN DO YOU READ ON YOUR OWN IN SCHOOL
SOO5305 HOW OFTEN GO TO LIBRARY TO TAKE OUT BOOKS
SOO7201 HOW OFTEN YOU TALK AT HOME ABOUT SOMETHING READ
SOO7202 HOW OFTEN YOU TALK W/FRIEND ABOUT SOMETHING READ

R3
14
R1
R1
7
RI 8
R1 14
R6 1
R6
2

Table C. 2
(continued)
BLOCK ..... ITEM
RW2Dx - Individual readingSOO4304 HOW OFTEN DO YOU READ A NEWSFAPERR34
SO04305 HOW OFTEN DO YOU READ A MAGAZINE ..... 5
S004310 HOW OFTEN DO YOU READ A SPORTS BOOK ..... 10
SOO4501 HOW OFTEN DOES FAMILY READ NEWSPAPERS ..... 12
SOO4502 HOW OFTEN DOES FAMILY READ MAGAZINES ..... R3 ..... 13
S004504 HOW OFTEN DOES FAMILY READ RECIPES ..... R3 ..... 15S005402
S005403 ..... 16HOW OFTEN DO YOU READ A NEWS MAGAZINEHOW OFTEN DO YOU READ NEWSPAPER NOT COMICS OR SPRT R1 17

Table C. 3

\title{
Reading WARM Variables
}

Grade 11/Age 17

BLOCK ITEM
RW3Ax - Study habits

S005102 S005103 S005104 S005105 S005106 S005301 S005302 S005303 S005.? 04

How often when study for test: take notes on read HOW OFTEN WHEN STUDY FOR TEST: MAKE OUTLINES HOW OFTEN WHEN STUDY FOR TEST: QUES IN TEXTBOOK HOW OFTEN WHEN STUDY FOR TEST: ANSWER OWN QUESTNS HOW OFTEN WHEN STUDY FOR TEST: QUESTION OTHERS HOW OFTEN GO TO LIBRARY TO READ ON OWN HOW OFTEN GC TO LIBRARY TO LOOK UP FACT FOR SCHOOL HOW OFTEN GO TO LIBRARY TO FIND BOOKS FOR HOBBIES
HOW OFTEN GO TO LIBRARY FOR QUIET PLACE TO READ

RW3Bx - Reading habits
S004601 S004602 S004603 S004701 S004701 S004702 S004702 S004703

WITH NEW READING HOW OFTEN TEACHER POINT HARD WORD
R2

\section*{R2}

\section*{R2}

R2
WITH NEW READING HOW OFTEN TEACHER PREVIEW READING WITH NeW Reading how often teacher read part aloud HOW OFTEN DOES TEACHER LIST OF QUESTS AS YOU READ HOW OFTEN DOES TEACHER LIST OF QUESTS AS YOU READ

\section*{R4}

\section*{R2}

\section*{R4}

R2
HOW OFTEN DOES TEACHER TELL HOW TO FIND MAIN IDEA HOW OFTEN DOES TEACHER TELL HOW TO READ FASTER

RW3Cx - Instruction
S003301
WHAT KIND OF READER ARE YOU
R1
S004301
S004302
S004303
S004307
S004309
S004311
S004503
S005201
S005202
S005305
S007201
S007202

HOW OFTEN DO YOU READ A STORY OR NOVEL HOW CFTEN DO YOU READ A POEM HOW OFTEN DO YOU READ A PLAY HOW OFTEN DO YOU READ A BIOGRAPHY HOW OFTEN DO YOU READ A BOOK ABOUT OTHER TIMES HOW OFTEN DO YOU READ WORDS OF A SONG how often does family read books HOW OFTEN DO YOU READ ALOUD IN SCHOOL HOW OFTEN DO YOU READ ON YOUR OWN IN SCHOOL HOW OFTEN GO TO LIBRARY TO TAKE OUT BOOKS how often you talk at home about something read HOW OFTEN YOU TALK W/FRIEND ABOUT SOMETHING READ
R1 2

2
R1 3
R1 4
R1 5
R1 6
R1 10
R1 11
R1 12
R1 13

19
1
2
3
4
1
5
2
6

Table C. 3
(continued)
\begin{tabular}{lllrr} 
& BLOCK & ITEM \\
& & & & \\
& RW3Dx - Individual reading & & \\
S004304 & HOW OFTEN DO YOU READ A NEWSPAPER & R3 & 4 \\
SO04305 & HOW OFTEN DO YOU READ A MAGAZINE & R3 & 5 \\
SO04310 & HOW OFTEN DO YOU READ A SPORTS BOOK & R3 & 10 \\
S004501 & HOW OFTEN DOES FAMILY READ NEWSPAPERS & R3 & 12 \\
S004502 & HOW OFTEN DOES FAMILY READ MAGAZINFS & R3 & 13 \\
S004504 & HOW OFTEN DOES FAMILY READ RECIPES & R3 & 15 \\
SO05402 & HOW OFTEN DO YOU READ A NEWS MAGAZTNE & R1 & 16 \\
S005403 & HOW OFTEN DO YOU READ NEWSPAPER NOT COMICS OR SPRTT & R1 & 17
\end{tabular}

Table C. 4
Derivation of Reading WARM Scores
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{COHORT} & \multicolumn{9}{|c|}{RESPONSES} \\
\hline & & 1 & 2 & 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & MISS \\
\hline 1 & S003301 & & C & C & 1 & 3 & 5 & & & & & & M \\
\hline 2 & S003501 & D & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 3 & S003502 & B & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 4 & S003504 & B & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 5 & S003505 & B & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 6 & S003506 & B & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 7 & S004301 & & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 8 & S004302 & & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 9 & S004303 & & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 10 & S004304 & & D & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 11 & S004305 & & L & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 12 & S004307 & & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 13 & S004309 & & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 14 & S004310 & & D & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 15 & S004311 & & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 16 & S004401 & E & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 17 & S004402 & E & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 18 & S004501 & & D & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 19 & S004502 & & D & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 20 & S004503 & & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 21 & S004504 & & D & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 22 & S004601 & C & B & B & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 23 & S004602 & C & B & B & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 24 & S004603 & C & B & B & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 25 & S004701 & A & B & B & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 26 & S004702 & C & B & B & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 27 & S004703 & A & B & B & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 28 & S00.5101 & C & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 29 & S005102 & A & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 30 & S005103 & A & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 31 & S005104 & C & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 32 & S005105 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 33 & S005106 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 34 & S005201 & E & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 35 & S005202 & D & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 36 & S005203 & C & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 37 & S005301 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 38 & S005302 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 39 & S005303 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 40 & S005304 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline
\end{tabular}

Table C. 4
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{COHORT} & \multicolumn{9}{|c|}{RESPONSES} \\
\hline & & 1 & 2 & 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & MISS \\
\hline 41 & S005305 & & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 42 & S005402 & & D & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 43 & S005403 & & D & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 44 & S007201 & B & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 45 & S007202 & B & C & C & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 46 & S007301 & D & & & 5 & 4 & & 2 & 1 & & & & M \\
\hline 47 & S007302 & B & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 48 & S 507303 & B & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 49 & S007305 & B & & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline
\end{tabular}

Table C. 5
Mathematics WARM Variables
Grade 3/Age 9


2
3
M7
3

M7
5
6

Table C. 5
(continued)

BLOCK ITEM
MW1Ex - Computer usage
B003801 HOW MANY HOURS DO YOU SPEND ON HOMEWORK B1 14
S205601 HOW MUCH TIME SPENT/WK ON MATH HOMEWORK M4 5
S207608 HOW OFTEN DO YOU DO MATH HOMEWORK M6 8
B004301 HAVE YOU USED COMPUTER W/KEYBOARD AND SCREEN
B1 19
B004401 DOES FAMILY OWN COMPUTER W/KEYBOARN AND SCREEN
B1 20
B004501 ARE YOU STUDYING COMPUTERS

B1
21
B004601 DO YOU USE COMPUTERS FOR MATH, READING, ETC B1 22

Table C. 6
Mathematics WARM Variables

Grade 7/Age 13
BLOCK ITEM
MW2Ax - Positive attitude

S 202201
S202204
S202206
S202901
S 202902
S202905
S202908
S206001
S209001
S209501
S209509
S209510
S209511
S209515
S211003
S211008
S211013
S211305

FEEL:WILLING TO WORK HARD TO DC WELL IN MATH
M2
1
FEEL:MATH USEFUL IN SOLVING EVERY DAY PROBLEMS
M2
4
FEEL: ENJOY MATHENATICS
M2
6
FEEL:I AM GOOD AT MATHEMATICS M3 1
FEEL:MATH HELPS A PERSON THINK LOGICALLY M3 2
FEEL: I AM TAKING MATH ONLY BECAUSE I HAVE TO M3 5
FEEL:I WOULD LIKE TO TAKE MORE MATHEMATICS M3 8
DO YOU FEEL AS GOOD IN MATH AS OTHERS IN CLASS M5 16
WILL YOUR CAREER REQJIRE USE OF MATH SKILLS M5 17
FEEL MOST OF MATH HAS PRACTICAL USE
M7
1
AGREE WANT PERSONAL SUCCESS IN MATH
M7
9
FEEL PARENTS WANT ME TO DO WELL IN MATH
M7
10
FEEL GOOD WHEN SOLVE A MATH PROBLEM ALONE
M7
M7
M8
M8
M8
11
AGREE LIKES TO BE CHALLENGED W/DIFFICULT PROBLEM
DO YOU LIKE OR DISLIKE MATHEMATICS
HOW EASY OR HARD IS MATHEMATICS
HOW IMPORTANT OR NOT IS MATHEMATICS
M9
15

DO YOU AGREE A GOOD GRADE IN MATH IS IMPORIANT

MW2Bx - Seeks assistance

S207501
S207502
S207503
S207507
S207510
S207512
S211401
S211402
S211403

HOW OFTEN DO YOU LISTEN TO MATH LESSON EXPLAINED
M6
1
HOW OFTEN WATCH TEACHER WORK PROBLEM ON BOARD
M6
2
HOW OFTEN USE A MATH TEXTBOOK
M6
3
how often works math problems alone
7
HOW OFTEN DO YOU TALK ABOUT MATH IN CLASS M6
10
HOW OFTEN DO YOU DO MATH HOMEWORK
HOW OFTEN GETS INDIVIDUAL HELP FROM MA TEACHER
how often gets help from classmate w/math
how often helps classmate with math

MW2Cx - Does math on own

S207508
S207509
S211404
S211405
S211406
S211407
S211408

HOW OFTEN DO YOU DO MATH LABORATORY ACTIVITIES
M6
8
HOW OFTEN DO YOU DO MATH REPORTS AND PROJECTS
HOW OFTEN CHOOSE MATH TOPICS YOU WANT TO STUDY
HOW OFTEN PLAYS MATH GAMES
HOW OFTEN WORKS AHEAD IN MATH BOOK
HOW OFTEN DOES MATH PROBLEMS NOT ASSIGNED
M6
9
M9
12
13
M9
how often study math topics not in textbook
15
M9
M9
16
\[
5 e^{-534-}
\]

Table C. 6
(continued)
\begin{tabular}{|c|c|c|c|}
\hline & & BLOCK & ITEM \\
\hline & MW2DX - Computer usage & & \\
\hline B004301 & HAVE YOU USED COMPUTER W/KEYBOARD AND SCREEN & B1 & 18 \\
\hline B004401 & DOES FAMILY OWN COMPUTER W/KEYBOARD AND SCREEN & B1 & 19 \\
\hline B004501 & ARE YOU STUDYING COMPUTERS & B1 & 20 \\
\hline B004601 & DO YOU USE COMPUTERS FOR MATH, READING, ETC & B1 & 21 \\
\hline S201601 & EVER STUDY MATH THROUGH COMPUTER INSTRUCTION & M1 & 1 \\
\hline S201605 & EVER USE COMPUTER TO SOLVE LINEAR PROGRAM PROBLEM & M1 & 5 \\
\hline S201606 & EVER USE COMPUTER TO SOLVE A MATH PROBLEM & M1 & 6 \\
\hline S201608 & EVER USE COMPUTER TO PROCESS BUSINESS,SCI,SOC INFO & M1 & 8 \\
\hline S201609 & EVER USE COMPUTER TO PERFORM STAT ANALYSIS & M1 & 9 \\
\hline S201610 & EVER WRITE PROGRAM TO SOLVE LINEAR PROGRAM PROBLEM & M1 & 10 \\
\hline S201611 & EVER WRITE PROGRAM TO SOLVE A MATH PROBLEM & M1 & 11 \\
\hline S201612 & EVER WRITE PROGRAM TO PLAY A GAME & M1 & 12 \\
\hline S201613 & EVER WRITE PROGRAM TO PROCESS BUSINESS,SCI, SOC, INF & M \({ }^{+}\) & 13 \\
\hline S201614 & EVER WRITE PROGRAM TO PERFORM STAT ANALYSIS & M1 & 14 \\
\hline & MW2Ex - Calculator usage & & \\
\hline S206101 & HOW OFTEN USE A CALCULATOR IN MATH CLASS & M5 & 1 \\
\hline S206102 & HOW OFTEN USE A CALCULATOR IN SCIENCE CLASS & M5 & 2 \\
\hline S206103 & HOW OFTEN USE A CALCULATOR IN OTHER CLASSES & M5 & 3 \\
\hline S206104 & HOW OFTEN USE A CALCULATOR OUTSIDE OF SCHOOL & M5 & 4 \\
\hline S208701 & HOW OFTEN DO YOU USE A CALCULATOR & M4 & 14 \\
\hline S208801 & USE A CALCULATOR IN MATH FOR HOMEWORK & M5 & 5 \\
\hline S208802 & USE A CALCULATOR IN MATH FOR CHECKING ANSWERS & M5 & 6 \\
\hline S208803 & USE A CALCULATOR IN MATH FOR ROUTINE COMPUTATIONS & M5 & 7 \\
\hline S208804 & USE A CALCULLATOR IN MATH FOR SOLVING PROBLEMS & M5 & 8 \\
\hline S208805 & USE A CALCULATOR IN MATH FOR TAKING TF;TS & M5 & 9 \\
\hline S208806 & USE A CALCULATOR IN MATH FOR SOMEI. \({ }^{\text {TG }}\) ELSE & M5 & 10 \\
\hline
\end{tabular}

\section*{MW2Fx - Encouragement received}

S205401
S205402
S205403
S2C5404
S205405
S205406
what extent have parents encouraged ma courses
M4
M4
M4
M4
M4
M4
WHAT EXTENT HAVE RELATIVE ENCOURAGED MA COURSES
WHAT EXTENT HAVE TEACHERS ENCOURAGED MA COURSES
WHAT EXTENT HAVE COUNSELOR ENCOURAGED MA COURSES
WHAT EXTENT HAVE PEERS ENCOURAGED MA COURSES

Table C. 7
Mathematics WARM Variables
Grade \(11 /\) Age 17


Table C. 7
(continued)
\begin{tabular}{|c|c|c|c|}
\hline & & BLOCK & ITEM \\
\hline \multicolumn{4}{|l|}{(continued) MW3Bx - Seeks assistance} \\
\hline S207510 & HOW OFTEN DO YOU TALK ABOJT Math in class & M6 & 10 \\
\hline S211401 & HOW OFTEN GETS INDIVIDUAL HELP FROM MA TEACHER & M10 & 3 \\
\hline S211402 & HOW OFTEN GETS HELP FROM CLASSMATE W/MATH & M10 & 4 \\
\hline S211403 & HOW OFTEN HELPS CLASSMATE WITH Math & M10 & 5 \\
\hline S211410 & HOW OFTEN DO YOU DO MATH HOMEWORK & M10 & 2 \\
\hline \multicolumn{4}{|c|}{MW3Cx - Does math on own} \\
\hline S203704 & HOW OFTEN DID You play mathematics games & M2 & 4 \\
\hline S203708 & HOW OFTEN DID YOU MAKE REPORTS/PROJECTS In math & M2 & 8 \\
\hline S203709 & HOW OFTEN DID YOU WORK AHEAD IN YOUR MATH BOG:̈ & M2 & 9 \\
\hline S203710 & HOW OFTEN DID YOU dO Math problems not assigned & M2 & 10 \\
\hline S203712 & HOW OFTEN DID YOU STUDY TOPIC NOT IN TEXTBOOK & M2 & 12 \\
\hline S207508 & HOW OFTEN DO YOU DO MATH LABORATORY ACTIVITIES & M6 & \\
\hline S207509 & HOW OFTEN DO YOU DO MATH REPORTS AND PROJECTS & M6 & 9 \\
\hline S211404 & HOW OFTEN CHOOSE MATH TOPICS YOU WANT TO STUDY & M10 & 6 \\
\hline S211405 & HOW OFTEN PLAYS Math games & M10 & 7 \\
\hline S211406 & HOW OFTEN WORKS AHEAD IN MATH BOOK & M10 & 8 \\
\hline S211407 & HOW OFTEN doEs math problems not assigned & M10 & 9 \\
\hline S211408 & HOW OFTEN STUDY MATH TOPICS NOT IN TEXTBOOK & M10 & 10 \\
\hline \multicolumn{4}{|c|}{MW3Dx - Computer usage} \\
\hline B004301 & HAVE YOU USED COMPUTER W/KEYBOARD AND SCREEN & B1 & 18 \\
\hline B004401 & DOES FAMILY OWN COMPUTER W/KEYBOARD AND SCREEN & B1 & 19 \\
\hline S20i601 & EVER STUDY MATH THROUGH COMPUTER INSTRUCTION & M1 & 1 \\
\hline S201605 & EVER USE COMPUTER TO SOLVE LINEAR PROGRAM PROBLEM & M1 & 5 \\
\hline S201606 & EVER USE COMPUTER TO SOLVE A MATH PROBLEM & M1 & 6 \\
\hline S201608 & EVER USE COMPUTER TO PROCESS BUSINESS, SCI, SOC INFO & M1 & 6 \\
\hline S201612 & EVER WRITE PROGRAM TO PLAY A game & M1 & 12 \\
\hline S201613 & EVER WRITE PROGRAM TO PROCESS BUSINESS, SCI, SOC, INF & M1 & 13 \\
\hline S201614 & EVER WRITE PROGRAM TO PERFORM STAT ANALYSIS & M1 & 14 \\
\hline
\end{tabular}

Table C. 7
(continued)
\begin{tabular}{|c|c|c|c|}
\hline & & BLOCK & ITEM \\
\hline & MW3Ex - Calculator usage & & \\
\hline S 206101 & HOW OFTEN USE A CALCULATOR IN MATH CLASS & M5 & 1 \\
\hline S206102 & HOW OFTEN USE A CALCULATOR IN SCIENCE CLASS & M5 & 2 \\
\hline S206103 & HOW OFTEN USE A CALCULATOR IN OTHER CLASSES & M5 & 3 \\
\hline S206104 & HOW OFTEN USE A CALCULATOR OUTSIDE OF SCHOOL & M5 & 4 \\
\hline S208701 & HOW OFTEN DO YOU USE A CALCULATOR & M4 & 14 \\
\hline S208801 & USE A CALCULATOR IN MATH FOR HOMEWORK & M5 & 5 \\
\hline S208802 & USE A CALCULATOR IN MATH FOR CHECKING ANSWERS & M5 & 6 \\
\hline S208803 & USE A CALCULATOR IN MATH FOR ROUTINE COMPUTATIONS & M5 & 7 \\
\hline S 208804 & USE A CALCULATOR IN MATH FOR SOLVING PROBLEMS & M5 & 8 \\
\hline S208805 & USE A CALCULATOR IN MATH FOR TAKING TESTS & M5 & 9 \\
\hline S208806 & USE A CALCULATOR IN MATH FOR SOMETHING ELSE & M5 & 10 \\
\hline & MW3Fx - Encouragement received & & \\
\hline S205401 & What EXtent have parents encouraged ma courses & M4 & 1 \\
\hline S205402 & WHAT EXTENT HAVE SIBLINGS ENCOURAGED MA COURSES & M4 & 2 \\
\hline S205403 & WHAT EXTENT HAVE RELATIVE ENCOURAGED MA COURSES & M4 & 3 \\
\hline S205404 & What Extent have TEACHERS ENCOURAGED MA COURSES & M4 & 4 \\
\hline S 205405 & WHAT EXTENT HAVE COUNSELOR ENCOURAGED MA COURSES & M4 & 5 \\
\hline S205406 & WHAT EXTENT HAVE PEERS ENCOURAGED MA COURSES & M4 & 6 \\
\hline
\end{tabular}

Table C. 8
Derivation of Mathematics WARM Scores
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{COHORT} & \multicolumn{9}{|c|}{RESPONSES} \\
\hline & & 1 & 2 & 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & MISS \\
\hline 1 & B003801 & E & & & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 2 & B004301 & F & D & D & 5 & 1 & & & & & & & M \\
\hline 3 & B004401 & F & D & D & 5 & 1 & & & & & & & M \\
\hline 4 & B004501 & F & D & & 5 & 1 & & & & & & & M \\
\hline 5 & B004601 & F & D & & 5 & 1 & & & & & & & M \\
\hline 6 & B005312 & & & D & 5 & 1 & & & & & & & M \\
\hline 7 & B005313 & & & D & 5 & 1 & & & & & & & M \\
\hline 8 & S201601 & & D & D & 5 & 1 & 1 & & & & & & M
1 \\
\hline 9 & S201605 & & D & D & 5 & 1 & 1 & & & & & & 1 \\
\hline 10 & S201606 & & D & D & 5 & 1 & 1 & & & & & & 1 \\
\hline 11 & S201608 & & D & D & 5 & 1 & 1 & & & & & & 1 \\
\hline 12 & S201609 & & D & D & 5 & 1 & 1 & & & & & & 1 \\
\hline 13 & S201610 & & D & D & 5 & 1 & 1 & & & & & & 1 \\
\hline 14 & S201611 & & D & D & 5 & 1 & 1 & & & & & & 1 \\
\hline 15 & S201612 & & D & D & 5 & 1 & 1 & & & & & & 1 \\
\hline 16 & S201613 & & D & D & 5 & 1 & 1 & & & & & & 1 \\
\hline 17 & S201614 & & D & D & 5 & 1 & 1 & & & & & & 1 \\
\hline 18 & S202201 & & A & & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 19 & S202204 & & A & & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 20 & S202206 & & A & & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 21 & S202901 & & A & A & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 22 & S202902 & & A & A & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 23 & S202905 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 24 & S202908 & & A & A & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 25 & S202911 & & & A & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 26 & S203701 & & & B & 5 & 3 & 1 & & & & & & M \\
\hline 27 & S203702 & & & B & 5 & 3 & 1 & & & & & & M \\
\hline 28 & S203703 & & & B & 5 & 3 & 1 & & & & & & M \\
\hline 29 & S203704 & & & C & 5 & 3 & 1 & & & & & & M \\
\hline 30 & S203705 & & & B & 5 & 3 & 1 & & & & & & M \\
\hline 31 & S203706 & & & B & 5 & 3 & 1 & & & & & & M \\
\hline 32 & S203707 & & & B & 5 & 3 & 1 & & & & & & M \\
\hline 33 & S203708 & & & C & 5 & 3 & 1 & & & & & & M \\
\hline 34 & S203709 & & & C & 5 & 3 & 1 & & & & & & M \\
\hline 35 & S203710 & & & c & 5 & 3 & 1 & & & & & & M \\
\hline 36 & S203711 & & & B & 5 & 3 & 1 & & & & & & M \\
\hline 37 & S203712 & & & C & 5 & 3 & 1 & & & & & & M \\
\hline 38 & S203713 & & & B & 5 & 3 & 1 & & & & & & M \\
\hline 39 & S203714 & & & B & 5 & 3 & 1 & & & & & & M \\
\hline 40 & S205401 & & F & F & 5 & 3 & 1 & & & & & & M \\
\hline
\end{tabular}

Table C.S (continued)

COHORT
123


Tab1e C. 8 (continued)

COHORT
123

C
\begin{tabular}{l} 
C \\
E \\
\hline
\end{tabular}
82 S207608
83 S208701
84 S208801
85 S208302
86 S208803
87 S208804
88 S208805
89 S208806
\(90 \quad\) S209001
91 S209501
92 S209509
93 S209510
\(94 \quad\) S209511
\(95 \quad\) S209515
\(96 \quad\) S211003
97 S211008
98 S211013
99 S211305
100 S211401
101 S211402
102 S211403
103 S211404
104 S211405
105 S211406
106 S211407
107 S211408
108 S211410
109 S212001
110 S212004
111 S212006
112 S212008
113 S212101
114 S212102
115 S212103
116 S212104
117 S212105
I E
E E
E E
\(\begin{array}{ll}\mathrm{E} & \mathrm{E} \\ \mathrm{E} & \mathrm{E}\end{array}\)
E E
E E
\(\begin{array}{ll}\mathrm{A} & \mathrm{A} \\ \mathrm{A} & \mathrm{A}\end{array}\)
A A
A A
\begin{tabular}{ll} 
A & A \\
A & \\
\hline
\end{tabular}
A A
\(\begin{array}{ll}\text { A } & \text { A } \\ \text { A } & \text { A }\end{array}\)
\(\begin{array}{ll}\text { A } & \\ \text { B } & \text { B }\end{array}\)
\begin{tabular}{l|l} 
B & B \\
B & \\
\hline
\end{tabular}
\(\begin{array}{ll}\mathrm{B} & \mathrm{B} \\ \mathrm{C} & \mathrm{C}\end{array}\)
C \(C\)
\(\begin{array}{ll}\mathrm{C} & \mathrm{C} \\ \mathrm{C} & \mathrm{C}\end{array}\)
C
C
C
B
A
A

A
A

A
A
A
1
5
\(\begin{array}{lllll}5 & 4 & 3 & 2 & 1 \\ 5 & 4 & 3 & 2 & 1 \\ 5 & 4 & 3 & 2 & 1\end{array}\) \(M\)
\(M\)
\(M\)
1
1
1
1
1

M


Table C. 9
Science WARM Variables
Grade 3/Age 9

SWlAx - Use of scientific apparatus
BLOCK ITEM

S400101
S400102
S400103
S400105

\section*{S400109}

\section*{S400110}

HAVE YOU EVER USED A METER STICK
HAVE YOU EVER USED A SCALE TO WEIGH THINGS
S3
1
2
HAVE YOU EVER USED A MAGNIFYING GI.ASS S3
HAVE YOU EVER USED A THERMOMETER S3 5
HAVE YOU EVER USED A YARDSTICX S3 9
HAVE YOU EVER USED A CALCULATOR S3 10

SW1Bx - Home encouragement \& support
S401601
at home do you talk about wirat you learned
S401602 AT HOME DO YOU GET HELP W/SC:ENCE HOMEWORK
S401603
S401604
S401605
S401607
S401608
S403201
at home do you get help w/SCIENCE PROJECTS
at home does someone show you how do science exp
AT HOME DO YOU WATCH \& DISCUSS SCIENCE PROGRAM
DO YOU TALK ABOUT SCIENCE TOPICS W/SOMEONE AT HOME
DO YOU READ SCIENCE BOOKS W/SOMEONE AT HOME HOW MUCH TIME SPENT ON SCIENCE HOMEWORK EACH WEEK

S4
3

нон Much Time sper

SW1Cx - Doing science using apparatus
S400104 HAVE YOU EVER USED A TELESCOPE
S3
\[
4
\]

S400106 HAVE YOU EVER USED A MICROSCOPE
S3
6
S400108 HAVE YOU EVER USED A STOPWATCH
S3
8
S400301 HAVE YOU WORKED/EXPERIMENTED W/SHADOWS
S1
1
S400302 HAVE YOU WORKED/EXPERIMENTED W/LIVING PLANTS
S1
2

S400303 HAVE YOU WORKED/EXPERIMENTED W/LIVING ANIMALS
S1
3
S400304 HAVE YOU WORKED/EXPERIMENTED W/BATTERY \& BULBS
S1
4
S401606 DO YOU GO TO SCIENCE MUSEUM W/SOMEONE FROM HOME
S4

SW1Dx - Value placed on science
S402101 WHEN YOU HAVE SCIENCE IN SCHOOL DO YOU LIKE IT

Table C. 9 (continued)
BLOCK ..... ITEMSWlEx - Science classroom activities
S401501 HOW OFTEN DO YOU HAVE SCIENCE LESSON IN SCHOOL ..... S5 ..... 1
S401801 HOW MANY SCIENCE EXP DID YOU HAVE LAST MONTH ..... S5 ..... 2S403801 HOW OFTEN DO YOU DO SCIENCE EXPERIMENTS
S6 ..... 2
S403901 HOW OFTEN DO YOU READ SCIENCE TEXTBOOK IN CLASS ..... S6 ..... 3

Table C. 10
Science WARM Variables
Grade 7/Age 13

BLOCK ITEM

SW2Ax - Value placed on science

S400701 S400702 S401301 S401303 S401304 S401305 S402101 S402401 S402501
S402502
S402503
S402701
S402702
S402703
S402704
S402705

S402001
S402002
S402003
S402004
S402005
S402301
S402302
S402303
S402304
S402306
S402307

AGREE/DISAGREE-SCI HELPS ME UNDERSTAND MY BODY AGREE/DISAGREE-SCIENCE NOT USEFUL OUT OF CLASS SGIENCE CLASSES ARE USEFUL
SCIENCE CLASSES SHOULD PE REQUIRED IN SCHOOL SCIENCE CLASSES ARE USEFUL IN EVERYDAY LIFE SCIENCE CLASSES WILL BE USEFUL IN THE FUTURE When you have science in school do you like it WILL YOU WORK IN AREA THAT REQ SCIENCE KNOWLEDGE HOW OFTEN IS SCIENCE CLASS BORINGS21

S2 ..... 2
S3 ..... 1
S3 ..... 3s34S35S41S71S76S7 7S7S8S8S8S8 S8823456

SW2Bx - Science classroom acti:fitiesHOW OFTEN SCIENCE TEACHER LECTURE S91
HOW OFTEN DOES SCI TEACHER DEMONSTRATE PRINCIPLE ..... S9 ..... 2
HOW OFTEN DOES SCI TEACHER ASK FOR REASONS FOR EXP ..... S9 ..... 3
HOW OFTEN DOES SCI TEACHER ASK YOU TO HYPOTHESIZE ..... S9 ..... 4
HOW OFTEN DOES SCI TEACHER ASK YOU-INTERPRET DATA ..... S9 ..... 5
HOW OFTEN DO YOU SOLVE SCIENCE PROBLEMS ..... S6 ..... 2
HOW OFTEN DO YOU DO EXPERIMENTS BY YOURSELF ..... S6HOW OFTEN DO YOU DO EXPERIMENTS W/OTHER STUDENTSS6
4
S6
HOW OFTEN DO YOU WRITE UP EXPERIMENTS ..... S6 ..... 5HOW OFTEN DO YOU READ ARTICLES ABOUT SCIENCE
S6
HOW OFTEN DO YOU DO AN ORAL OR WRITTEN REPORT78

Table C. 10
(continued)
\begin{tabular}{|c|c|c|c|}
\hline & & BLOCK & ITEM \\
\hline & SW2Cx - Doing science \& home support & & \\
\hline S400901 & HOW OFTEN HAVE YOU HELPED W/LITTER CLEAN-UP & S1 & 1 \\
\hline S400902 & HOW OFTEN HAVE YOU SEPARATED TRASH FOR RECYCLE & S1 & 2 \\
\hline S401604 & AT HOME DOES SOMEONE SHOW YOU HOW DO SCIENCE EXP & S4 & 5 \\
\hline S401605 & AT HOME DO YOU WATCH \& DISCUSS SCIENCE PROGRAM & S4 & 6 \\
\hline S401607 & DO YOU TALK ABOUT SCIENCE TOPICS W/SOMEONE AT HOME & S4 & 8 \\
\hline S401608 & DO YOU READ SCIENCE BOOKS W/SOMEONE Al HOME & S4 & 9 \\
\hline S402201 & HOW OFTEN TRIED TO FIX SOMETHING ELECTRICAL & S7 & 2 \\
\hline S402203 & HOW OFTEN TRIED TO FIGURE OUT UNHEALTHY PLANT & S7 & 4 \\
\hline S402204 & HOW OFTEN TRIED TO FIGURE OUT UNHEALTHY ANIMAL & S7 & 5 \\
\hline & SW2Dx - Use of scientific apparatus & & \\
\hline S402202 & HOW OFTEN TRIED TO FIX SOMETHING MECHANICAL & S7 & 3 \\
\hline S402802 & HAVE YOU EVER USED A TELESCOPE & S8 & 8 \\
\hline S402803 & HAVE YOU EVER USED A MICROSCOPE & S8 & 9 \\
\hline S402804 & HAVE YOU EVER USED A STOPWATCH & S8 & 10 \\
\hline S402807 & HAVE YOU EVER USED A STETHOSCOPE & S8 & 13 \\
\hline & SW2Ex - Application of science I & & \\
\hline S401201 & CAN SCIENCE HELP PREVENT WORLDWIDE STARVATION & S1 & 3 \\
\hline S401202 & CAN SCIENCE HELP SAVE US FROM AN ENERGY SHORTAGE & S1 & 4 \\
\hline S401203 & CAN SCIENCE HELP FIND CURES FOR DISEASES & S1 & 5 \\
\hline S401206 & CAN SCIENCE HELP PREVENT BIRTH DEFECTS & S1 & 8 \\
\hline S401207 & CAN SCIENCE HELP SAVE OUR NATURAL RESOURCES & S1 & 9 \\
\hline S401208 & CAN SCIENCE HELP REDUCE AIR \& WATER POLLUTION & S1 & 10 \\
\hline S401209 & CAN SCIENGE HELP REDUCE WORLD OVERPOPULATION & S1 & 11 \\
\hline
\end{tabular}

SW2Fx - Solving world problems
S400801
S400802
S400803
S400804
S400805
CAN YOU HELP SOLVE POLLUTION
S2

\section*{CAN YOU HELP SOLVE ENERGY WASTE}

S2
CAN YOU HELP SOLVE FOOD SHORTAGES
S2S27
CAN YOU HELP SOLVE NATURAL RESOURCE SUPPLY ..... 8
CAN YOU HELP SOLVE ACCIDENTS ..... S2

Table C. 10
(continued)
BLOCK ITEM
SW2Gx - Application of science II

S403101
 S403104
WILL SCIENTIFIC RESEARCH ELIMINATE ACID RAIN
S9 6
WILL SCIENTIFIC RESEARCH ELIMINATE AIR POLLUTION
S9 7
WILL SCIENTIFIC RESEARCH ELIMINATE FACTORY POLLUTI S9
 WILL SCIENTIFIC RESEARCH ELIMINATE TOXIC WASTE S9 9

Table C. 11
Science WARM Variables
Grade 11/Age 17
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & & BLOCK & ITEM \\
\hline & \multicolumn{3}{|l|}{SW3Ax - Value placed on science} \\
\hline S400702 & AGREE/DISAGREE-SCIENCE NOT USEFUL OUT OF CLASS & S2 & 2 \\
\hline S400703 & AGREE/DISAGREE-PROCEDURES GOOD ONLY IN A LAB & S2 & 3 \\
\hline S401301 & SCIENCE CLASSES ARE USEFUL & S3 & 1 \\
\hline S401302 & SCIENCE CLASSES ARE IRRELEVANT TO REAL WORLD & S3 & 2 \\
\hline S401303 & SCIENCE CLASSES SHOULD BE REQUIRED IN SCHOOL & S3 & 3 \\
\hline S401304 & SCIENCE CLASSES ARE USEFUL IN EVRYDAY LIFE & S3 & 4 \\
\hline S401305 & SCIENCE CLASSES WILL BE USEFUL IN THE FUTURE & S3 & 5 \\
\hline S401901 & OUTSIDE SCHOOL READ BOOKS/ARTICLES ABOUT SCIENCE & S7 & 1 \\
\hline S402101 & WHEN YOU HAVE SCIENCE IN SCHOOL DO YOU LIKE IT & S4 & 1 \\
\hline S402401 & WILL YOU WORK IN AREA THAT REQ SCIENCE KNOWLEDGE & S4 & 11 \\
\hline S402501 & HOW OFTEN IS SCIENCE CLASS BORING & S10 & 12 \\
\hline S402502 & HOW OFTEN IS SCIENCE CLASS FUN & S10 & 13 \\
\hline S402503 & HOW OFTEN DO YOU LOOK FORWARD TO SCIENCE CLASS & S10 & 14 \\
\hline S402701 & FEEL:IMPORTANT TO KNOW SCIENCE TO GET GOOD JOB & S11 & 5 \\
\hline S402702 & FEEL:WILL USE SCIENCE IN MANY WAYS WHEN AN ADULT & S11 & 6 \\
\hline S402703 & FEEL:KNOWING SCIENCE WILL HELP ME EARN A LIVING & S11 & 7 \\
\hline S402704 & FEEL: I DON'T EXrECT TO USE SCIENCE WHEN I GET OUT & S11 & 8 \\
\hline S402705 & FEEL: SCIENCE WILL BE IMPORTANT TO ME IN MY LIFE & S11 & 9 \\
\hline \multicolumn{4}{|c|}{SW3Bx - Application of science I} \\
\hline S401201 & CAN SCIENCE HELP PREVENT WORLDWIDE STARVATION & S1 & 3 \\
\hline S401202 & CAN SCIENCE HELP SAVE US FROM AN ENERGY SHORTAGE & S1 & 4 \\
\hline S401206 & CAN SCIENCE HELP PREVENT BIRTH DEFECTS & S1 & 8 \\
\hline S401207 & CAN SCIENCE HELP SAVE OUR NATURAL RESOURCES & S1 & 9 \\
\hline S401208 & CAN SCIENCE HELP REDUCE AIR \& WATER POLLUTION & S1 & 10 \\
\hline S401209 & CAN SCIENCE HELP REDUCE WORLD OVERPOPULATION & S1 & 11 \\
\hline S402902 & SHOULD SCIENTIST RECEIVE \$ STUDY:AIR POLLUTION & S9 & 2 \\
\hline S402904 & SHOULD SCIENTIST RECEIVE \$ STUDY: ENERGY PROBLEM & S9 & 4 \\
\hline S402906 & SHOULD SCIENTIST RECEIVE \$ STUDY: POPULATION PROBLE & S9 & 6 \\
\hline S402908 & SHOULD SCIENTIST RECEIVE \$ STUDY: SOLAR ENERGY & S9 & 8 \\
\hline
\end{tabular}

Table C. 11 (continued)

B005401
NCOMP
NMATH NSCI S403306 S403308 S403401

SW3Cx - Science \& math background
WHICH DESCRIBES YOUR GRADES SO FAR
NUMBER OF COMPUTER COURSES TAKEN
HIGHEST LEVEL OF MATH COURSE TAKEN
HIGHEST LEVEL OF SCIENCE COURSE TAKEN
HOW MUCH HAVE YOU STUDIED:CHEMISTRY
HOW MUCH HAVE YOU STUDIED: PHYSICS
HAVE YOU TAKEN MORE SCIENCE COURSES THAN REQUIRED

SW3Dx - Science interest \& application

S400801
S400802
S400805
S401902
S401910
S401911
S402306

S402001
S402002
S402003
S402004
S402005
S402301
S402302
S402303
S402304
S402305 S402307

CAN YOU HELP SOLVE POLLUTION
S2

CAN YOU HELP SOLVE ENERGY WASTE
CAN YOU HELP SOLVE NATURAL RESOURCE SUPPLY OUTSIDE SCHOOL READ BOOKS ABOUT SCIENTISTS

\section*{S2}
\begin{tabular}{cc} 
B1 & 39 \\
(ETS & COMPOSITE) \\
(ETS & COMPOSITE) \\
(ETS & COMPOSITE) \\
S10 & 6 \\
S10 & 8 \\
S10 & 11
\end{tabular}

OUTSIDE SCHOOL TALK ABOUT SCIENCE TOPIC W/FRIENDS
OUTSIDE SCHOOL LISTEN TO TALKS ABOUT SCIENCE HOW OFTEN DO YOU READ ARTICLES ABOUT SCIENCE

SW3Ex - Science classroom activities
HOW OFTEN SCIENCE TEACHER LECTURE S8
HOW OFTEN DOES SCI TEACHER DEMONSTRATE PRINCIPLE S8 2
HOW OFTEN DOES SCI TEACHER ASK FOR REASONS FOR EXP S8 3
HOW OFTEN DOES SCI TEACHER ASK YOU TO HYPOTHESIZE S8 4
HOW OFTEN DOES SCI TEACHER ASK YOU-INTERPRET DATA S8 5
HOW OFTEN DO YOU SOLVE SCIENCE PROBLEMS S6 2
HOW OFTEN DO YOU DO EXPERIMENTS BY YOURSELF S6 3
HOW OFTEN DO YOU DO EXPERIMENTS W/OTHER STUDENTS
S6
HOW OFTEN DO YOU WRITE UP EXPERIMENTS
how often do you read your textbook
HOW OFTEN DO YOU DO AN ORAL OR WRITTEN REPORT

SW3Fx - Science background
S401401
S401404
S402802
S402804
S402807
S403301
S403302
SHOULD SCI EXPERIMENT ON PEOPLE W/O APPROVAL
S3 6

SHOULD SCI CONTROL THE WAY PEOPLE ACT
s3
have you ever used a telescope
HAVE YOU EVER USED A STOPWATCH
HAVE YOU EVER USED A STETHOSCOPE
HOW MUCH HAVE YOU STUDIED:GENERAL SCIENCE
HOW MUCH HAVE YOU STUDIED:LIFE SCIENCE

Table C. 11
(continued)
```

SW3Gx - Miscellaneous

```

B003901 S401602 S401905 S402201 S402202 S402808 S403501 S403502S402202S403502

HOW MUCH TIME EACH DAY IS SPENT ON HOMEWORK
B1
14 AT HOME DO YOU GET HELP W/SCIENCE HOMEWORK

S4 OUTSIDE SCHOOL FIX SOMETHING MECHANICAL HOW OFTEN TRIED TO FIX SOMETHING MECHANICAL

S75

HOW OFTEN TRIED TO FIX SOMETHING ELECTRICAL ..... S11 ..... 1HOW OFTEN TRIED TO FIX SOMETHING MECHANICALS112 ..... S9
HAVE YOU EVER USED AN ELECTRICITY METER
HAVE YOU EVER USED AN ELECTRICITY METER17
DO YOU USE SCI INFO TO DECIDE WHAT FOOD TO EAT
DO YOU USE SCI INFO TO DECIDE WHAT FOOD TO EAT ..... S7 ..... 13
DO YOU USE SCI INFO TO KEEP HEALTHY ..... S714
SW3Hx - Application of science ..... II
S403101 WILL SCIENTIFIC RESEARCH ELIMINATE ACID RAIN ..... S8 ..... 6
S403102 WILL SCIENTIFIC RESEARCH ELIMINATE AIR POLLUTION ..... S8 ..... 7
S403103 WILL SCIENTIFIC RESEARCH ELIMINATE FACTORY POLLUTI ..... S8 ..... 8
S403104 WILL SCIENTIFIC RESEARCH ELIMINATE TOXIC WASTE ..... S8 ..... 9
S403105 WILL SCIENTIFIC RESEARCH ELIMINATE ENERGY SUPPLY ..... S8 ..... 10
S403106ELIMINATE LACK OF FOODS811

Table C. 12
Derival:ion of Science WARM Scores
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{COHORT} & \multicolumn{9}{|c|}{RESPONSES} \\
\hline & & 1 & 2 & 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & MISS \\
\hline 1 & B003901 & & & G & M & 1 & 2 & 3 & 4 & 5 & & & M \\
\hline 2 & B005401 & & & C & 5 & 4.43 & 3.86 & 3.29 & 2.71 & 2.14 & 1.57 & 1 & M \\
\hline 3 & NCOMP & & & C & 1 & 3 & 5 & & & & & & M \\
\hline 4 & NMATH & & & C & 1 & 2 & 3 & 4 & 5 & M & & & M \\
\hline 5 & NSCI & & & C & 1 & 2.33 & 3.67 & 5 & M & & & & M \\
\hline 6 & S400101 & A & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 7 & S400102 & A & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 8 & S400103 & A & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 9 & S400104 & C & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 10 & S400105 & A & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 11 & S400106 & C & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 12 & S400108 & C & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 13 & S400109 & A & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 14 & S400110 & A & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 15 & S400301 & C & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 16 & S400302 & C & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 17 & S400303 & C & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 18 & S400304 & C & & & 5 & 1 & 1 & & & & & & 1 \\
\hline 19 & S400701 & & A & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 20 & S400702 & & A & A & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 21 & S400703 & & & A & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 22 & S400801 & & F & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 23 & S400802 & & F & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 24 & S400803 & & F & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 25 & S400804 & & F & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 26 & S400805 & & F & D & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 27 & S400806 & & F & & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 28 & S400901 & & C & & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 29 & S400902 & & C & & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 30 & S401201 & & E & B & 1 & 3 & 5 & & & & & & M \\
\hline 31 & S401202 & & E & B & 1 & 3 & 5 & & & & & & M \\
\hline 32 & S401203 & & E & & 1 & 3 & 5 & & & & & & M \\
\hline 33 & S401206 & & E & B & 1 & 3 & 5 & & & & & & M \\
\hline 34 & S401207 & & E & B & 1 & 3 & 5 & & & & & & M \\
\hline 35 & S401208 & & E & B & 1 & 3 & 5 & & & & & & M \\
\hline 36 & S401209 & & E & B & 1 & 3 & 5 & & & & & & M \\
\hline 37 & S401301 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 38 & S401302 & & & A & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 39 & S401303 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 40 & S401304 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline
\end{tabular}

Table C. 12
(continued)

COHORT

41 S401305
42 S401401
43 S401404
44 S401501
45 S401601
\(46 \quad\) S401602
\(47 \quad\) S401603
\(48 \quad\) S401604
\(49 \quad\) S401605
50 S401606
51 S401607
52 S401608
53 S401801
54 S401901
55 S401902
56 S401905
57 S401910
58 S401911
59 S402001
60 S402002
61 S402003
62 S402004
63 S402005
64 S402101
65 S402201
66 S402202
67 S402203
68 S402204
69 S402301
\(70 \quad\) S402302
71 S402303
\(72 \quad\) S402304
73 S402305
74 S402306
75 S402307
76 S402401
77 S402501
78 S402502
\(79 \quad\) S402503
80 S402701
123

A

E
B
B \(\quad\) G
B
B C
B C
C
\(\begin{array}{ll}\text { B } & \text { C } \\ B & C\end{array}\)
E
-
A

A
F
F
-



Table C. 12
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{COHORT} & \multicolumn{9}{|c|}{RESPONSES} \\
\hline & & 1 & 2 & 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & MISS \\
\hline 81 & S402702 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 82 & S402703 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 83 & S402704 & & A & A & 1 & 2 & 3 & 4 & 5 & & & & M \\
\hline 84 & S402705 & & A & A & 5 & 4 & 3 & 2 & 1 & & & & M \\
\hline 85 & S402802 & & D & F & 5 & 1 & & & & & & & M \\
\hline 86 & S402803 & & D & & 5 & 1 & & & & & & & M \\
\hline 87 & S402804 & & D & F & 5 & 1 & & & & & & & M \\
\hline 88 & S402807 & & D & F & 5 & 1 & & & & & & & M \\
\hline 89 & S402808 & & & G & 1 & 5 & & & & & & & M \\
\hline 90 & S402902 & & & B & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 91 & S402904 & & & B & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 92 & S402906 & & & B & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 93 & S402908 & & & B & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 94 & S403101 & & G & H & 5 & 3 & 1 & & & & & & M \\
\hline 95 & S403102 & & G & H & 5 & 3 & 1 & & & & & & M \\
\hline 96 & S403103 & & G & \(\mathrm{F}_{2}\) & 5 & 3 & 1 & & & & & & M \\
\hline 97 & S403104 & & G & H & 5 & 3 & 1 & & & & & & M \\
\hline 98 & S403105 & & & H & 5 & 3 & 1 & & & & & & M \\
\hline 99 & S403106 & & & H & 5 & 3 & 1 & & & & & & M \\
\hline 100 & S403201 & B & & & 1 & 2.33 & 3.67 & 5 & M & & & & M \\
\hline 101 & S403301 & & & F & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 102 & S403302 & & & F & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 103 & S403306 & & & c & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 104 & S403308 & & & C & 5 & 3.67 & 2.33 & 1 & & & & & M \\
\hline 105 & S403401 & & & C & 5 & 1 & M & & & & & & M \\
\hline 106 & S403501 & & & G & 5 & 1 & & & & & & & M \\
\hline 107 & S403502 & & & G & 5 & 1 & & & & & & & M \\
\hline 108 & S403801 & E & & & 5 & 3.67 & 2.33 & 1 & M & & & & M \\
\hline 109 & S403901 & E & & & 5 & 3.67 & 2.33 & 1 & M & & & & M \\
\hline 110 & S404301 & D & & & 5 & 1 & M & & & & & & M \\
\hline
\end{tabular}
-552-
602

\section*{APPENDIX D}

> The IRT Linking Procedures Used to Place the 1986 Intermediary Scaling Results onto the 1984 Reading Calibration Scale

\title{
Appendix D \\ THE IRT LINKING PROCEDURE USED TO PLACE THE 1986 INTERMEDIARY SCALING RESULTS ONTO THE 1984 READING CALIBRATION SCALE
}

\author{
Kathleen M. Sheehan \\ Educational Testing Service
}

The item calibration program employed by NAEP resolves the indeterminacy of scale inherent in the three-parameter logistic model by standardizing the distribution of proficiency in the calibration sample. As a result, intermediary scaling results, such as item parameters and conditional effects, are obtained on a scale that is approximately centered at zero, has a standard deviation of one, and typically spans a region lying somewhere between -4.0 and 4.0. In 1984, NAEP elected to report the final results of the reading assessment on an alternative scale that was selected for ease of interpretation. The relationship between the alternative scale, called the RP scale, and the scale established by the calibration of the 1984 spiralled reading data, called the 1984 reading calibration scale, is virtually linear for proficiencies in the region bounded by -4.0 and 4.0. Thus, scaling results reported on the RP scale can be reexpressed on the 1984 reading calibration scale by applying an appropriate linear transformation.

Because the RP scale was primarily developed to enhance the interpretability of the firal scaling results of the 1984 reading assessment, only the final assessment results were reported on that scale. The intermediary results, such as item parameters and conditional effects, were reported on the 1984 reading calibration scale. This practice of reporting intermediary scaling results on a calibration scale and final scaling results on a specially selected reporting scale was repeated for all of the subject areas assessed in 1986. For example, the mathematics and science item parameters are reported on the 1986 mathematics calibration scale and the 1986 science calibration scale, respectively.

To facilitate year-to-year comparisons, the 1986 reading calibration scale was equated to the 1984 reading calibration scale and all of the intermediary results of the 1986 reading assessment were reported on the 1984 reading calibration scale. The IRT linking procedure that was used to equate the two scales and the jackknife procedure that was used to approximate the equating error are documented in this appendix.

\section*{TYPES OF IRT LINKING PROCEDURES}

Irem parameter estimates obtained from independent item calibrations can be placed onto a common scale by estimating an appropriate linking transformation. Two commonly used procedures for estimating IRT linking
transformation are common item equating and equivalent population equating. Common item equating procedures are used when the scales to be equated contain overlapping subsets of items that were administered to independent samples of examinees drawn from (possibly) different populations. Equivalent population equating procedures are used when the scales to be equated contain nonoverlapping subsets of items that were administered to independent samples of examinees drawn from equivalent populations.

Since introducing scale-score reporting in 1984, NAEP has had occasion to use both of the linking procedures described above. In 1984, NAEP used an equivalent population equating procedure to link the scale established by the calibration of the paced reading data and the scale established by the calibration of the spiralled reading data. The equivalent population procedure could be used because, at each age level, the sample of students who received paced booklets was constructed to be randomly equivalent to the sample of students who received spiralled booklets. Note that although the paced and spiralled booklets contained many of the same items, those items did not qualify as common items because they were administered under different conditions and the difference in conditions was expected to be related to reading proficiency. The equivalent population procedure used to link the paced and spiralled scales is documented in Beaton (1-97a).

NAEP's first use of common item equating occurred in 1986 at the time that the 1986 reading calibration scale was equated to the 1984 reading calibration scale. The particular procedures used for that equating are documented in this appendix.

Note that the reading trend analysis documented in Beaton (1987a) did not involve any scale equating because the 1984 reading data and the reading trend data from all previous years were calibrated simultaneously.

THE IRT LINKING PROCEDURE USED TO EQUATE THE 1984 AND 1986 CALIBRATION SCALES
As in the 1984 assessment, the 1986 reading results were calibrated with the BILOG program (Mislevy \& Bock, 1982). The calibration included a total of 107 cognitive reading items, 76 of which were common to the 1984 assessment and 31 of which were administered for the first time in 1986. Although appropriately scaled item parameters were already available for the 76 common items and those parameters were used in all subsequent calculations, these items were recalibrated with the 1986 data so that a second set of item parameters might be obtained. The two sets of item parameters available for the common items were then used to define an appropriate linking transformation.

As is typical in a BILOG calibration, the 1986 item parameters were obtained on a provisional scale that was determined by standardizing the distribution of proficiency in the calibration sample. (The calibration sample included students from three age groups: grade 3/age 9, grade 7 /age 13 , and grade \(11 /\) age 17. )

The Stocking-Lord linking procedure (Stocking \& Lord, 1983), as implemented in the TBLT program (Stocking, 1986), was used to estimate the linking transformation needed to reexpress the 1986 intermediary scaling results on the 1984 calibration scale.

The input data for the Stocking-Lord procedure consists of two sets of estimated item parameters, one set expressed on a target scale, and one set expressed on a provisional scale. In the application documented here, the 1984 reading calibration scale is the target scale and the 1986 reading calibration scale is the provisional scale. The output of the Stocking-Lord procedure is the parameter estimates, \(A\) and \(B\), of the linear transformation that describes the relationship between the IRT item parameter estimates expressed on the provisional scale and those expressed on the target scale. That is
\[
\begin{aligned}
& a_{j}=A^{-1} a_{j}^{p} \\
& b_{j}=A b_{j}^{p}+B \\
& c_{j}=c_{j}^{p}
\end{aligned}
\]
where ( \(a_{j}{ }^{p}, b_{j}{ }^{p}, c_{j}{ }^{p}\) ) and ( \(a_{j}, b_{i}, c_{j}\) ) for \(j=1, \ldots n\) are the IRT item parameter estimates obtained for the cohmon items expressed on the provisional and target scales, respectively. Note that the lower asymptote parameters, \(c_{j}{ }^{p}\), are unaffected by the transformation.

The parameters of the linear transformation, \(A\) and \(B\), are found by minimizing the squared difference between estimated true scores (expected numbers correct on the \(n\) common items) at \(N\) preselected proficiency values \(\theta=\left[\theta_{1}, \ldots \theta_{N}\right]\). The function that is minimized is
\[
f(A, B)=1 / N \sum_{i=1}^{N}\left\{\zeta^{T}\left(1,0, \theta_{i}\right)-\zeta^{P}\left(A, B, \theta_{i}\right)\right\}^{2}
\]
where \(\zeta^{T}\left(1,0, \theta_{i}\right)\) is the estimated true score associated with the proficiency level \({ }^{\theta} \dot{i}\), calculated from the item parameters expressed on the target scale, and \(\zeta^{\mathrm{P}}\left(\hat{A}, \mathrm{~B}, \theta_{i}\right)\) is the estimated true score associated with the proficiency level \(\theta\) calculated from the item parameters that were originally estimated on the provisional scale and then reexpressed on the target scale, that is
\[
\zeta^{P}\left(A, B, \theta_{i}\right)=\sum_{j=1}^{n} c_{j}+\left(1-c_{j}\right) /\left\{1+\exp \left[-1.7\left(A^{-1} a_{j}{ }^{P}\right)\left(\theta_{i}-\left(A b_{j}{ }^{P}+B\right)\right)\right]\right\},
\]
where \(a_{j}{ }^{P}\) and \(b{ }^{P}\) are the estimated discrimination and difficulty parameters for item \(j\), expressed on the provisional saale. The values \(\theta=\left[\theta_{1}, \theta_{2}, \ldots \theta_{N}\right]\) are typically selected to span that region of the target scale which is
expected to be most dense. For the current application, 200 equally spaced values between -2.0 and 2.0 were used.

The success of the equating was evaluated by comparing estimated item difficulties and test characteristic curves calculated from the common items. The comparison of item difficulties (b parameters) is provided in Figure D. 1. The transformed 1986 values are plotted on the vertical axis, the corresponding 1984 values are plotted on the horizontal axis. The plot shows that the parameter estimates obtained from the TBLT run have provided an adequate fit to the data.

The test characteristic curve provides the expected proportion of items passed as a function of examinee proficiency. Figure D. 2 presents test characteristic curves calculated for the test defined by the 76 common items only. The curve defined by the item parameters that were estimated from the 1984 data is plotted as a solid line. The curve defined by the item parameters that were estimated from the 1986 data is plotted as a dashed line. The comparison indicates that, at almost all proficiency levels, the linking transformation has been successful at preserving the expected proportion of items passed. The difference in the curves at the lower asymptote reflects the fact that the guessing parameters, \(c_{j}\), are generally not well estimated.

Based on the results given above, it was decided that all intermediary scaling results, such as item parameters and conditional effects, could be placed onto the 1984 calibration scale by applying the linking transformation that was obtained from the TBLT run. Note however that only the 31 items that were first administered in 1986 needed to be transformed. For the 76 common items, item parameters expressed on the 1984 calibration scale were already available and so no rescaling was required.

\section*{THE UNCERTAINTY OF THE LINKING PROCEDURES}

The uncertainty associated with the parameter estimates \(A\) and \(B\) of the linking transformation was approximated using a jackknife procedure (Mosteller \& Tukey, 1977). The procedure consisted of three steps. First, the 76 items that were used to estimate the transformation were classified into 10 subsets with approximately equal average difficulty. (Six subsets contained eight items and four subsets contained seven items.) Second, the TBLT program was rerun 10 times. Each rerun included all but one of the subsets created in step l. Finally, the observed variation among the \(A\) and \(B\) parameter estimates obtained from the 10 TBLT reruns was used to estimate a covariance matrix which quantifies uncertainty due to (i) the imprecision of the estimated item parameters ard (ii) lack of fit from the IRT model. The results of this analysis are given in Table D.l.

In considering the magnitude of the variance estimates given in Table D.1, recall that the jackknife procedure measures variation arising from two different sources: estimation error and model misfit. The magnitude of the uncertainty due to estimation error is related to the size of the calibration samples--larger calibration samples tend to provide more precise linking

Figure D. 1
Comparison of Item Difficulties for 76 Common Items 1986 b's vs. 1984 b's

Scale \(=1984\) Calibration Scale


Figure D. 2
Comparison of Test Characteristic Curves for 76 Common Items
1984 Curve \(=\) Solid Line
1986 Curve - Dashed Line

-560-
603

Table D. 1
Results of the Jackknife Approximation for the Stocking-Lord Linking Procedure
\begin{tabular}{cccc}
\(\frac{\text { Run }}{}^{*}\) & & & \\
0 & \(\frac{\text { Items }}{}\) & \(\frac{\mathrm{A}}{\mathrm{B}}\) & \\
1 & 68 & 1.122196 & -0.442910 \\
2 & 68 & 1.118018 & -0.449670 \\
3 & 68 & 1.126296 & -0.447837 \\
4 & 68 & 1.121856 & -0.449472 \\
5 & 68 & 1.114782 & -0.433893 \\
6 & 68 & 1.128065 & -0.426793 \\
7 & 69 & 1.125834 & -0.430320 \\
8 & 69 & 1.128753 & -0.446748 \\
9 & 69 & 1.112862 & -0.440663 \\
10 & 69 & 1.135424 & -0.447648 \\
& & &
\end{tabular}
\begin{tabular}{cc} 
Parameter & \begin{tabular}{r} 
Jackknife \\
Estimate
\end{tabular} \\
\(\sigma^{2}\) & 0.00512 \\
\(\sigma_{\text {A }}^{2}\) & 0.00740 \\
\(\sigma_{\text {A }}\) & -0.00238
\end{tabular}
*
The parameter estimates, \(A\) and \(B\), obtained from Run 0 were used to transform the item parameters estimated from the 1986 data from the metric of the 1986 calibration scale to the metric of the 1984 calibration scale. The parameter estimates, \(A\) and \(B\), obtained from Runs 1 through 10 were used only to estimate the uncertainty of the linking procedure.
parameter estimates. The magnitude of the uncertainty due to model misfit is related to the number of linking items used to define the transformation. To see this, note that if the IRT model were correct, the difference between sets of ( \(a, b, c\) ) estimates obtained from increasingly large samples of examinees would be accounted for totally by a linear transformation. In this case, precise estimates of the linking parameters could be obtained with as few as two linking items. When the IRT model does not fit, however, different sets of linking items will tend to provide different estimates of the linking parameters even as the calibration sample sizes increase without bound. In this latter case, it is clear that the model misfit component of uncertainty can only be reduced by increasing the number of linking items. Moreover, the linking items should be chosen so as to be representative of the set of all items that might have been used to estimate the linking function.

Because the linking transformation described in this appendix was used only to transform intermediary scaling results, the variance estimates given in Table D.l are not particularly interesting. However, if the final results of the reading assessment had been reported on the same scale as was used in 1984, as may be the case in future reading assessments, then these types of variance estimates could be used to account for equating error when estimating standard errors for statistics measu:ing year-to-year changes in individual or group performance.

Some consequences of the uncertainty associated with the Stocking-Lord linking procedure are reported in Sheehan and Mislevy (1988). In particular it is shown that the effects of linking procedure uncervainty will usually be negligible for inferences drawn about individuals but can be quite substantial for inferences based on aggregate statistics such as group means.

Because the plausible values methodology used to scale the NAEP data does not allow for inferences at the individual level, the issue of the consequences of uncertainty for individual inferences will not be addressed in this appendix.

The following section provides a detailed description of a procedure that can be used to account for linking procedure uncertainty when drawing inferences about aggregate statistics such as changes in group means.

\section*{THE CONSEQUENCES OF UNGERTAINTY FOR INFERENCES ABOUT GROUP MEANS}

Consider the problem of estimating the change in mean reading proficiency for a particular population subgroup over the two year period from 1984 to 1986. Let \(\hat{\mu}_{84}\) represent the estimated mean reading proficiency of that subgroup calculated from the 1984 scaling results expressed on the 1984 calibration scale. Let \(\hat{\mu}_{86}\) represent the estimated mean reading proficiency for that same subgroup calculated from the 1986 scaling results expressed on the 1986 calibration scale and let \(\hat{\mu}_{86 r}\) represent the 1986 mean reexpressed on the 1984 calibration scale. Since \(\mu_{84}\) and \(\hat{\mu}_{86}\) are both expressed on the same scale, an estimate of the change from 1984 to 1986 can be obtained from the difference, \(\mathrm{D}=\hat{\mu}_{86 \mathrm{r}}-\hat{\mu}_{84}\). If it is assumed that the
parameters of the linking transformation are known without error, then the standard error of this estimate is given by
\[
\begin{equation*}
\operatorname{SE}(D)=\operatorname{SE}\left(\hat{\mu}_{86 r}-\hat{\mu}_{84}\right)=\left(\sigma_{86 r}^{2}+\sigma_{84}^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
\]
where \(\sigma_{84}\) is the standard error of \(\hat{\mu}_{84}\) expressed on the 1984 scale, and \(\sigma_{86 r}\) is the standard error of \(\hat{\mu}_{86 r}\) expressed on the equated 1986 scale.

To account for the uncertainty of the linking procedure used to reexpress the 1986 results on the 1984 scale, note that \(\hat{\mu}_{86}=A \hat{\mu}_{86}+B\) and the standard error of \(\hat{\mu}_{86}\), denoted \(\sigma_{86}\), is not affected by 気he uncertainty of the linking procedure.

A large sample approximation for the desired standard error can be obtained by first defining a covariance matrix for \(\left[\hat{\mu}_{86}, \mathrm{~A}, \mathrm{~B}\right]\) as follows
\[
\Sigma=\left[\begin{array}{ccc}
\sigma_{86}^{2} & 0 & 0 \\
0 & \sigma_{\mathrm{A}}^{2} & \sigma_{\mathrm{AB}} \\
0 & \sigma_{\mathrm{AB}} & \sigma_{\mathrm{B}}^{2}
\end{array}\right]
\]
where \(\sigma_{A}, \sigma_{B}\), and \(\sigma_{\mathrm{AB}}\) quantify estimation variation for the parameters A and \(B\) of the linking transformation. (The quantities \(\sigma_{A}, \sigma_{B}\), and \(\sigma_{A B}\) can be approximated using the jackknife procedure that was \({ }^{A}\) given in the previous section.) Second, note that
\[
\begin{align*}
\operatorname{Var}\left(\hat{\mu}_{86 \mathrm{r}}\right) & =\operatorname{Var}\left(\hat{\mathrm{A}} \hat{\mu}_{86}+\hat{B}\right) \\
& =\operatorname{Var}\left(\mathrm{g}\left(\hat{\mu}_{86}, \hat{A}, \mathrm{~B}\right)\right) \\
& =\left[\frac{\partial(g)}{\partial \mu_{86}}, \frac{\partial(\mathrm{~g})}{\partial \mathrm{A}}, \frac{\partial(\mathrm{~g})}{\partial \mathrm{B}}\right] \Sigma\left[\frac{\partial(g)}{\partial \mu_{86}}, \frac{\partial(g)}{\partial \mathrm{A}}, \frac{\partial(g)}{\partial \mathrm{B}}\right]^{\prime} \\
& =\left[\mathrm{A}, \mu_{86}, 1\right] \Sigma\left[\mathrm{A}, \mu_{86}, 1\right]^{\prime} \\
& =\mathrm{A}^{2} \sigma_{86}^{2}+\left(\mu_{86}\right)^{2} \sigma_{86}^{2}+2 \mu_{86^{\sigma}} \mathrm{AB}^{\prime}+\sigma_{\mathrm{B}}^{2} \\
& =\mathrm{f}\left(\mu_{86}, \mathrm{~A}, \Sigma\right) \\
& \approx \mathrm{f}\left(\hat{\mu}_{86}, \hat{\mathrm{~A}, \Sigma)}\right. \tag{2}
\end{align*}
\]

Thus, the uncertainty associated with the linking procedure can be accounted for in the estimated standard error of the difference as follows
\[
\begin{align*}
\operatorname{SE}(D) & =\operatorname{SE}\left(\hat{\mu}_{86 r}-\hat{\mu}_{84}\right) \\
& =\left(\operatorname{Var}\left(\hat{\mu}_{86 r}\right)+\sigma_{84}^{2}\right)^{1 / 2} \\
& =\left(f\left(\hat{\mu}_{86}, \AA, \Sigma\right)+\sigma_{84}^{2}\right)^{1 / 2} \tag{3}
\end{align*}
\]
where \(\mathrm{f}\left(\hat{\mu}_{86}, \hat{\mathrm{~A}}, \Sigma\right)\) is given as in (2).

\section*{A NUMERICAL ILLUSTRATION}

Mean reading proficiencies for students aged 9, 13, and 17 in 1984 and 1986 are given in Table D.2. The first row of the table provides 1984 age group means expressed on the 1984 calibration scale. The second and third rows provide 1986 age group means expressed on the 1986 calibration scale and the 1984 calibration scale. The table also provides estimated standard errors for each mean.

Table D. 2
Mean Reading Proficiencies
With Standard Errors in Parentheses
\begin{tabular}{llllll} 
Year & Scale & Age 9 & Age 13 & Age 17 \\
1984 & 84 Calib. & \(-0.752(.020)\) & \(0.150(.014)\) & \(0.766(.018)\) \\
1986 & 86 Calib. & \(-0.375(.025)\) & \(0.571(.019)\) & \(0.874(.018)\) \\
1986 & 84 Calib. & \(-0.864(.028)\) & \(0.198(.022)\) & \(0.538(.020)\)
\end{tabular}

The change in mean reading proficiency from 1984 to 1986 is given in Table D.3. The two different methods available for calculating the standard errors of these statistics are compared in Table D.4. To put these results in perspective, Table D. 5 provides the change in mean reading proficiency expressed in standard error units. The table shows, for example, that the decrease in the mean reading proficiency of 9 -year-olds is approximately three standard errors when the uncertainty of the linking procedure is not accounted for, but only one standard error when it is.

Table D. 3
The Change in Mean Reading Proficiency from 1984 to 1986
\begin{tabular}{llll} 
Scale & Age 9 & Age 13 & Age 17 \\
84 Calib. & -0.112 & 0.048 & -0.228
\end{tabular}

Table D. 4
Approximate Standard Exrors
for the Change in Mean Reading Proficiercy from 1984 to 1986
\begin{tabular}{|c|c|c|c|}
\hline Method * & Age 9 & Age 13 & Age 17 \\
\hline Excl. Eq. Error & . 034 & . 026 & . 027 \\
\hline Inc1. Eq. Error & . 105 & . 084 & . 066 \\
\hline
\end{tabular}

Table D. 5
The Change in Mean Reading Proficiency from 1984 to 1986 Expressed in Standard Error Units
\begin{tabular}{|c|c|c|c|}
\hline Standard Error \({ }^{*}\) & Age 9 & Age 13 & Age 17 \\
\hline Excl. Eq. Error & -3.29 & 1.85 & -8.44 \\
\hline Incl. Eq. Error & -1.07 & . 57 & -3.4 \\
\hline
\end{tabular}
*
Excl. Eq. Error refers to the method that assumes that the linking function is known without error, as in equation (1); Incl. Eq. Error refers to the method that accounts for the uncertainty of the linking procedure as in equation (3).

\section*{APPENDIX E}

\section*{IRT Item Parameter Tables}

615

\section*{Appendix E}

IRT ITEM PARAMETER TABLES

Appendix E contains 36 tables of IRT parameters for NAEP items used in IRT scaling for each grade/age or age.

For each NAEP item (FIELD), the tables show the BLOCK in which the item appears (for the grade/age or age), the order in which the item appears within the block (ITEM), the corresponding IRT parameters (A, B, and C), the standard error (SE) for each parameter, and a short ITEM DESCRIPTION.

Tables E.l through E. 28 show, for each grade/age, IRT parameters for reading items, mathematics items (by subscale), and science items (by 3 3nscale). Tables E. 29 and E. 30 present IRT parameters for grade 11/age 17 fo U.S. history items and literature items, respectively.

Tables E. 31 through E. 36 show IRT parameters for ages 9, 13, and 17 for items used in mathematics and science trend scaling.

Not. that item parameters shown in this appendix are in the metrics used for riee c iginal calibration of the scale or subscale. The transformations needed \(t\), represent these parameters in terms of the metric of the final reporting scales are given in Chapters 9, 10, 11 , and 13 , respectively, for \(\therefore\) ading, mathematics, science, and history and literature.

Table E. 1
1986 IRT Parameters, Reading, Grade \(3 /\) Age 9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCX & ITEM & A & SE & B & SE & C & S \\
\hline *N010401 & R1 & 12 & 0.715 & (0.087) & -1.487 & (0.209) & 0.219 & (0.077) \\
\hline *N010402 & R1 & 13 & 0.928 & (0.171) & 0.132 & (0.113) & 0.222 & (0.037) \\
\hline *N010403 & R1 & 14 & 1.031 & (0.197) & 0.465 & (0.153) & 0.190 & (0.027) \\
\hline *N008901 & R1 & 15 & 1.328 & (0.106) & -1.244 & (0.138) & 0.148 & (0.041) \\
\hline *N008902 & R1 & 16 & 1.258 & (0.102) & -1.271 & (0.140) & 0.156 & (0.043) \\
\hline *N001501 & R1 & 17 & 1.808 & (0.130) & -1.313 & (0.152) & 0.225 & (0.047) \\
\hline *N001502 & R1 & 18 & 1.643 & (0.098) & -0. 507 & (0.061) & 0.182 & (0.026) \\
\hline *N001503 & R1 & 19 & 1.345 & (0.088) & -0.902 & (0.086) & 0.207 & (0.043) \\
\hline *N001504 & R1 & 20 & 1.448 & (0.089) & -0.650 & (0.068) & 0.173 & (0.032) \\
\hline *N014201 & R1 & 21 & 1.207 & (0.134) & -1.218 & (0.189) & 0.136 & (0.052) \\
\hline *N010301 & R2 & 10 & 0.702 & (0.085) & -2.383 & (0.318) & 0.248 & (0.093) \\
\hline *N009801 & R2 & 11 & 1.396 & (0.134) & -2.227 & (0.296) & 0.259 & (0.086) \\
\hline *N013301 & R2 & 12 & 1.232 & (0.161) & -1.557 & (0.268) & 0.253 & (0.077) \\
\hline *N009401 & R2 & 13 & 1.882 & (0.127) & -1.402 & (0.172) & 0.105 & (0.035) \\
\hline *N002001 & R2 & 14 & 1.197 & (0.065) & -0.013 & (0.050) & 0.131 & (0.020) \\
\hline *N002002 & R2 & 15 & 1.444 & (0.084) & -0.042 & (0.055) & 0.203 & (0.020) \\
\hline *N002003 & R2 & 16 & 1.583 & (0.093) & -0.229 & (0.054) & 0.224 & (0.022) \\
\hline *N002801 & R2 & 17 & 1.921 & (0.114) & -0.767 & (0.081) & 0.175 & (0.028) \\
\hline *N002802 & R2 & 18 & 1.896 & (0.110) & -0.912 & (0.092) & 0.143 & (0.028) \\
\hline *N004101 & R2 & 19 & 1.096 & (0.087) & -1.122 & (0.114) & 0.229 & (0.054) \\
\hline *N010201 & R2 & 20 & 1.243 & (0.121) & -1.932 & (0.245) & 0.244 & (0.078) \\
\hline *N010501 & R3 & 8 & 2.023 & (0.139) & -1.490 & (0.190) & 0.204 & (0.046) \\
\hline *N010502 & R3 & 9 & 1.204 & (0.114) & -1.196 & (0.154) & 0.156 & (0.049) \\
\hline *N010503 & R3 & 10 & 1.455 & (0.123) & -1.460 & (0.184) & 0.159 & (0.048) \\
\hline *N010504 & R3 & 11 & 2.300 & (0.166) & -1.114 & (0.174) & 0.182 & (0.032) \\
\hline *N003101 & R3 & 12 & 1.571 & (0.100) & -0.645 & (0.073) & 0.267 & (0.032) \\
\hline *N003102 & R3 & 13 & 1.530 & (0.083) & -0.359 & (0.051) & 0.145 & (0.023) \\
\hline *N003104 & R3 & 14 & 0.704 & (0.042) & 1.923 & (0.124) & 0.0 & (0.0) \\
\hline *N008601 & R3 & 15 & 1.789 & (0.179) & -0.972 & (0.171) & 0.169 & (0.037) \\
\hline *N008602 & R3 & 16 & 1.368 & (0.179) & -0.554 & (0.122) & 0.261 & (0.041) \\
\hline * N 008603 & R3 & 17 & 1.206 & (0.118) & -0.985 & (0.137) & 0.140 & (0.043) \\
\hline N021101 & R4 & 5 & 0.800 & (0.024) & -2.200 & (0.064) & 0.214 & (0.021) \\
\hline N021102 & R4 & 6 & 0.760 & (0.030) & -1.407 & (0.050) & 0.188 & (0.015) \\
\hline N021103 & R4 & 7 & 1.271 & (0.038) & -1.461 & (0.050) & 0.181 & (0.015) \\
\hline N021301 & R4 & 8 & 1.081 & (0.024) & -0.168 & (0.019) & 0.0 & (0.0) \\
\hline N021303 & R4 & 10 & 0.994 & (0.031) & -0.745 & (0.024) & 0.190 & (0.010) \\
\hline N021304 & R4 & 11 & 0.446 & (0.017) & 0.397 & (0.037) & 0.172 & (0.008) \\
\hline N021305 & R4 & 12 & 0.978 & (0.024) & 0.214 & (0.028) & 0.189 & (0.007) \\
\hline N021201 & R4 & 13 & 0.861 & (0.024) & -0.120 & (0.023) & 0.180 & (0.008) \\
\hline N021202 & R4 & 14 & 0.628 & (0.021) & -0.153 & (0.022) & 0.195 & (0.009) \\
\hline N021203 & R4 & 15 & 0.704 & (0.022) & 0.113 & (0.027) & 0.204 & (0.008) \\
\hline N021204 & R4 & 16 & 0.726 & (0.022) & -0.262 & (0.021) & 0.190 & (0.009) \\
\hline *N010102 & R5 & 12 & 1.124 & (0.193) & -0.050 & (0.111) & 0.267 & (0.037) \\
\hline *N010103 & R5 & 13 & 1.795 & (0.200) & -1.075 & (0.207) & 0.209 & (0.042) \\
\hline N021401 & R5 & 14 & 0.958 & (0.043) & -0.798 & (0.039) & 0.137 & (0.011) \\
\hline N021402 & R5 & 15 & 1.764 & (0.077) & -0.878 & (0.050) & 0.141 & (0.010) \\
\hline N021403 & R5 & 16 & 1.650 & (0.041) & -1.625 & (0.059) & 0.221 & (0.016) \\
\hline N021404 & R5 & 17 & 2.362 & (0.225) & -0.410 & (0.065) & 0.181 & (0.008) \\
\hline *NO14301 & R5 & 18 & 1.755 & (0.191) & -0.820 & (0.158) & 0.190 & (0.035) \\
\hline *N014302 & R5 & 19 & 1.074 & (0.136) & -0.498 & (0.108) & 0.181 & (0.041) \\
\hline *N014303 & R5 & 20 & 1.721 & (0.187) & -1.041 & (0.188) & 0.208 & (0.041) \\
\hline *NO13001 & R5 & 21 & 1.020 & (0.122) & -0.343 & (0.083) & 0.165 & (0.036) \\
\hline *N013002 & R 5 & 22 & 0.972 & (0.121) & -0.383 & (0.090) & 0.187 & (0.040) \\
\hline *N013003 & R5 & 23 & 1.717 & (0.164) & -1.123 & (0.172) & 0.234 & (0.041) \\
\hline * N013004 & R5 & 24 & 0.994 & (0.115) & -0.946 & (0.138) & 0.216 & (0.056) \\
\hline N021501 & R6 & 5 & 0.991 & (0.036) & -1.340 & (0.049) & 0.196 & (0.014) \\
\hline N021502 & R6 & 6 & 1.524 & (0.038) & -1.785 & (0.060) & 0.229 & (0.018) \\
\hline N021503 & R6 & 7 & 1.100 & (0.028) & -2.234 & (0.063) & 0.214 & (0.023) \\
\hline N021504 & R6 & 8 & 1.040 & (0.039) & -1.280 & (0.050) & 0.197 & (0.014) \\
\hline N021505 & R6 & 9 & 1.572 & (0.057) & -1.117 & (0.052) & 0.166 & (0.012) \\
\hline *N010601 & R6 & 10 & 1.604 & (0.196) & -0.634 & (0.136) & 0.246 & (0.036) \\
\hline *N010602 & R6 & 11 & 1.788 & (0.344) & 0.209 & (0.153) & 0.306 & (0.023) \\
\hline *N010603 & R6 & 12 & 1.359 & (0.199) & -0.258 & (0.105) & 0.234 & (0.033) \\
\hline *N010604 & R6 & 13 & 1.637 & (0.250) & -0.101 & (0.106) & 0.235 & (0.026) \\
\hline *N010605 & R6 & 14 & 1.220 & (0.190) & -0.069 & (0.098) & 0.184 & (0.031) \\
\hline *N013401 & R6 & 15 & 1.203 & (0.177) & -0.250 & (0.107) & 0.157 & (0.035) \\
\hline * NO 13402 & R6 & 16 & 1.438 & (0.189) & -0.862 & (0.175) & 0.205 & (0.048) \\
\hline *N013403 & R6 & 17 & 1.494 & (0.223) & -0.278 & (0.116) & 0.199 & (0.033) \\
\hline
\end{tabular}
*Used in 1984 reading scale.

Table E. 2
1986 IRT Parameters, Reading, Grade 7/Age 13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCX & ITEM & A & SE & B & SE & C & SE \\
\hline *N002801 & R1 & 20 & 1.921 & (0.114) & -0.767 & (0.081) & 0.175 & (0.028) \\
\hline * N002802 & R1 & 21 & 1.896 & (0.110) & -0.912 & (0.092) & 0.143 & (0.028) \\
\hline * \(\mathrm{NOO2001}\) & R1 & 22 & 1.197 & (0.065) & -0.013 & (0.050) & 0.131 & (0.020) \\
\hline *N002002 & R1 & 23 & 1.444 & (0.084) & -0.042 & (0.055) & 0.203 & (0.020) \\
\hline *N002003 & R1 & 24 & 1.583 & (0.093) & -0.229 & (0.054) & 0.224 & (0.022) \\
\hline *N001501 & R1 & 25 & 1.808 & (0.130) & -1.313 & (0.152) & 0.225 & (0.047) \\
\hline *N001502 & R1 & 26 & 1.643 & (0.098) & -0.507 & (0.061) & 0.182 & (0.026) \\
\hline *N001503 & R1 & 27 & 1.345 & (0.088) & -0.902 & (0.086) & 0.207 & (0.043) \\
\hline * \(\mathrm{NOO1504}\) & R1 & 38 & 1.448 & (0.089) & -0.650 & (0.068) & 0.173 & (0.032) \\
\hline *N003101 & R1 & 29 & 1.571 & (0.100) & -0.645 & (0.073) & 0.267 & (0.032) \\
\hline *N003102 & R1 & 30 & 1.530 & (0.083) & -0.359 & (0.051) & 0.145 & (0.023) \\
\hline * N003104 & R1 & 31 & 0.704 & (0.042) & 1.923 & (0.124) & 0.0 & (0.0) \\
\hline * N008201 & R2 & 10 & 2.724 & (0.302) & -0.471 & (0.131) & 0.323 & (0.052) \\
\hline *N008202 & R2 & 11 & 1.146 & (0.102) & -0.065 & (0.102) & 0.188 & (0.052) \\
\hline *N008203 & R2 & 12 & 1.543 & (0.141) & -0.289 & (0.104) & 0.247 & (0.054) \\
\hline *N008204 & R2 & 13 & 2.600 & (0.236) & -0.228 & (0.092) & 0.209 & (0.038) \\
\hline *N008205 & R2 & 14 & 2.145 & (0.188) & -0.256 & (0.092) & 0.205 & (0.042) \\
\hline *N005001 & R2 & 15 & 1.993 & (0.102) & 1.380 & (0.159) & 0.211 & (0 011) \\
\hline *N005002 & R2 & 16 & 0.859 & (0.108) & 1.288 & (0.240) & 0.264 & (0.029) \\
\hline *N005003 & R2 & 17 & 0.737 & (0.145) & 1.905 & (0.331) & 0.135 & (0.024) \\
\hline *N003001 & R2 & 18 & 1.293 & (0.109) & 1.153 & (0.169) & 0.207 & (0.013) \\
\hline *N003003 & R2 & 19 & 2.294 & (0.109) & 1.724 & (0.190) & 0.120 & (0.006) \\
\hline *N004601 & R3 & 16 & 0.899 & (0.078) & 0.179 & (0.104) & 0.184 & (0.048) \\
\hline * N004602 & R3 & 17 & 1.318 & (0.103) & -0.085 & (0.092) & 0.249 & (0.044) \\
\hline *N004603 & R3 & 18 & 1.485 & (0.113) & -0.516 & (0.089) & 0.226 & (0.054) \\
\hline *N007401 & R4 & 8 & 1.098 & (0.076) & 0.551 & (0.096) & 0.123 & (0.027) \\
\hline *N007402 & R4 & 9 & 1.304 & (0.084) & -0.317 & (0.075) & 0.176 & (0.045) \\
\hline * NOO 7403 & R4 & 10 & 1.756 & (0.119) & 0.214 & (0.093) & 0.233 & (0.027) \\
\hline -NOO7404 & R4 & 11 & 0.985 & (0.072) & 0.060 & (0.088) & 0.181 & (0.044) \\
\hline *N007405 & R4 & 12 & 0.887 & (0.102) & 1.401 & (0.229) & 0.187 & (0.025) \\
\hline *N007301 & R4 & 13 & 1.183 & (0.091) & -0.394 & (0.100) & 0.278 & (0.059) \\
\hline *N007302 & R4 & 14 & 0.818 & (0.059) & 0.285 & (0.084) & 0.136 & (0.039) \\
\hline *N007303 & R4 & 15 & 1.110 & (0.077) & -0.024 & (0.084) & 0.196 & (0.043) \\
\hline *N007304 & R4 & 16 & 0.887 & (0.072) & -0.007 & (0.100) & 0.223 & (0.053) \\
\hline *N007305 & R4 & 17 & 0.329 & (0.042) & 0.010 & (0.077) & 0.133 & (0.050) \\
\hline *N007306 & R4 & 18 & 1.1309 & (0.057) & -0.116 & (0.059) & 0.103 & (0.035) \\
\hline *N013401 & R4 & 19 & 1.2 .03 & (0.177) & -0.250 & (0.107) & 0.157 & (0.035) \\
\hline *NO13402 & R4 & 20 & 1.1.38 & (0.189) & -0.862 & (0.175) & 0.205 & (0.048) \\
\hline *N013403 & R4 & 21 & 1.494 & (0.223) & -0.278 & (0.116) & 0.199 & (0.033) \\
\hline N021601 & R5 & 7 & 0.619 & (0.022) & -0.263 & (0.024) & 0.252 & (0.012) \\
\hline N021602 & R5 & 8 & 0.785 & (0.0土8) & 0.846 & (0.039) & 0.154 & (0.008) \\
\hline N021603 & R5 & 9 & 0.368 & (0.018) & 1.238 & (0.085) & 0.216 & (0.009) \\
\hline N021604 & R5 & 10 & 1.381 & (0.027) & 0.267 & (0.030) & 0.159 & (0.009) \\
\hline N021605 & R5 & 11 & 0.794 & (0.025) & 1.079 & (0.059) & 0.385 & (0.008) \\
\hline *N003201 & R5 & 12 & 1.207 & (0.088) & -0.593 & (0.087) & 0.171 & (0.056) \\
\hline * NO 03202 & R5 & 13 & 1.590 & (0.1.24) & 0.012 & (0.093) & 0.227 & (0.038) \\
\hline *N003203 & R5 & 14 & 1.215 & (0.101) & 0.240 & (0.107) & 0.222. & (0.039) \\
\hline *N003204 & R5 & 15 & 1.457 & (0.120) & 0.260 & (0.112) & 0.238 & (0.035) \\
\hline N021701 & R5 & 16 & 1.120 & (0.035) & -0.463 & (0.028) & 0.229 & (0.014) \\
\hline N021702 & R5 & 17 & 0.915 & (0.018) & 1.016 & (0.039) & 0.108 & (0.007) \\
\hline N021703 & R 5 & 18 & 1.351 & (0.026) & 1.174 & (0.053) & 0.289 & (0.007) \\
\hline NO21201 & R6 & 5 & 0.861 & (0.024) & -0.120 & (0.023) & 0.180 & (0.008) \\
\hline N021202 & R6 & 6 & 0.628 & (0.021) & -0.153 & (0.022) & 0.195 & (0.009) \\
\hline NO21203 & R6 & 7 & 0.704 & (0.022) & 0.113 & (0.027) & 0.204 & (0.008) \\
\hline N021204 & R6 & 8 & 0.726 & (0.022) & -0.262 & (0.021) & 0.190 & (0.009) \\
\hline N021301 & R6 & 9 & 1.081 & (0.024) & -0.168 & (0.019) & 0.0 & (0.0) \\
\hline N021303 & R6 & 11 & 0.994 & (0.031) & -0.745 & (0.024) & 0.190 & (0.010) \\
\hline N021304 & R6 & 12 & 0.446 & (0.017) & 0.397 & (0.037) & 0.172 & (0.008) \\
\hline N021305 & R6 & 13 & 0.978 & (0.024) & 0.214 & (0.028) & 0.189 & (0.007) \\
\hline N021801 & R6 & 14 & 1.230 & (0.027) & -0.008 & (0.024) & 0.0 & (0.0) \\
\hline N021803 & R6 & 16 & 1.184 & (0.031) & 0.294 & (0.038) & 0.291 & (0.010) \\
\hline N021805 & R6 & 18 & 0.965 & (0.027) & -0.276 & (0.024) & 0.0 & (0.0) \\
\hline
\end{tabular}

\footnotetext{
*Used in 1984 reading scale.
}

Table E. 3
1986 IRT Parameters, Reading, Grade 11/Age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline *N002801 & R1 & 20 & 1.921 & (0.114) & -0.767 & (0.081) & 0.175 & (0.028) \\
\hline *N002802 & R1 & 21 & 1.896 & (0.110) & -0.912 & (0.092) & 0.143 & (0.028) \\
\hline *N002001 & R1 & 22 & 1.197 & (0.065) & -0.013 & (0.050) & 0.131 & (0.026) \\
\hline *N002002 & R1 & 23 & 1.444 & (0.084) & -0.042 & (0.055) & 0.203 & (0.020) \\
\hline *N002003 & R1 & 24 & 1.583 & (0.093) & -0.229 & (0.054) & 0.224 & (0.022) \\
\hline *N001501 & R1 & 25 & 1.808 & (0.130) & -1.313 & (0.152) & 0.225 & (0.047) \\
\hline *N001502 & R1 & 26 & 1.643 & (0.098) & -0.507 & (0.061) & 0.182 & (0.026) \\
\hline *N001503 & R1 & 27 & 1.345 & (0.088) & -0.902 & (0.086) & 0.207 & (0.043) \\
\hline *N001504 & R1 & 28 & 1.448 & (0.089) & -0.650 & (0.068) & 0.173 & (0.032) \\
\hline *N003101 & R1 & 29 & 1.571 & (0.100) & -0.645 & (0.073) & 0.267 & (0.032) \\
\hline *N003102 & R1 & 30 & 1.530 & (0.083) & -0.359 & (0.051) & 0.145 & (0.023) \\
\hline *N003104 & R1 & 31 & 0.704 & (0.042) & 1.923 & (0.124) & 0.0 & (0.0) \\
\hline *N008201 & R2 & 10 & 2.724 & (0.302) & -0.471 & (0.131) & 0.323 & (0.052) \\
\hline *N008202 & R2 & 11 & 1.146 & (0.102) & -0.065 & (0.102) & 0.188 & (0.052) \\
\hline *N008203 & R2 & 12 & 1.543 & (0.141) & -0.289 & (0.104) & 0.247 & (0.054) \\
\hline *N008204 & R2 & 13 & 2.600 & (0.236) & -0.228 & (0.092) & 0.209 & (0.038) \\
\hline *N008205 & R2 & 14 & 2.145 & (0.188) & -0.256 & (0.092) & 0.205 & (0.042) \\
\hline *N005001 & R2 & 15 & 1.993 & (0.102) & 1.380 & (0.153) & 0.211 & (0.011) \\
\hline *N005002 & R2 & 16 & 0.859 & (0.108) & 1.288 & (0.240) & 0.264 & (0.029) \\
\hline *N005003 & R2 & 17 & 0.737 & (0.105) & 1.905 & (0.331) & 0.135 & (0.024) \\
\hline *N003001 & R2 & 18 & 1.293 & (0.109) & 1.153 & (0.169) & 0.207 & (0.013) \\
\hline *N003003 & R2 & 19 & 2.294 & (0.109) & 1.724 & (0.190) & 0.120 & (0.006) \\
\hline *N004601 & R3 & 16 & 0.899 & (0.078) & 0.179 & (0.104) & 0.184 & (0.048) \\
\hline *N004602 & R3 & 17 & 1.318 & (0.103) & -0.085 & (0.092) & 0.249 & (0.044) \\
\hline *N004603 & R3 & 18 & 1.485 & (0.113) & -0.516 & (0.089) & 0.226 & (0.054) \\
\hline *N007401 & R 4 & 8 & 1.098 & (0.076) & 0.531 & (0.096) & 0.123 & (0.027) \\
\hline *N007402 & R4 & 9 & 1.304 & (0.084) & -0.317 & (0.075) & 0.176 & (0.045) \\
\hline *N007403 & R4 & 10 & 1.756 & (0.119) & 0.214 & (0.093) & 0.233 & (0.027) \\
\hline *N007404 & R4 & 11 & 0.985 & (0.072) & 0.060 & (0.088) & 0.181 & (0.044) \\
\hline *N007405 & R4 & 12 & 0.887 & (0.102) & 1.401 & (0.229) & 0.187 & (0.025) \\
\hline *N007301 & R4 & 13 & 1.183 & (0.091) & -0.394 & (0.100) & 0.278 & (0.059) \\
\hline *N007302 & R4 & 14 & 0.818 & (0.059) & 0.285 & (0.084) & 0.136 & (0.039) \\
\hline *N007303 & R4 & 15 & 1.110 & (0.077) & -0.024 & (0.084) & 0.196 & (0.043) \\
\hline *N007304 & R4 & 16 & 0.887 & (0.072) & -0.007 & (0.100) & 0.223 & (0.053) \\
\hline *N007305 & R4 & 17 & 0.529 & (0.042) & 0.010 & (0.077) & 0.133 & (0.050) \\
\hline *N007306 & R4 & 18 & 1.009 & (0.057) & -0.116 & (0.059) & 0.103 & (0.035) \\
\hline *NO13401 & R4 & 19 & 1.203 & (0.177) & -0.250 & (0.107) & 0.157 & (0.035) \\
\hline *NO13402 & R4 & 20 & 1.438 & (0.189) & -0.862 & (0.175) & 0.205 & (0.048) \\
\hline *NO13403 & R4 & 21 & 1.494 & (0.223) & -0.278 & (0.116) & 0.199 & (0.033) \\
\hline N021601 & R5 & 7 & 0.619 & (0.022) & -0.263 & (0.024) & 0.252 & (0.012) \\
\hline N021602 & R5 & 8 & 0.785 & (0.018) & 0.846 & (0.039) & 0.154 & (0.008) \\
\hline N021603 & RS & 9 & 0.368 & (0.018) & 1.238 & (0.085) & 0.216 & (0.009) \\
\hline N021604 & R5 & 10 & 1.381 & (0.027) & 0.267 & (0.030) & 0.159 & (0.009) \\
\hline N021605 & RS & 11 & 0.794 & (0.025) & 1.079 & (0.059) & 0.389 & (0.008) \\
\hline *N003201 & R5 & 12 & 1.207 & (0.088) & -0.593 & (0.087) & 0.171 & (0.056) \\
\hline *N003202 & R5 & 13 & 1.590 & (0.124) & 0.012 & (0.093) & 0.227 & (0.038) \\
\hline *N003203 & R5 & 14 & 1.215 & (0.101) & 0.240 & (0.107) & 0.222 & (0.039) \\
\hline *N003204 & R5 & 15 & 1.457 & (0.120) & 0.260 & (0.112) & 0.238 & (0.035) \\
\hline N021701 & R5 & 16 & 1.120 & (0.035) & -0.463 & (0.028) & 0.229 & (0.014) \\
\hline N021702 & R5 & 17 & 0.915 & (0.018) & 1.016 & (0.039) & 0.108 & (0.007) \\
\hline N021703 & R5 & 18 & 1.351 & (0.026) & 1.174 & (0.053) & 0.289 & (0.007) \\
\hline N021201 & R6 & 5 & 0.861 & (0.024) & -0.120 & (0.023) & 0.180 & (0.008) \\
\hline N021202 & R6 & 6 & 0.628 & (0.021) & -0.153 & (0.022) & 0.195 & (0.009) \\
\hline N021203 & R6 & 7 & 0.704 & (0.022) & 0.113 & (0.027) & 0.204 & (0.008) \\
\hline N021204 & R6 & 8 & 0.726 & (0.022) & -0.262 & (0.021) & 0.190 & (0.009) \\
\hline N021301 & R6 & 9 & 1.081 & (0.024) & -0.168 & (0.019) & 0.0 & (0.0) \\
\hline N021303 & R6 & 11 & 0.994 & (0.031) & -0.745 & (0.024) & 0.190 & (0.010) \\
\hline N021304 & R6 & 12 & 0.446 & (0.017) & 0.397 & (0.037) & 0.172 & (0.008) \\
\hline N021305 & R6 & 13 & 0.978 & (0.024) & 0.214 & (0.028) & 0.189 & (0.007) \\
\hline N021801 & R6 & 14 & 1.230 & (0.027) & -0.008 & (0.024) & 0.0 & (0.0) \\
\hline N021803 & R6 & 16 & 1.184 & (0.031) & 0.294 & (0.038) & 0.291 & (0.010) \\
\hline N021805 & R6 & 18 & 0.965 & (0.027) & -0.276 & (0.024) & 0.0 & (0.0) \\
\hline
\end{tabular}
*Used in 198/, reading scale.

Table E. 4
1986 IRT Parameters, Mathematics, Grade \(3 /\) Age 9 Measurement Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N267601 & M1 & 3 & 2.096 & (0.054) & -0.894 & (0.052) & 0.257 & (0.017) \\
\hline N267602 & M1 & 18 & 2.246 & (0.086) & -0.592 & (0.058) & 0.227 & (0.015) \\
\hline N265401 & M1 & 21 & 1.202 & (0.438) & 1.070 & (0.447) & 0.282 & (0.012) \\
\hline N266101 & M1 & 22 & 1.275 & (0.035) & 0.576 & (0.031) & 0.294 & (0.008) \\
\hline N269101 & M1 & 23 & 1.930 & (0.0.95) & 0.329 & (0.040) & 0.220 & (0.008) \\
\hline N268201 & M1 & 24 & 1.607 & (0.063) & -0.256 & (0.026) & 0.120 & (0.011) \\
\hline N252101 & M1 & 25 & 0.832 & (0.052) & 0.880 & (0.064) & 0.197 & (0.009) \\
\hline N252601 & M1 & 26 & 2.112 & (0.031) & 1.445 & (0.049) & 0.210 & (0.006) \\
\hline N276601 & M2 & 2 & 1.947 & (0.044) & -1.025 & (0.047) & 0.211 & (0.019) \\
\hline N251401 & M2 & 16 & 1.472 & (0.044) & -0.783 & (0.041) & 0.150 & (0 01E; \\
\hline N252001 & M2 & 25 & 1.590 & (0.075) & 0.993 & (0.075) & 0.228 & (0.008) \\
\hline N267001 & M3 & 16 & 1.283 & (0.041) & -1.194 & (0.055) & 0.230 & (0.024) \\
\hline N251601 & M4 & 13 & 1.105 & (0.028) & -1.154 & (0.040) & 0.266 & (0.016) \\
\hline N265201 & M4 & 14 & 1.463 & (0.068) & -0.430 & (0.041) & 0.456 & (0.010) \\
\hline N252901 & M4 & 23 & 1.815 & (0.071) & 0.436 & (0.036) & 0.114 & (0.005) \\
\hline N237701 & M5 & 23 & 1.563 & (0.172) & 0.055 & (0.067) & 0.262 & (0.011) \\
\hline N219101 & M6 & 11 & 1.870 & (0.043) & -0.599 & (0.026) & 0.160 & (0.010) \\
\hline N 204901 & M6 & 12 & 0.924 & (0.024) & -0.645 & (0.023) & 0.139 & (0.010) \\
\hline N204601 & M6 & 13 & 1.087 & (0.027) & -0.828 & (0.028) & 0.212 & (0.012) \\
\hline N216501 & M6 & 17 & 0.483 & (0.030) & 1.078 & (0.071) & 0.248 & (0.007) \\
\hline N236401 & :6 & 19 & 1.164 & (0.337) & 1.007 & (0.325) & 0.285 & (0.008) \\
\hline N216601 & M6 & 22 & 1.428 & (0.049) & -0.104 & (0.021) & 0.151 & (0.008) \\
\hline N231701 & M6 & 25 & 2.383 & (0.097) & 0.239 & (0.036) & 0.289 & (0.007) \\
\hline N215301 & M6 & 26 & 2.788 & (0.064) & 0.592 & (0.038) & 0.087 & (0.005) \\
\hline N236501 & M7 & 11 & 1.114 & (0.032) & -1.688 & (0.060) & 0.223 & (0.028) \\
\hline N215401 & M7 & 14 & 1.425 & (0.048) & -0.686 & (0.043) & 0.213 & (0.015) \\
\hline
\end{tabular}

Table E. 5
1986 IRI Pe ameters, Mathematics, Grade 3/Age 9 Numbers and Operations--High Level Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & I TEM & A & SE & B & SE & C & SE \\
\hline N277401 & M1 & 2 & 0.736 & (0.024) & -2.216 & (0.077) & 0.157 & (0.025) \\
\hline N276101 & M1 & 12 & 1.607 & (0.033) & -0.814 & (0.033) & 0.0 & (0.0) \\
\hline N272301 & M2 & 1 & 1. 566 & (0.026) & -1.674 & (0.044) & 0.154 & (0.024) \\
\hline N275401 & M2 & 7 & 1.414 & (0.025) & -0.816 & (0.028) & 0.0 & (0.0) \\
\hline N259101 & M4 & 16 & 1.409 & (0.055) & -0.493 & (0.040) & 0.276 & (0.011) \\
\hline N276501 & M4 & 18 & 2.058 & (0.043) & -0.728 & (0.037) & 0.171 & (0.010) \\
\hline N238001 & M5 & 15 & 1.106 & (0.042) & -0.609 & (0.039) & 0.232 & (0.013) \\
\hline N238701 & M5 & 18 & 1.645 & (0.061) & -0.541 & (0.044) & 0.231 & (0.012) \\
\hline N235501 & M5 & 19 & 1.425 & (0.048) & -0.623 & (0.041) & 0.206 & (0.013) \\
\hline N239901 & M5 & 20 & 0.835 & (0.081) & 0.550 & (0.069) & 0.188 & (0.009) \\
\hline N235201 & M5 & 22 & 1.796 & (0.124) & -0.058 & (0.045) & 0.143 & (0.009) \\
\hline N238201 & M5 & 26 & 2. 129 & (0.132) & -0.223 & (0.053) & 0.170 & (0.010) \\
\hline N240001 & M5 & 27 & 2.336 & (0.209) & -0.055 & (0.058) & 0.139 & (0.009) \\
\hline N230501 & M6 & 9 & 1.709 & (0.070) & -0.092 & (0.023) & 0.280 & (0.007) \\
\hline N230101 & M6 & 14 & 0.811 & (0.024) & -0.728 & (0.027) & 0.220 & (0.011) \\
\hline N217201 & M6 & 16 & 1. 521 & (0.057) & -0.158 & (0.021) & 0.244 & (0.008) \\
\hline N207401 & M6 & 18 & 1.433 & (0.059) & -0.101 & (0.022) & 0.290 & (0.008) \\
\hline N239101 & M7 & 12 & 1.066 & (0.026) & -1.599 & (0.050) & 0.198 & (0.023) \\
\hline N206601 & M7 & 16 & 0.704 & (0.015) & 0.012 & (0.011) & 0.075 & (0.007) \\
\hline N207801 & M7 & 17 & 1.735 & (0.021) & 0.779 & (0.021) & 0.213 & (0.004) \\
\hline N237601 & M7 & 18 & 1.399 & (0.103) & -0.097 & (0.048) & 0.280 & (0.010) \\
\hline N234101 & M7 & 21 & 0.931 & (0.022) & 0.211 & (0.016) & 0.152 & (0.007) \\
\hline N239601 & M7 & 28 & 1.959 & (0.292) & 1.450 & (0.364) & 0.117 & (0.006) \\
\hline
\end{tabular}

Table E. 6
1986 IRT Parameters, Mathematics, Grade 3/Age 9 Numbers and Operations--Knowledge and Skills Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N276801 & M1 & 4 & 0.503 & (0.019) & -3.780 & (0.143) & 0.0 & (0.0 \\
\hline N276802 & M1 & 5 & 0.769 & (0.017) & -2.066 & (0.049) & 0.0 & (0.0 \\
\hline N276803 & M1 & 6 & 0.841 & (0.018) & -0.642 & (0.019) & 0.0 & (0.0 \\
\hline N257201 & M1 & 11 & 1.090 & (0.045) & -0.724 & (0.044) & 0.238 & (0.015) \\
\hline N286101 & M1 & 13 & 0.855 & (0.023) & -0.860 & (0.032) & 0.0 & (0.0 \\
\hline N272102 & M1 & 15 & 1.150 & (0.065) & -0.295 & (0.040) & 0.208 & (0.013) \\
\hline N284001 & M1 & 16 & 1.162 & (0.022) & -6.848 & (0.024) & 0.0 & (0.0 \\
\hline N284002 & M1 & 17 & 1.738 & (0.028) & 0.125 & (0.018) & 0.0 & (0.0 \\
\hline N257801 & M2 & 3 & 0.894 & (0.032) & -0.960 & (0.044) & 0.280 & (0.014) \\
\hline N273501 & M2 & 6 & 0.898 & (0.047) & -0.716 & (0.050) & 0.352 & (0.015) \\
\hline N277501 & M2 & 8 & 0.886 & (0.020) & -0.900 & (0.028) & 0.0 & (0.0 \\
\hline N277601 & M2 & 9 & 1.288 & (0.021) & -1.101 & (0.025) & 0.0 & (0.0 \\
\hline N277602 & M2 & 10 & 1.300 & (0.025) & -0.445 & (0.017) & 0.0 & (0.0 \\
\hline N277603 & M2 & 11 & 1.234 & (0.023) & -0.554 & (0.018) & 0.0 & (0.0 \\
\hline N261401 & M2 & 12 & 0.620 & (0.037) & -0.256 & (0.032) & 0.225 & (0.013) \\
\hline N276001 & M2 & 21 & 0.942 & (0.022) & -1.273 & (0.039) & 0.0 & (0.0 \\
\hline N276002 & M2 & 22 & 1.202 & (0.059) & 0.299 & (0.034) & 0.0 & (0.0 \\
\hline N286102 & M2 & 23 & 0.865 & (0.023) & -0.047 & (0.014) & 0.0 & (0.0) \\
\hline N272801 & M3 & 15 & 1.058 & (0.038) & -1.152 & (0.053) & 0.198 & (0.020) \\
\hline N272101 & M3 & 17 & 1. 101 & (0.053) & -0.817 & (0.055) & 0.257 & (0.018) \\
\hline N277901 & M4 & 8 & 0.899 & (0.014) & -1.871 & (0.034) & 0.0 & (0.0 \\
\hline N277902 & M4 & 9 & 0.893 & (0.014) & -1.839 & (0.033) & 0.0 & (0.0 \\
\hline N277903 & M4 & 10 & 1.017 & (0.016) & -1.042 & (0.021) & 0.0 & (0.0 \\
\hline N272302 & M4 & 11 & 1.185 & (0.027) & -1.074 & (0.034) & 0.232 & (0.012) \\
\hline N272601 & M4 & 17 & 1.096 & (0.025) & -0.376 & (0.020) & 0.0 & (0.0 \\
\hline N282901 & M4 & 20 & 0.998 & (0.024) & -0.484 & (0.021) & 0.0 & (0.0) \\
\hline N257701 & M4 & 22 & 1.766 & (0.296) & 1.115 & (0.248) & 0.197 & (0.006) \\
\hline N235601 & M6 & 21 & 1.149 & (0.034) & 0.365 & (0.021) & 0.164 & (0.006) \\
\hline N202801 & M7 & 15 & 0.955 & (0.044) & -0.544 & (0.040) & 0.247 & (0.013) \\
\hline N239501 & M7 & 23 & 0.974 & (0.051) & -0.454 & (0.042) & 0.243 & (0.013) \\
\hline
\end{tabular}

Table E. 7
1986 IRT Parameters, Mathematics, Grade 7/Age 13 Measurement Subscaie
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N267201 & M1 & 23 & 1.063 & (0.080) & -0.289 & (0.039) & 0.261 & ) \\
\hline N265202 & M1 & 30 & 1.260 & (0.076) & 0.235 & (0.039) & 0.247 & (0.016) \\
\hline N 266801 & M1 & 31 & 0.800 & (0.030) & -0.188 & (0.023) & 0.205 & (0.016) \\
\hline N252901 & M1 & 32 & 1.815 & (0.071) & 0.436 & (0.036) & 0.114 & (0.005) \\
\hline N265201 & M1 & 36 & 1.463 & (0.068) & -0.430 & (0.041) & 0.456 & (0.010) \\
\hline N265901 & M1 & 40 & 1.643 & (0.033) & 1.088 & (0.042) & 0.297 & (0.008) \\
\hline N252101 & M1 & 41 & 0.832 & (0.052) & 0.880 & (0.064) & 0.197 & (0.009) \\
\hline H269001 & M1 & 44 & 1.468 & (0.033) & 0.521 & (0.026) & 0.115 & (0.010) \\
\hline N269101 & M2 & 26 & 1.930 & (0.095) & 0.329 & (0.040) & 0.220 & (0.008) \\
\hline N261801 & M2 & 35 & 0.915 & (0.034) & -0.24S & (0.024) & 0.195 & (0.017) \\
\hline N252001 & M \({ }^{\prime}\) & 40 & 1.590 & (0.075) & 0.993 & (0.075) & 0.228 & (0.008) \\
\hline N269201 & M2 & 44 & 1.693 & (0.023) & 1.186 & (0.029) & 0.0 & \((0.0)\) \\
\hline N266101 & M3 & 27 & 1.275 & (0.035) & 0.576 & (0.031) & 0.294 & (0.008) \\
\hline N265902 & M3 & 31 & 2.227 & (0.041) & 1.416 & (0.064) & 0.399 & (0.007) \\
\hline N285201 & M 4 & 29 & 1.291 & (0.032) & 0.205 & (0.018) & 0.0 & (0.0) \\
\hline N266701 & M4 & 32 & 0.820 & (0.023) & 1.421 & (0.047) & 0.210 & (0.009) \\
\hline N251201 & M5 & 26 & 0.781 & (0.021) & 0.993 & (0.035) & 0.162 & (0.010) \\
\hline N284401 & M5 & 27 & 1.028 & (0.023) & 0.030 & (0.015) & 0. 0 & \((0.0)\) \\
\hline N252201 & M5 & 30 & 1.331 & (0.0223) & 0.802 & (0.024) & 0.0 & (0.0) \\
\hline N265903 & M5 & 31 & O. 886 & (0.025) & 1.050 & (0 039) & 0.257 & (0.009) \\
\hline N251801 & M5 & 32 & 1.114 & (0.022) & 0.819 & (0.024) & 0.0 & (0.0) \\
\hline N266001 & M5 & 38 & 1.475 & (0.020) & 1.713 & (0.036) & 0.0 & (0.0) \\
\hline N252601 & MS & 40 & 2.112 & (0.031) & 1.445 & (0.049) & 0.210 & (0.006) \\
\hline N267901 & M5 & 41 & 1.078 & (0.020) & 2.105 & (0.049) & 0.0 & (0.0) \\
\hline N219101 & M6 & 15 & 1.870 & (0.043) & -0.599 & (0.026) & 0.160 & (0.010) \\
\hline N 204901 & M6 & 16 & 0.924 & (0.024) & -0.645 & (0.023) & 0.139 & (0.010) \\
\hline N204601 & M6 & 17 & 1.087 & (0.027) & -0.828 & (0.028) & 0.212 & (0.012) \\
\hline N216501 & M6 & 21 & 0.483 & (0.030) & 1.078 & (0.071) & 0.248 & (0.007) \\
\hline N216601 & M6 & 26 & 1.428 & (0.049) & -0.104 & (0.021) & 0.151 & (0.008) \\
\hline N231701 & M6 & 29 & 2.383 & (0.097) & 0.239 & (0.036) & 0.289 & (0.007) \\
\hline N215301 & M6 & 32 & 2.788 & (0.064) & 0.592 & (0.038) & 0.087 & (0.005) \\
\hline N251901 & M7 & 26 & 1.449 & (0.065) & 0.221 & (0.025) & 0.149 & (0.010) \\
\hline N264501 & M7 & 29 & 1.013 & (0.046) & 0.115 & (0.017) & 0.0 & (0.0) \\
\hline N232901 & M7 & 33 & 1.795 & (0.026) & 0.760 & (0.024) & 0.150 & (0.006) \\
\hline N268201 & M8 & 16 & 1.607 & (0.069) & -0.256 & (0.026) & 0.120 & (0.011) \\
\hline N215701 & M8 & 24 & 1.400 & (0.029) & 0.566 & (0.024) & 0.220 & (0.008) \\
\hline N231501 & M8 & 30 & 0.699 & (0.020) & 0.355 & (0.019) & 0.233 & (0.010) \\
\hline N215601 & M8 & 36 & 1.628 & (0.028) & 0.896 & (0.031) & 0.270 & (0.007) \\
\hline N231801 & M8 & 38 & 1.296 & (0.031) & 1.085 & (0.042) & 0.411 & (0.007) \\
\hline N218501 & M8 & 47 & 1.811 & (0.028) & 1.110 & (0.037) & 0.344 & (0.007) \\
\hline N217101 & M8 & 51 & 2.307 & (0.026) & 1.442 & (0.041) & 0.175 & (0.005) \\
\hline N252701 & M8 & 55 & 1.437 & (0.021) & 1.361 & (0.032) & 0.0 & (0.0) \\
\hline N264301 & M8 & 58 & 1.488 & (0.022) & 1.506 & (0.035) & 0.0 & (0.0) \\
\hline N216401 & M9 & 49 & 2.011 & (0.030) & 0.778 & (0.029) & 0.156 & (0.008) \\
\hline N216301 & M9 & 51 & 1.538 & (0.023) & 1.405 & (0.039) & 0.284 & (0.006) \\
\hline
\end{tabular}

\section*{-577-}


Table E. 8
1986 IRI Parameters, Mathematics, Grade 7/Age 13
Numbers and Operations--High Level Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N286201 & M1 & 24 & 0.984 & (0.034) & -0.095 & (0.022) & 0.203 & (0.015) \\
\hline N258801 & M1 & 38 & 2.104 & (0.032) & 1.170 & (0.042) & 0.326 & (0.007) \\
\hline N275001 & M1 & 42 & 1.218 & (0.049) & 0.817 & (0.042) & 0.0 & (0.0 \\
\hline N286301 & M1 & 45 & 2.002 & (0.032) & 0.758 & (0.031) & 0.197 & (0.009) \\
\hline N277401 & M2 & 8 & 0.736 & (0.024) & -2.216 & (0.077) & 0.157 & (0.025) \\
\hline N282201 & M2 & 28 & 1.534 & (0.026) & 1.044 & (0.034) & 0.264 & (0.008) \\
\hline N258802 & M2 & 31 & 2.279 & (0.034) & 0.808 & (0.033) & 0.215 & (0.008) \\
\hline N261501 & M2 & 34 & 1.081 & (0.038) & -0.506 & (0.028) & 0.130 & (0.019) \\
\hline N261601 & M2 & 36 & 0.808 & (0.020) & 1.393 & (0.041) & 0.222 & (0.008) \\
\hline H261301 & M2 & 37 & 0.940 & (0.022) & 0.272 & (0.019) & 0.109 & (0.012) \\
\hline N261201 & M2 & 38 & 0.935 & (0.024) & 0.214 & (0.020) & 0.150 & (0.013) \\
\hline N281401 & M2 & 39 & 1.110 & (0.020) & 0.890 & (0.025) & 0.107 & (0.009) \\
\hline N256501 & M3 & 30 & 2.150 & (0.038) & 0.890 & (0.041) & 0.318 & (0.009) \\
\hline N263901 & M4 & 30 & 1.584 & (0.026) & 0.726 & (0.026) & 0.153 & (0.008) \\
\hline N255302 & M4 & 37 & 1.809 & (0.026) & 1.443 & (0.042) & 0.211 & (0.007) \\
\hline N258201 & M4 & 39 & 1.065 & (0 021) & 0.618 & (0.022) & 0.0 & (0.0 \\
\hline N260902 & M4 & 40 & 2.739 & (0.041) & 1.288 & (0.057) & 0.289 & (0.009) \\
\hline N285401 & M4 & 41 & 1.378 & (0.021) & 1.808 & (0.039) & 0.0 & (0.0 \\
\hline N257901 & M5 & 23 & 2.217 & (0.054) & 0.512 & (0.040) & 0.340 & (0.012) \\
\hline N279301 & MS & 34 & 1.357 & (0.012) & 1.573 & (0.021) & 0.0 & (0.0 \\
\hline N259501 & M5 & 36 & 1.292 & (0.019) & 0.972 & (0.024) & 0.0 & (0.0 \\
\hline N230501 & M6 & 13 & 1.709 & (0.070) & -0.092 & (0.023) & 0.280 & (0.007) \\
\hline N230101 & M6 & 18 & 0.811 & (0.024) & -0.728 & (0.027) & 0.220 & (0.011) \\
\hline N217201 & M6 & 20 & 1.521 & (0.057) & -0.158 & (0.021) & 0.244 & (0.008) \\
\hline N207401 & M6 & 22 & 1.433 & (0.059) & -0.101 & (0.022) & 0.290 & (0.008) \\
\hline N207601 & M6 & 33 & 1.660 & (0.050) & 1.116 & (0.054) & 0.176 & (0.007) \\
\hline N208401 & M6 & 34 & 1.589 & (0.068) & 0.318 & (0.033) & 0.236 & (0.011) \\
\hline N201101 & M6 & 42 & 1.464 & (0.021) & 0.701 & (0.022) & 0.158 & (0.008) \\
\hline N204101 & M7 & 18 & 1.850 & (0.046) & -0.012 & (0.019) & 0.174 & (0.010) \\
\hline N205201 & M7 & 22 & 1.453 & (0.023) & 0.531 & (0.019) & 0.188 & (0.007) \\
\hline H207801 & M7 & 24 & 1.735 & (0.021) & 0.779 & (0.021) & 0.213 & (0.004) \\
\hline N206601 & M7 & 28 & 0.704 & (0.015) & 0.012 & (0.011) & 0.075 & (0.007) \\
\hline N259901 & M7 & 34 & 1.742 & (0.025) & 0.801 & (0.027) & 0.199 & (0.007) \\
\hline N202501 & M7 & 38 & 1.296 & (0.018) & 1.036 & (0.024) & 0.197 & (0.006) \\
\hline N201401 & M7 & 39 & 1.010 & (0.015) & 0.985 & (0.021) & 0.071 & (0.006) \\
\hline N201402 & M7 & 40 & 0.993 & (0.016) & 0.601 & (0.017) & 0.079 & (0.008) \\
\hline N205901 & M7 & 42 & 1.529 & (0.020) & 1.326 & (0.032) & 0.267 & (0.006) \\
\hline N200901 & M7 & 44 & 1.829 & (0.021) & 1.071 & (0.027) & 0.192 & (0.006) \\
\hline N206801 & M8 & 19 & 2.143 & (0.031) & 0.596 & (0.025) & 0.192 & (0.007) \\
\hline N234201 & M8 & 20 & 1.792 & (0.022) & 0.797 & (0.022) & 0.175 & (0.006) \\
\hline N206501 & M8 & 27 & 1.071 & (0.023) & 0.246 & (0.017) & 0.193 & (0.010) \\
\hline N205101 & M8 & 31 & 2.690 & (0.033) & 0.922 & (0.035) & 0.376 & (0.006) \\
\hline N203801 & M8 & 37 & 0.879 & (0.022) & 1.684 & (0.051) & 0.339 & (0.006) \\
\hline N206701 & M8 & 46 & 1.363 & (0.020) & 1.043 & (0.027) & 0.225 & (0.007) \\
\hline N260901 & \(1 \mathrm{M8}\) & 54 & 3.161 & (0.037) & 1.170 & (0.046) & 0.182 & (0.007) \\
\hline N207101 & 1 M9 & 36 & 1.822 & (0.025) & 1.042 & (0.031) & 0.348 & (0.006) \\
\hline N234101 & 1 M9 & 37 & 0.931 & (0.022) & 0.211 & (0.016) & 0.152 & (0.007) \\
\hline N208101 & 1 M9 & 41 & 1.390 & (0.025) & 0.424 & (0.020) & 0.163 & (0.009) \\
\hline N271301 & 1 M9 & 44 & 2.147 & (0.031) & 1.249 & (0.044) & 0.303 & (0.007) \\
\hline N201701 & 1 M9 & 45 & 1.432 & (0.023) & 0.897 & (0.028) & 0.306 & (0.007 \\
\hline
\end{tabular}

Table E. 9
1986 IRT Parameters, Mathematics, Grade 7/Age 13 Numbers and Operations-Knowledge and Skills Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N281901 & M1 & 15 & 1.335 & (0.093) & -0.781 & (0.068) & 0.263 & (0.02 \\
\hline N276801 & M1 & 17 & 0.503 & (0.019) & -3.780 & (0.143) & 0.0 & (0.0) \\
\hline N276802 & M1 & 18 & 0.769 & (0.017) & -2.066 & (0.049) & 0.0 & (0.0 \\
\hline N 276803 & M1 & 19 & 0.841 & (0.018) & -0.642 & (0.019) & 0.0 & (0.0 \\
\hline N277601 & M1 & 20 & 1.288 & (0.021) & -1.101 & (0.025) & 0.0 & (0.0 \\
\hline N 277602 & M1 & 21 & 1.300 & (0.025) & -0.445 & (0.017) & 0.0 & (0.0 \\
\hline N277603 & M1 & 22 & 1.234 & (0.023) & -0.554 & (0.018) & 0.0 & (0.0 \\
\hline N 274801 & M1 & 29 & 1.291 & (0.031) & 0.478 & (0.027) & 0.419 & (0.010) \\
\hline N257601 & M1 & 35 & 1.552 & (0.060) & -0.120 & (0.026) & 0.0 & (0.0) \\
\hline N260101 & H1 & 43 & 2.438 & (0.035) & 0.630 & (0.028) & 0.237 & (0.009) \\
\hline N261001 & M1 & 47 & 1.326 & (0.026) & 0.555 & (0.024) & 0.236 & (0.011) \\
\hline N283101 & M1 & 51 & 2.071 & (0.025) & 1.074 & (0.030) & 0.183 & (0.007) \\
\hline N277901 & M2 & 9 & 0.899 & (0.014) & -1.871 & (0.034) & 0.0 & (0.0) \\
\hline N277902 & M2 & 10 & 0.893 & (0.014) & -1.839 & (0.033) & 0.0 & (0.0 \\
\hline N277903 & M2 & 11 & 1.017 & (0.016) & -1.042 & (0.021) & 0.0 & (0.0 \\
\hline N286601 & M2 & 23 & 1.538 & (0.023) & 0.438 & (0.017) & 0.0 & (0.0 \\
\hline N286602 & M2 & 24 & 1.311 & (0.020) & 0.538 & (0.017) & 0.0 & (0.0 \\
\hline N286603 & M2 & 25 & 1.935 & (0.021) & 0.787 & (0.019) & 0.0 & (0.0 \\
\hline N258803 & M2 & 41 & 1.747 & (0.022) & 1.030 & (0.026) & 0.167 & (0.007) \\
\hline N275301 & M3 & 25 & 0.768 & (0.050) & -0.345 & (0.037) & 0.222 & (0.022) \\
\hline N282202 & M3 & 26 & 1.083 & (0.024) & 0.333 & (0.020) & 0.310 & (0.011) \\
\hline N256301 & M4 & 19 & 1.126 & (0.019) & 0.237 & (0.014) & 0.0 & (0.0 \\
\hline N280601 & M4 & 23 & 1.759 & (0.018) & 0.674 & (0.016) & 0.0 & (0.0 \\
\hline N280602 & M4 & 24 & 1.935 & (0.020) & 0.664 & (0.017) & 0.0 & (0.0 \\
\hline N280603 & M4 & 25 & 1.682 & (0.025) & 0.244 & (0.016) & 0.0 & (0.0 \\
\hline N280604 & M4 & 26 & 1.913 & (0.017) & 0.912 & (0.017) & 0.0 & (0.0 \\
\hline N280605 & M4 & 27 & 2.018 & (0.022) & 0.537 & (0.017) & 0.0 & (0.0 \\
\hline N280606 & M4 & 28 & 1.614 & (0.016) & 0.973 & (0.017) & 0.0 & (0.0 \\
\hline N271401 & M4 & 33 & 1.815 & (0.029) & 1.218 & (0.040) & 0.405 & (0.008) \\
\hline N278301 & M4 & 35 & 1.445 & (0.019) & 0.603 & (0.017) & 0.0 & (0.0 \\
\hline N278302 & M4 & 36 & 1.743 & (0.017) & 1.106 & (0.020) & 0.0 & (0.0 \\
\hline N284101 & M5 & 18 & 0.670 & (0.035) & -2.177 & (0.119) & 0.0 & (0.0 \\
\hline N284102 & MS & 19 & 0.596 & (0.021) & -0.776 & (0.032) & 0.0 & (0.0 \\
\hline H284501 & M5 & 20 & 0.798 & (0.015) & 0.156 & (0.012) & 0.0 & (0.0 \\
\hline N284502 & M5 & 21 & 1.159 & (0.026) & -0.361 & (0.018) & 0.0 & (0.0 \\
\hline N 284503 & M5 & 22 & 1.594 & (0.022) & 0.301 & (0.015) & 0.0 & (0.0) \\
\hline N273902 & M5 & 25 & 1.991 & (0.028) & 0.622 & (0.024) & 0.145 & (0.009) \\
\hline N285001 & M5 & 28 & 1.331 & (0.021) & 0.528 & (0.018) & 0.0 & (0.0 \\
\hline N274802 & M5 & 29 & 2.350 & (0.031) & 0.637 & (0.026) & 0.161 & (0.009) \\
\hline N260701 & M5 & 33 & 1.693 & (0.020) & 0.869 & (0.020) & 0.0 & (0.0 \\
\hline N235601 & M6 & 25 & 1.149 & (0.034) & 0.365 & (0.021) & 0.164 & (0.006) \\
\hline N258804 & M7 & 20 & 1.268 & (0.030) & 0.200 & (0.020) & 0.376 & (0.009) \\
\hline N260601 & M7 & 21 & 1.283 & (0.019) & 0.442 & (0.014) & 0.0 & (0.0) \\
\hline N257401 & M7 & 23 & 1.371 & (0.039) & 0.353 & (0.025) & 0.260 & (0.010) \\
\hline N274101 & M 7 & 25 & 2.392 & (0.055) & 0.861 & (0.049) & 0.512 & (0.007) \\
\hline N278501 & M7 & 30 & 3.117 & (0.031) & 0.429 & (0.019) & 0.0 & (0.0 \\
\hline N 278502 & M7 & 31 & 2.647 & (0.024) & 0.525 & (0.017) & 0.0 & (0.0 \\
\hline N278503 & M7 & 32 & 2.692 & (0.032) & 0.337 & (0.018) & 0.0 & (0.0 \\
\hline N286102 & M8 & 17 & 0.865 & (0.023) & -0.047 & (0.014) & 0.0 & (0.0 \\
\hline N225901 & M8 & 23 & 1.676 & (0.021) & 0.909 & (0.023) & 0.302 & (0.006) \\
\hline N287301 & M8 & 25 & 1.195 & (0.017) & 0.803 & (0.018) & 0.0 & (0.0 \\
\hline N287302 & M8 & 26 & 1.572 & (0.019) & 1.741 & (0.030) & 0.0 & (0.0 \\
\hline N280401 & M8 & 33 & 1.004 & (0.019) & 0.235 & (0.014) & 0.0 & (0.0 \\
\hline N230201 & M8 & 35 & 0.914 & (0.017) & 1.165 & (0.027) & 0.155 & (0.006) \\
\hline N 278905 & M8 & 52 & 2.237 & (0.033) & 1.467 & (0.050) & 0.275 & (0.007) \\
\hline N201001 & M8 & 57 & 3.849 & (0.046) & 1.335 & (0.061) & 0.277 & (0.006) \\
\hline
\end{tabular}

Table E. 10
1986 IRT Parameters, Mathematics, Grade 7/Age 13 Geometry Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N254601 & M1 & 16 & 0.789 & (0.043) & \(-1.857\) & (0.106) & 0.239 & (0.031) \\
\hline N254602 & M1 & 46 & 1.869 & (0.061) & 0.621 & (0.054) & 0.228 & (0.009) \\
\hline N270301 & M2 & 20 & 0.771 & (0.039) & -1.048 & (0.059) & 0.205 & (0.020) \\
\hline N270302 & M2 & 21 & 2.133 & (0.047) & 0.869 & (0.050) & 0.055 & (0.005) \\
\hline N253701 & M2 & 22 & 0.543 & (0.056) & -0.457 & (0.058) & 0.258 & (0.019) \\
\hline N254001 & M3 & 28 & 0.722 & (0.045) & -0.465 & (0.039) & 0.189 & (0.017) \\
\hline N269901 & M3 & 29 & 0.761 & (0.099) & -0.102 & (0.045) & 0.251 & (0.019) \\
\hline N264601 & M4 & 34 & 1.305 & (0.050) & 1.143 & (0.072) & 0.357 & (0.008) \\
\hline N254501 & M5 & 35 & 0.842 & (0.053) & -0.090 & (0.031) & 0.241 & (0.015) \\
\hline N253202 & M5 & 37 & 1.274 & (0.049) & 0.997 & (0.063) & 0.188 & (0.010) \\
\hline N253801 & MS & 42 & 1.311 & (0.061) & 2.918 & (0.190) & 0.080 & (0.005) \\
\hline N254301 & M7 & 35 & 1.228 & (0.039) & 0.872 & (0.048) & 0.256 & (0.007) \\
\hline N213101 & M7 & 36 & 1.002 & (0.129) & 1.144 & (0.164) & 0.257 & (0.009) \\
\hline N214901 & M7 & 41 & 0.394 & (0.021) & 1.262 & (0.070) & 0.165 & (0.009) \\
\hline N226201 & M7 & 47 & 1.969 & (0.051) & 1.555 & (0.084) & 0.348 & (0.006) \\
\hline N214701 & M8 & 22 & 0.573 & (0.027) & 0.259 & (0.025) & 0.279 & (0.010) \\
\hline N234901 & M8 & 32 & 1.283 & (0.042) & 0.489 & (0.033) & 0.176 & (0.007) \\
\hline N251701 & M8 & 40 & 1.046 & (0.046) & 0.682 & (0.047) & 0.170 & (0.009) \\
\hline N213601 & M8 & 41 & 1.763 & (0.048) & 0.771 & (0.046) & 0.156 & (0.007) \\
\hline N212501 & M9 & 32 & 1.650 & (0.052) & -0.661 & (0.036) & 0.236 & (0.014) \\
\hline N212902 & M9 & 33 & 1.545 & (0.056) & 0.103 & (0.025) & 0.121 & (0.008) \\
\hline N212903 & M9 & 34 & 1.478 & (0.055) & 0.323 & (0.034) & 0.281 & (0.007) \\
\hline N2264.31 & M9 & 35 & 0.698 & (0.030) & 0.274 & (0.026) & 0.287 & (0.009) \\
\hline N215001 & M9 & 39 & 0.643 & (0.025) & 0.036 & (0.020) & 0.189 & (0.010) \\
\hline
\end{tabular}

Table E. 11
1986 IRT Parameters, Mathematics, Grade 11/Age 17 Measurement Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & c & SE \\
\hline N264301 & M1 & 47 & 1.488 & (0.022) & 1. 506 & (0.035) & 0.0 & (0.0 \\
\hline N251101 & M1 & 49 & 1.574 & (0.023) & 1.662 & (0.042) & 0.0 & (0.0 \\
\hline N266801 & M2 & 16 & 0.800 & (0.030) & -0.188 & (0.023) & 0.205 & (0.016) \\
\hline N269001 & M2 & 22 & 1.468 & (0.033) & 0.521 & (0.026) & 0.115 & (0.010) \\
\hline N261801 & M2 & 25 & 0.915 & (0.034) & -0.245 & (0.024) & 0.195 & (0.017) \\
\hline N268901 & M2 & 47 & 2.801 & (0.046) & 1.413 & (0.070) & 0.209 & (0.012) \\
\hline N268801 & M2 & 48 & 2.443 & (0.038) & 1.834 & (0.071) & 0.091 & (0.008) \\
\hline N266501 & M3 & 31 & 1.165 & (0.032) & 0.670 & (0.037) & 0.226 & (0.016) \\
\hline N285201 & M4 & 29 & 1.291 & (0.032) & 0.205 & (0.018) & 0.0 & (0.0 \\
\hline N266701 & M4 & 32 & 0.820 & (0.023) & 1.421 & (0.047) & 0.210 & (0.009) \\
\hline N251201 & M5 & 26 & 0.781 & (0.021) & 0.993 & (0.035) & 0.162 & (0.010) \\
\hline N284401 & M5 & 27 & 1.028 & (0.023) & 0.030 & (0.015) & 0.0 & (0.0 \\
\hline N252201 & M5 & 30 & 1.331 & (0.023) & 0.802 & (0.024) & 0.0 & (0.0 \\
\hline N265903 & M5 & 31 & 0.886 & (0.025) & 1.050 & (0.039) & 0.257 & (0.009) \\
\hline N251801 & M5 & 32 & 1.114 & (0.022) & 0.819 & (0.024) & 0.0 & (0.0) \\
\hline N266001 & M5 & 38 & 1.475 & (0.020) & 1.713 & (0.036) & 0.0 & (0.0 \\
\hline N252601 & M5 & 40 & 2.112 & (0.031) & 1.445 & (0.049) & 0.210 & (0.006) \\
\hline N267901 & M5 & 41 & 1.078 & (0.020) & 2.105 & (0.049) & 0.0 & (0.0) \\
\hline N266101 & M6 & 24 & 1.275 & (0.035) & 0.576 & (0.031) & 0.294 & (0.008) \\
\hline N265901 & M6 & 39 & 1.643 & (0.033) & 1.088 & (0.042) & 0.297 & (0.008) \\
\hline N269201 & M6 & 41 & 1.693 & (0.023) & 1.186 & (0.029) & 0.0 & (0.0) \\
\hline N265902 & M6 & 42 & 2.227 & (0.041) & 1.416 & (0.064) & 0.399 & (0.007) \\
\hline N252701 & M6 & 44 & 1.437 & (0.021) & 1.361 & (0.032) & 0.0 & (0.0) \\
\hline N218501 & M7 & 20 & 1.811 & (0.028) & 1.110 & (0.037) & 0.344 & (0.007) \\
\hline N216401 & M7 & 28 & 2.011 & (0.030) & 0.778 & (0.029) & 0.156 & (0.008) \\
\hline N216301 & M7 & 30 & 1.538 & (0.023) & 1.405 & (0.039) & 0.284 & (0.006) \\
\hline N216101 & M 7 & 33 & 1.963 & (0.026) & 1.069 & (0.034) & 0.133 & (0.009) \\
\hline N217101 & M7 & 34 & 2.307 & (0.026) & 1.442 & (0.041) & 0.175 & (0.005) \\
\hline N215701 & M8 & 18 & 1.400 & (0.029) & 0.566 & (0.024) & 0.220 & (0.008) \\
\hline N215601 & M8 & 26 & 1.628 & (0.028) & 0.896 & (0.031) & 0.270 & (0.007) \\
\hline N232101 & M8 & 41 & 1.815 & (0.030) & 1.923 & (0.060) & 0.173 & (0.007) \\
\hline N231801 & M8 & 43 & 1.296 & (0.031) & 1.085 & (0.042) & 0.411 & (0.007) \\
\hline N216201 & M9 & 43 & 1.176 & (0.023) & 1.307 & (0.039) & 0.182 & (0.010) \\
\hline N231501 & M10 & 13 & 0.699 & (0.020) & 0.355 & (0.019) & 0.233 & (0.010) \\
\hline N232901 & M10 & 15 & 1.795 & (0.026) & 0.760 & (0.024) & 0.150 & (0.006) \\
\hline N267801 & M10 & 20 & 1.255 & (0.022) & 1.233 & (0.035) & 0.207 & (0.009) \\
\hline N230701 & M10 & 28 & 2.188 & (0.038) & 1.912 & \((0.074)\) & 0.326 & (0.007) \\
\hline N219001 & \(\$ 10\) & 30 & 1.804 & (0.038) & 0.694 & (0.038) & 0.211 & (0.013) \\
\hline N218801 & M11 & 22 & 1.408 & (0.025) & 0.966 & (0.032) & 0.158 & (0.010) \\
\hline
\end{tabular}

62\%

Table E. 12
1986 IRT Parameters, Mathematics, Grade 11/Age 17 Numbers and Operations--High Level Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N286302 & M1 & 22 & 1.503 & (0.034) & 0.726 & (0.040) & 0.289 & (0.017) \\
\hline N258802 & M1 & 26 & 2.279 & (0.034) & 0.808 & (0.033) & 0.215 & (0.008) \\
\hline N259901 & M1 & 28 & 1.742 & (0.026) & 0.801 & (0.027) & 0.199 & (0.007) \\
\hline N260901 & M1 & 35 & 3.161 & (0.037) & 1.170 & (0.046) & 0.182 & (0.007) \\
\hline N261501 & M2 & 24 & 1.081 & (0.038) & -0.506 & (0.028) & 0.130 & (0.019) \\
\hline N261201 & M2 & 26 & 0.935 & (0.024) & 0.214 & (0.020) & 0.150 & (0.013) \\
\hline N261601 & M2 & 27 & 0.808 & (0.020) & 1.393 & (0.041) & 0.222 & (0.008) \\
\hline N261301 & M2 & 28 & 0.940 & (0.022) & 0.272 & (0.019) & 0.109 & (0.012) \\
\hline N281401 & M2 & 29 & 1.110 & (0.020) & 0.890 & (0.025) & 0.107 & (0.009) \\
\hline N259001 & M2 & 31 & 1.608 & (0.023) & 0.871 & (0.027) & 0.0 & (0.0) \\
\hline N286301 & M2 & 33 & 2.002 & (0.032) & 0.758 & (0.031) & 0.197 & (0.009) \\
\hline N258801 & M2 & 38 & 2.104 & (0.032) & 1.170 & (0.042) & 0.326 & (0.007) \\
\hline N260801 & M2 & 43 & 1.731 & (0.021) & 1.358 & (0.032) & 0.0 & (0.0 \\
\hline N255301 & M2 & 46 & 2.054 & (0.050) & 2.258 & (0.113) & 0.231 & (0.008) \\
\hline N271301 & M3 & 32 & 2.147 & (0.031) & 1.249 & (0.044) & 0.303 & (0.007) \\
\hline N263901 & M4 & 30 & 1.584 & (0.026) & 0.726 & (0.026) & 0.153 & (0.008) \\
\hline N255302 & M4 & 37 & 1.809 & (0.026) & 1.443 & (0.042) & 0.211 & (0.007) \\
\hline N258201 & M4 & 39 & 1.065 & (0.021) & 0.618 & (0.022) & 0.0 & (0.0 \\
\hline N260902 & M4 & 40 & 2.739 & (0.041) & 1.288 & (0.057) & 0.289 & (0.009) \\
\hline N285601 & M4 & 41 & 1.378 & (0.021) & 1.808 & (0.039) & 0.0 & (0.0) \\
\hline N257511 & M5 & 23 & 2.217 & (0.054) & 0.512 & (0.040) & 0.340 & (0.012) \\
\hline N279301 & M5 & 34 & 1.357 & (0.012) & 1.573 & (0.021) & 0.0 & (0.0 \\
\hline N259501 & MS & 36 & 1.292 & (0.019) & 0.972 & (0.024) & 0.0 & (0.0 \\
\hline N286201 & M6 & 23 & 0.984 & (0.034) & -0.095 & (0.022) & 0.203 & (0.015) \\
\hline N282201 & M6 & 27 & 1.534 & (0.026) & 1.044 & (0.034) & 0.264 & (0.008) \\
\hline N256501 & M6 & 35 & 2.150 & (0.038) & 0.890 & (0.041) & 0.318 & (0.009) \\
\hline N234201 & M7 & 21 & 1.792 & (0.022) & 0.797 & (0.022) & 0.175 & (0.006) \\
\hline N201401 & M7 & 23 & 1.010 & (0.015) & 0.985 & (0.021) & 0.071 & (0.006) \\
\hline N201402 & M7 & 24 & 0.993 & (0.016) & 0.601 & (0.017) & 0.079 & (0.008) \\
\hline N201101 & M7 & 25 & 1.464 & (0.021) & 0.701 & (0.022) & 0.158 & (0.008) \\
\hline N202501 & M7 & 27 & 1.296 & (0.018) & 1.036 & (0.024) & 0.197 & (0.006) \\
\hline N204101 & M8 & 16 & 1.850 & (0.046) & -0.012 & (0.019) & 0.174 & (0.010) \\
\hline N208101 & M8 & 17 & 1.390 & (0.025) & 0.424 & (0.020) & 0.163 & (0.009) \\
\hline N206601 & M8 & 20 & 0.704 & (0.015) & 0.012 & (0.011) & 0.075 & (0.007) \\
\hline N207101 & M8 & 24 & 1.822 & (0.025) & 1.042 & (0.031) & 0.348 & (0.006) \\
\hline N206501 & M8 & 25 & 1.071 & (0.023) & 0.246 & (0.017) & 0.193 & (0.010) \\
\hline N201701 & M8 & 30 & 1.432 & (0.023) & 0.897 & (0.028) & 0.306 & (0.007) \\
\hline N200101 & M8 & 31 & 1.563 & (0.039) & 0.155 & (0.027) & 0.181 & (0.018) \\
\hline N200901 & M8 & 34 & 1.829 & (0.021) & 1.071 & (0.027) & 0.192 & (0.006) \\
\hline N206801 & M9 & 38 & 2.143 & (0.031) & 0.596 & (0.025) & 0.192 & (0.007) \\
\hline N262001 & H9 & 42 & 2.200 & (0.032) & 0.872 & (0.036) & 0.216 & (0.012) \\
\hline N203801 & M9 & 46 & 0.879 & (0.022) & 1.684 & (0.051) & 0.339 & (0.006) \\
\hline N204501 & M9 & 48 & 1.892 & (0.026) & 1.034 & (0.034) & 0.194 & (0.011) \\
\hline N234101 & M9 & 53 & 0.931 & (0.022) & 0.211 & (0.016) & 0.152 & (0.007) \\
\hline N205501 & M10 & 11 & 0.795 & (0.019) & 2.048 & (0.057) & 0.227 & (0.007) \\
\hline N205201 & M10 & 12 & 1.453 & (0.023) & 0.531 & (0.019) & 0.188 & (0.007) \\
\hline N208301 & M10 & 19 & 2.072 & (0.027) & 1.874 & (0.052) & 0.241 & (0.006) \\
\hline N205901 & M10 & 22 & 1.529 & (0.020) & 1.326 & (0.032) & 0.267 & (0.006) \\
\hline N206701 & M10 & 26 & 1.363 & (0.020) & 1.043 & (0.027) & 0.225 & (0.007) \\
\hline N205801 & M10 & 31 & 2.727 & (0.031) & 1.668 & (0.053) & 0.189 & (0.007) \\
\hline N227101 & M10 & 35 & 1.266 & (0.029) & 1.759 & (0.059) & 0.241 & (0.009) \\
\hline N205101 & M11 & 14 & 2.690 & (0.033) & 0.922 & (0.035) & 0.376 & (0.006) \\
\hline N207801 & M11 & 15 & 1.735 & (0.021) & 0.779 & (0.021) & 0.213 & (0.004) \\
\hline N204401 & M11 & 21 & 2.399 & (0.024) & 1.063 & (0.029) & 0.105 & (0.007) \\
\hline N202701 & M11 & 40 & 2.959 & (0.034) & 1.771 & (0.059) & 0.076 & (0.005) \\
\hline
\end{tabular}

\footnotetext{
-582-
}

Table E. 13
1986 IRT Parameters, Mathematics, Grade \(11 /\) Age 17 Numbers and Operations-Knowledge and Skills Subscale

FIELD
 N258804 N278501 N278502 N278503 N287101 N286502 N258803 N278905 N287301 R 287302 N260101 N 280401 N287102 N286501 N261001 N256301 N280601 N280602 N280603 N280604 N280605 N280606 N271401 N278301 N278302 N284101 N284102 N284501 N284502 N284503 N273902 N285001 N274802 N260701 N277901 N277902 N277903 N276801 N276802 N276803 N277601 N277602 N277603 N274801 N286601 N286602 N286603 N283101 N230201 N201001 N282202 N284001 N 284002 N2.25901 N200201
block item
M M1 2 123
\(1.283(0.019)\) \(\begin{array}{ll}1.283 & (0.019) \\ 1.268 & (0.030)\end{array}\) \(3.117(0.031)\) \(2.647(0.024)\)
\(2.692(0.032)\) \(2.382(0.035)\) \(\begin{array}{ll}2.908 & (0.036) \\ i .747 & (0.022)\end{array}\) 2.237 (0.033) \(1.195(0.017)\)
\(1.572(0.019)\)
\(2.438(0.035)\) \(1.004(0.019)\) 2.600 (0.038) \(2.388(0.041)\) \(1.326(0.026)\) \(1.126(0.019)\) \(\begin{array}{ll}1.759 & (0.018) \\ 1.935 & (0.020)\end{array}\) \(1.682(0.025)\) \(1.913(0.017)\) \(2.018(0.022)\) \(1.614(0.016)\) \(1.815(0.029)\) \(1.445(0.019)\)
\(1.743(0.017)\) \(0.670(0.035)\)
\(0.596(0.021)\) \(\begin{array}{ll}0.798 & (0.015) \\ 1.159 & (0.026)\end{array}\) \(\begin{array}{ll}1.159 & (0.026) \\ 1.594 & (0.022)\end{array}\) \(1.991(0.028)\) \(\begin{array}{ll}1.331 & (0.021) \\ 2.350 & (0.031)\end{array}\) \(1.693(0.020)\) \(0.899(0.014)\) \(\begin{array}{ll}0.893 & (0.014) \\ 1.017 & (0.016)\end{array}\) \(0.503(0.019)\) \(\begin{array}{ll}0.769 & (0.017) \\ 0.841 & (0.018)\end{array}\) \(\begin{array}{ll}1.288 & (0.021) \\ 1.300 & (0.025)\end{array}\) \(\begin{array}{ll}1.300 & (0.025) \\ 1.234 & (0.023)\end{array}\) \(1.291(0.031)\) \(1.538(0.023)\) \(\begin{array}{ll}1.311 & (0.020) \\ 1.935 & (0.021)\end{array}\) \(2.071(0.025)\) \(\begin{array}{ll}0.914 & (0.017) \\ 3.849 & (0.046)\end{array}\) \(\begin{array}{ll}3.849 & (0.046) \\ 1.083 & (0.024)\end{array}\) \(\begin{array}{ll}1.162 & (0.022) \\ 1.738 & (0.028)\end{array}\) \(1.676(0.021)\) \(1.749(0.022)\)
\begin{tabular}{|c|c|c|c|}
\hline B & SE & C & SE \\
\hline 0.442 & (0.014) & 0.0 & (0.0) \\
\hline 0.200 & (0.020) & 0.376 & (0.009) \\
\hline 0.429 & (0.019) & 0.0 & (0.0) \\
\hline 0.525 & (0.017) & 0.0 & (0.0) \\
\hline 0.337 & (0.018) & 0.0 & (0.0) \\
\hline 0.805 & (0.035) & 0.296 & (0.011) \\
\hline 0.834 & (0.035) & 0.192 & (0.011) \\
\hline 1.030 & (0.026) & 0.167 & (0.007) \\
\hline 1.467 & (0.050) & 0.275 & (0.007) \\
\hline 0.803 & (0.018) & 0.0 & (0.0) \\
\hline 1.741 & (0.030) & 0.0 & (0.0) \\
\hline 0.630 & (0.028) & 0.237 & (0.009) \\
\hline 0.235 & (0.014) & 0.0 & (0.0) \\
\hline 0.658 & (0.033) & 0.162 & (0.013) \\
\hline 0.530 & (0.033) & 0.172 & (0.016) \\
\hline 0.555 & (0.024) & 0.236 & (0.011) \\
\hline 0.237 & (0.014) & 0.0 & (0.0) \\
\hline 0.674 & (0.016) & 0.0 & (0.0) \\
\hline 0.664 & (0.017) & 0.0 & (0.0) \\
\hline 0.244 & (0.016) & 0.0 & (0.0) \\
\hline 0.912 & (0.017) & 0.0 & (0.0) \\
\hline 0.537 & (0.017) & 0.0 & (0.0) \\
\hline 0.973 & (0.017) & 0.0 & (0.0) \\
\hline 1.218 & (0.040) & 0.405 & (0.008) \\
\hline 0.603 & (0.017) & 0.0 & (0.0) \\
\hline 1.106 & (0.020) & 0.0 & \((0.0)\) \\
\hline -2.177 & (0.119) & 0.0 & \((0.0)\) \\
\hline -0.776 & (0.032) & 0.0 & (0.0) \\
\hline 0.156 & (0.012) & 0.0 & \((0.0)\) \\
\hline -0.361 & (0.018) & 0.0 & \((0.0)\) \\
\hline 0.301 & (0.015) & 0.0 & (0.0) \\
\hline 0.622 & (0.024) & 0.145 & (0.009) \\
\hline 0.528 & (0.018) & 0.0 & (0.0) \\
\hline 0.637 & (0.026) & 0.161 & (0.009) \\
\hline 0.869 & (0.020) & 0.0 & (0.0) \\
\hline -1.871 & (0.034) & 0.0 & (0.0) \\
\hline -1.839 & (0.033) & 0.0 & (0.0) \\
\hline -1.042 & (0.021) & 0.0 & (0.0) \\
\hline -3.780 & (0.143) & 0.0 & (0.0) \\
\hline -2.066 & (0.049) & 0.0 & (0.0) \\
\hline -0.642 & (0.019) & 0.0 & (0.0) \\
\hline -1.101 & (0.025) & 0.0 & (0.0) \\
\hline -0.445 & (0.017) & 0.0 & (0.0) \\
\hline -0.554 & (0.018) & 0.0 & (0.0) \\
\hline 0.478 & (0.027) & 0.419 & (0.010) \\
\hline 0.438 & (0.017) & 0.0 & (0.0) \\
\hline 0.538 & (0.017) & 0.0 & (0.0) \\
\hline 0.787 & (0.019) & 0.0 & (0.0) \\
\hline 1.074 & (0.030) & 0.183 & (0.007) \\
\hline 1.165 & (0.027) & 0.155 & (0.006) \\
\hline 1.335 & (0.061) & 0.277 & (0.006) \\
\hline 0.333 & (0.020) & 0.310 & (0.011) \\
\hline -0.848 & (0.024) & 0.0 & (0.0) \\
\hline 0.125 & (0.018) & 0.0 & (0.0) \\
\hline 0.909 & (0.023) & 0.302 & (0.006) \\
\hline 1.263 & (0.030) & 0.204 & (0.007) \\
\hline
\end{tabular}

Table E. 14
1986 IRT Parameters, Mathematics, Grade \(11 /\) Age 17 Geometry Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N254602 & H1 & 27 & 1.869 & (0.061) & 0.621 & (0.054) & c. 228 & (0.009) \\
\hline N270301 & M1 & 30 & 0.771 & (0.039) & -1.048 & (0.059) & 0.205 & (0.020) \\
\hline N270302 & M1 & 31 & 2.133 & (0.047) & 0.869 & (0.050) & 0.055 & (0.005) \\
\hline N254301 & M1 & 33 & 1.228 & (0.039) & 0.872 & (0.048) & 0.256 & (0.007) \\
\hline N253901 & M1 & 39 & 1.707 & (0.058) & 0.643 & (0.060) & 0.216 & (0.015) \\
\hline N253902 & M1 & 40 & 0.505 & (0.032) & 1.205 & (0.088) & 0.347 & (0.016) \\
\hline N253903 & M1 & 41 & 2.043 & (0.051) & 1.450 & (0.079) & 0.318 & (0.012) \\
\hline N253904 & M1 & 42 & 1.210 & (0.038) & 1. 248 & (0.066) & 0.299 & (0.013) \\
\hline N254601 & M2 & 15 & 0.789 & (0.043) & -1.857 & (0.106) & 0.239 & (0.031) \\
\hline N254001 & M2 & 21 & 0.722 & (0.045) & -0.465 & (0.039) & 0.189 & (0.017) \\
\hline N251701 & M2 & 41 & 1.046 & (0.046) & 0.682 & (0.047) & 0.170 & (0.009) \\
\hline N264601 & M4 & 34 & 1.305 & (0.050) & 1.143 & (0.072) & 0.357 & (0.008) \\
\hline N254501 & M5 & 35 & 0.842 & (0.053) & -0.090 & (0.031) & 0.241 & (0.015) \\
\hline N253202 & H5 & 37 & 1.274 & (0.049) & 0.997 & (0.063) & 0.188 & (0.010) \\
\hline N253801 & M5 & 42 & 1.311 & (0.061) & 2.918 & (0.190) & 0.080 & (0.005) \\
\hline N219301 & M7 & 19 & 1.603 & (0.034) & 1.324 & (0.050) & 0.077 & (0.007) \\
\hline N212901 & M8 & 21 & 1.650 & (0.052) & -0.651 & (0.036) & 0.236 & (0.014) \\
\hline N212902 & M8 & 22 & 1.545 & (0.056) & 0.103 & (0.025) & 0.121 & (0.008) \\
\hline N212903 & M8 & 23 & 1.478 & (0.055) & 0.323 & (0.034) & 0.281 & (0.007) \\
\hline N213001 & M8 & 27 & 1.542 & (0.048) & 0.719 & (0.050) & 0.251 & (0.010) \\
\hline N213201 & M8 & 29 & 0.849 & (0.030) & 0.735 & (0.041) & 0.219 & (0.011) \\
\hline N234901 & M8 & 37 & 1.283 & (0.042) & 0.489 & (0.033) & 0.176 & (0.007) \\
\hline N226401 & M9 & 35 & 0.698 & (0.030) & 0.274 & (0.026) & 0.287 & (0.009) \\
\hline N215001 & M9 & 37 & 0.643 & (0.025) & 0.036 & (0.020) & 0.189 & (0.010) \\
\hline N214701 & M9 & 39 & 0.573 & (0.027) & 0.259 & (0.025) & 2.279 & (0.010) \\
\hline N213601 & M9 & 40 & 1.763 & (0.049) & 0.771 & (0.046) & 0.156 & (0.007) \\
\hline N214901 & M9 & 45 & 0.394 & (0.021) & 1.262 & (0.070) & 0.165 & (0.009) \\
\hline N213401 & M9 & 49 & 1.142 & (0.040) & 0.909 & (0.055) & 0.228 & (0.012) \\
\hline N213501 & M9 & 50 & 0.693 & (0.033) & 1.154 & (0.069) & 0.271 & (0.014) \\
\hline N212701 & M10 & 21 & 0.800 & (0.031) & 0.872 & (0.047) & 0.237 & (0.012) \\
\hline N226201 & M10 & 25 & 1.969 & (0.051) & 1. 555 & (0.084) & 0.348 & (0.006) \\
\hline N232001 & M10 & 27 & 1.217 & (0.038) & 1.806 & (0.084) & 0.307 & (0.009) \\
\hline N215101 & M10 & 29 & 1.087 & (0.032) & 1.881 & (0.074) & 0.140 & (0.008) \\
\hline N213701 & M11 & 28 & 1.518 & (0.038) & 1.397 & (0.061) & 0.188 & (0.008) \\
\hline N214501 & M11 & 30 & 0.822 & (0.036) & 2.899 & (0.143) & 0.118 & (0.006) \\
\hline N214801 & M11 & 38 & 1.034 & (0.042) & 1.780 & (0.095) & 0.242 & (0.010) \\
\hline N230801 & M11 & 41 & 1.402 & (0.086) & 2.736 & (0.254) & 0.266 & (0.009) \\
\hline
\end{tabular}

Table E. 15
1986 IRT Parameters, Mathematics, Grade 11/Age 17 Relations and Functions Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCX & ITEM & A & SE & B & SE & C & SE \\
\hline N256101 & M1 & 15 & 1.101 & (0.044) & -1.338 & (0.066) & 0.0 & ( 0.0 \\
\hline N255701 & M1 & 32 & 1.345 & (0.107) & -0.371 & (0.053) & 0.216 & (0.021) \\
\hline N282801 & M1 & 48 & 1.733 & (0.079) & 1.464 & (0.121) & 0.209 & (0.011) \\
\hline N264701 & M2 & 39 & 1.202 & (0.103) & 0.100 & (0.048) & 0.199 & (0.018) \\
\hline N255601 & M2 & 45 & 1.045 & (0.072) & 1.502 & (0.136) & 0.285 & (0.013) \\
\hline N255501 & M3 & 33 & 0.923 & (0.055) & 0.933 & (0.076) & 0.283 & (0.013) \\
\hline N256001 & M3 & 34 & 0.926 & (0.052) & 0.298 & (0.031) & 0.0 & (0.0) \\
\hline N257101 & M3 & 35 & 0.928 & (0.071) & 2.184 & (0.201) & 0.310 & (0.011) \\
\hline N255101 & M4 & 38 & 1.170 & (0.082) & 0.546 & (0.066) & 0.221 & (0.015) \\
\hline N282701 & M5 & 24 & 0.644 & (0.057) & -0.849 & (0.082) & 0.237 & (0.024) \\
\hline N270701 & M6 & 37 & 2.282 & (0.184) & -0.029 & (0.061) & 0.113 & (0.014) \\
\hline N270702 & M6 & 38 & 1.092 & (0.057) & 0.602 & (0.055) & 0.176 & (0.015) \\
\hline N255401 & M6 & 43 & 1.835 & (0.089) & 1.934 & (0.177) & 0.234 & (0.010) \\
\hline N285901 & M6 & 46 & 1.527 & (0.069) & 1.051 & (0.085) & 0.179 & (0.013) \\
\hline N209401 & M8 & 32 & 1.057 & (0.060) & -0.024 & (0.032) & 0.198 & (0.014) \\
\hline N210901 & M8 & 36 & 1.237 & (0.056) & 0.663 & (0.051) & 0.214 & (0.009) \\
\hline N208601 & M8 & 38 & 0.842 & (0.038) & 0.879 & (0.051) & 0.124 & (0.009) \\
\hline N210101 & M8 & 46 & 1.683 & (0.060) & 1.429 & (0.092) & 0.172 & (0.008) \\
\hline N208501 & M8 & 47 & 1.435 & (0.062) & 1.038 & (0.077) & 0.185 & (0.009) \\
\hline N209801 & M9 & 44 & 0.734 & (0.050) & 0.335 & (0.039) & 0.213 & (0.013) \\
\hline N211901 & M9 & 51 & 0.924 & (0.062) & 1.141 & (0.097) & 0.330 & (0.011) \\
\hline N210601 & M10 & 14 & 1.256 & (0.057) & -0.445 & (0.037) & 0.162 & (0.016) \\
\hline N210701 & M10 & 16 & 1.302 & (0.068) & -0.344 & (0.036) & 0.176 & (0.015) \\
\hline N209601 & M10 & 17 & 0.922 & (0.038) & 1.224 & (0.063) & 0.156 & (0.008) \\
\hline N209501 & M10 & 18 & 1.199 & (0.059) & 0.053 & (0.030) & 0.156 & (0.012) \\
\hline N233401 & M10 & 23 & 0.865 & (0.047) & -0.219 & (0.031) & 0.231 & (0.015) \\
\hline N233402 & M10 & 24 & 0.913 & (0.049) & 0.095 & (0.031) & 0.233 & (0.013) \\
\hline N211801 & M10 & 32 & 1.114 & (0.106) & 3.159 & (0.379) & 0.168 & (0.007) \\
\hline N255901 & M10 & 33 & 0.941 & (0.066) & 2.350 & (0.200) & 0.217 & (0.009) \\
\hline N255902 & M10 & 34 & 1.664 & (0.077) & 1.461 & (0.121) & 0.228 & (0.010) \\
\hline N208801 & M11 & 16 & 0.940 & (0.036) & 0.131 & (0.027) & 0.123 & (0.011) \\
\hline N226001 & M11 & 18 & 1.877 & (0.082) & -0.2\%3 & (0.037) & 0.096 & (0.013) \\
\hline N210401 & M11 & 20 & 2.057 & (0.102) & -0.121 & (0.040) & 0.121 & (0.012) \\
\hline N209301 & M11 & 23 & 1.760 & (0.065) & 0.678 & (0.053) & 0.237 & (0.008) \\
\hline N209901 & M11 & 24 & 1.520 & (0.057) & 0.416 & (0.038) & 0.114 & (0.008) \\
\hline N210301 & M11 & 25 & 1.493 & (0.060) & 0.831 & (0.063) & 0.344 & (0.009) \\
\hline N208901 & M11 & 34 & 0.535 & (0.038) & 1.587 & (0.121) & 0.282 & (0.010) \\
\hline N229901 & M11 & 37 & 1.671 & (0.055) & 1.037 & (0.067) & 0.220 & (0.007) \\
\hline
\end{tabular}

\footnotetext{
-585-
}

Table E. 16
1986 IRT Parameters, Science, Grade 3/Age 9 Life Sciences Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N400001 & S 1 & 6 & 1.053 & (0.059) & -0.250 & (0.036) & 0.251 & (0.011) \\
\hline N400301 & S 1 & 8 & 0.841 & (0.077) & 0.164 & (0.042) & 0.317 & (0.011) \\
\hline N400401 & S1 & 9 & 1.955 & (0.103) & -0.580 & (0.065) & 0.491 & (0.012) \\
\hline N400402 & S1 & 10 & 2.503 & (0.107) & -0.579 & (0.063) & 0.419 & (0.011) \\
\hline N400403 & S 1 & 11 & 1.433 & (0.072) & -0.696 & (0.060) & 0.517 & (0.013) \\
\hline N400404 & S1 & 12 & 1.547 & (0.092) & -0.435 & (0.053) & 0.441 & (0.011) \\
\hline N400405 & S1 & 13 & 1.669 & (0.096) & -0. 0.508 & (0.059) & 0.471 & (0.012) \\
\hline N400601 & S1 & 17 & 0.912 & (0.061) & -0.037 & (0.032) & 0.241 & (0.011) \\
\hline N400701 & S1 & 18 & 1.223 & (0.137) & 0.345 & (0.060) & 0.280 & (0.009) \\
\hline N400901 & S 1 & 19 & 0.473 & (0.097) & 2.237 & (0.462) & 0.298 & (0.008) \\
\hline N401001 & S1 & 20 & 0.681 & (0.057) & 0.480 & (0.051) & 0.209 & (0.009) \\
\hline N401101 & S 1 & 21 & 0.419 & (0.062) & 1.524 & (0.225) & 0.288 & (0.010) \\
\hline N401201 & S 1 & 22 & 1.202 & (0.027) & 0.808 & (0.029) & 0.265 & (0.006) \\
\hline N401301 & S 1 & 23 & 0.895 & (0.125) & 0.926 & (0.142) & 0.300 & (0.008) \\
\hline N412101 & S4 & 10 & 0.825 & (0.027) & -0.808 & (0.032) & 0.270 & (0.011) \\
\hline N4 12201 & S4 & 11 & 1.630 & (0.051) & -0.481 & (0.029) & 0.225 & (0.009) \\
\hline N415501 & S4 & 16 & 2.438 & (0.076) & 1.050 & (0.072) & 0.197 & (0.004) \\
\hline N412301 & S4 & 21 & 1.126 & (0.064) & 0.194 & (0.027) & 0.285 & (0.007) \\
\hline N413901 & S5 & 5 & 1.211 & (0.029) & -1.169 & (0.039) & 0.197 & (0.016) \\
\hline N414101 & S 5 & 6 & 0.587 & (0.025) & -1.322 & (0.060) & 0.218 & (0.017) \\
\hline N414901 & S5 & 7 & 1.274 & (0.032) & -0.989 & (0.037) & 0.203 & (0.014) \\
\hline N414801 & S5 & 8 & 0.527 & (0.025) & -C. 814 & (0.045) & 0.247 & (0.013) \\
\hline N434601 & S 5 & 10 & 1.123 & (0.045) & -1. 4.476 & (0.033) & 0.232 & (0.010) \\
\hline N433001 & S5 & 11 & 0.611 & (0.024) & -1.084 & (0.049) & 0.224 & (0.015) \\
\hline N415101 & S5 & 14 & 1.444 & (0.046) & -0.681 & (0.038) & 0.222 & (0.012) \\
\hline N433101 & S5 & 18 & 0.662 & (0.041) & -0.003 & (0.027) & 0.228 & (0.010) \\
\hline N415801 & S6 & 6 & 1.283 & (0.030) & -1.158 & (0.039) & 0.209 & (0.016) \\
\hline N416001 & S6 & 7 & 0.588 & (0.032) & -0.091 & (0.023) & 0.185 & (0.010) \\
\hline N415401 & S6 & 11 & 0.493 & (0.030) & -0.219 & (0.027) & 0.253 & (0.011) \\
\hline N4 12501 & S6 & 13 & 0.996 & (0.067) & 0.112 & (0.031) & 0.204 & (0.009) \\
\hline N415701 & S6 & 14 & 1.014 & (0.053) & -0.174 & (0.029) & 0.193 & (0.010) \\
\hline N433201 & S6 & 17 & 0.893 & (0.109) & 0.833 & (0.111) & 0.212 & (0.007) \\
\hline N415601 & S6 & 18 & 1.086 & (0.123) & 0.491 & (0.071) & 0.236 & (0.008) \\
\hline N437801 & S7 & 10 & 0.875 & (0.129) & 0.903 & (0.143) & 0.301 & (0.007) \\
\hline N437901 & S 7 & 11 & 0.907 & (0.054) & -0.005 & (0.029) & 0.218 & (0.009) \\
\hline N438101 & S 7 & 13 & 0.668 & (0.100) & 1.210 & (0.187) & 0.263 & (0.007) \\
\hline N438701 & S 7 & 19 & 0.804 & (0.242) & 2.280 & (0.703) & 0.255 & ( 0.006 ) \\
\hline N438801 & S 7 & 20 & 0.852 & (0.119) & 0.932 & (0.140) & 0.257 & (0.007) \\
\hline N438901 & S 7 & 21 & 1.226 & (0.097) & 0.150 & (0.037) & 0.176 & (0.008) \\
\hline
\end{tabular}

Table E. 17
1986 IRT Parameters, Science, Grade 3/Age 9
Nature of Science Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N403001 & S3 & 12 & 0.986 & (0.033) & -2. 543 & (0.097) & 0.189 & (0.037) \\
\hline N403101 & S3 & 13 & 1.039 & (0.033) & -2.337 & (0.087) & 0.186 & (0.036) \\
\hline \(N 403501\)
\(N 403502\) & S3 & 18 & 0.825 & (0.141) & 1.018 & (0.191) & 0.454 & (0.010) \\
\hline N 403502
N 403503 & S3 & 19 & 0.771 & (0.049) & -1.147 & (0.084) & 0.471 & (0.019) \\
\hline \(N 403503\)
\(N 403701\) & S3
S3 & 18
22 & 0.611 & (0.104) & 0.898
-0.508 & (0.167) & 0.474 & (0.012) \\
\hline + N 403702 & S3 & 22 & 4.231
3.314 & \((0.193)\)
\((0.152)\) & -0.508 & (0.104) & 0.330 & (0.013) \\
\hline N403703 & S3 & 24 & 3.262 & (0.172) & -0.461 & (0.081) & 0.374
0.323 & \((0.013)\)
\((0.013)\) \\
\hline N403901 & S3 & 29 & 0.766 & (0.059) & 0.109 & (0.035) & 0.170 & (0.013) \\
\hline N404001 & S3 & 30 & 0.486 & (0.050) & 0.748 & (0.084) & 0.191 & (0.012) \\
\hline N434401 & S4 & 15 & 0.887 & (0.038) & -0.171 & (0.020) & 0.155 & (0.009) \\
\hline N413201 & S4 & 17 & 1.771 & (0.097) & 0.413 & (0.045) & 0.367 & (0.006) \\
\hline N413401 & S4 & 19 & 1.690 & (0.099) & -0.115 & (0.027) & 0.178 & (0.008) \\
\hline \(N 413701\)
\(N 433301\) & S4 & 23 & 0.504 & (0.020) & 0.221 & (0.017) & 0.162 & (0.008) \\
\hline \(N 433301\)
\(N 433401\) & S6 & 5 & 0.602 & (0.030) & -1.302 & (0.069) & 0.192 & (0.019) \\
\hline N433401 & S6 & 8 & 0.933 & (0.110) & 0.325 & (0.054) & 0.194 & (0.010) \\
\hline N437601 & S 7 & 8 & 1.146 & (0.032) & -1.964 & (0.069) & \(\bigcirc .183\) & (0.030) \\
\hline
\end{tabular}

Table E. 18
1986 IRT Parameters, Science, Grade 3/Age 9 Physical Sciences Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N400501 & S1 & 14 & 0.516 & (0.101) & 2.456 & (9.493) & 0.354 & (0.015) \\
\hline N400101 & S1 & 15 & 0.638 & (0.174) & 2.898 & (0.831) & 0.500 & (0.015) \\
\hline N400102 & S1 & 16 & 0.680 & (0.177) & 2.828 & (0.784) & 0.471 & (0.015) \\
\hline N401501 & S2 & 1 & 0.345 & (0.050) & 0.855 & (0.133) & 0.349 & (0.018) \\
\hline N401702 & S2 & 4 & 0.456 & (0.086) & 2.169 & (0.420) & 0.522 & (0.015) \\
\hline N401703 & S2 & 5 & 0.444 & (0.083) & 2.174 & (0.418) & 0.492 & (0.015) \\
\hline N401801 & S2 & 6 & 0.742 & (0.102) & 0.352 & (0.084) & 0.462 & (0.021) \\
\hline N401802 & S2 & 7 & 0.592 & (0.085) & -0.113 & (0.061) & 0.485 & (0.022) \\
\hline N401803 & S2 & 8 & 0.593 & (0.083) & 0.749 & (0.128) & 0.500 & (0.019) \\
\hline N401804 & S2 & 9 & 0.572 & (0.090) & 2.257 & (0.376) & 0.469 & (0.015) \\
\hline N401901 & S2 & 10 & 0.514 & (0.083) & 2.637 & (0.440) & 0.329 & (0.015) \\
\hline N402001 & S2 & 11 & 1.047 & (0.132) & 0.336 & (0.093) & 0.462 & (0.020) \\
\hline N402002 & S2 & 12 & 1.123 & (0.142) & 0.407 & (0.101) & 0.489 & (0.019) \\
\hline N402003 & S2 & 13 & 0.511 & (0.192) & 4.930 & (1.918) & 0.460 & (0.013) \\
\hline N402005 & S2 & 15 & 0.852 & (0.101) & 0.931 & (0.144) & 0.481 & (0.018) \\
\hline N402201 & S2 & 17 & 0.830 & (0.062) & 1.066 & (0.096) & 0.171 & (0.014) \\
\hline N402602 & S2 & 21 & 0.589 & (0.075) & 0.757 & (0.117) & 0.471 & (0.018) \\
\hline N402603 & S2 & 22 & 0.423 & (0.144) & 5.053 & (1.783) & 0.486 & (0.013) \\
\hline N402701 & S2 & 23 & 0.559 & (0.077) & 2.741 & (0.393) & 0.207 & (0.013) \\
\hline N402801 & S2 & 24 & 0.590 & (0.193) & 4.814 & (1.638) & 0.246 & (0.010) \\
\hline N402901 & S2 & 25 & 0.517 & (0.162) & 5.032 & (1.610) & 0.179 & (0.011) \\
\hline N403201 & S3 & 14 & 1.678 & (0.160) & -0.556 & (0.087) & 0.232 & (0.029) \\
\hline N403202 & S3 & 15 & 1.093 & (0.088) & -0.186 & (0.047) & 0.145 & (0.021) \\
\hline N403301 & S3 & 16 & 0.614 & (0.067) & 0.341 & (0.059) & 0.238 & (0.020) \\
\hline N403401 & S3 & 17 & 0.776 & (0.073) & 1.819 & (0.191) & 0.292 & (0.012) \\
\hline N40360i & S3 & 21 & 0.948 & (0.080) & 1.484 & (0.153) & 0.286 & (0.014) \\
\hline N403801 & S3 & 25 & 0.574 & (0.090) & 1.981 & (0.328) & 0.453 & (0.016) \\
\hline N403802 & S3 & 26 & 0.520 & (0.164) & 4.153 & (1.350) & 0.415 & (0.014) \\
\hline N403803 & S3 & 27 & 0.772 & (0.110) & 0.518 & (0.108) & 0.516 & (0.019) \\
\hline N403804 & S3 & 2.8 & 0.781 & (0.109) & 0.894 & (0.153) & 0.486 & (0.018) \\
\hline N404201 & S3 & 31 & 0.647 & (0.081) & 2.413 & (0.319) & 0.204 & (0.013) \\
\hline N413601 & S4 & 12 & 0.657 & (0.070) & 3.877 & (0.421) & 0.0 & (0.0) \\
\hline N412801 & S4 & 14 & 0.865 & (0.080) & 0.756 & (0.087) & 0.207 & (0.015) \\
\hline N433601 & S4 & 20 & 0.574 & (0.060) & 1.656 & (0.182) & 0.181 & (0.013) \\
\hline N412701 & S4 & 22 & 0.791 & (0.071) & 2.035 & (0.200) & 0143 & (0.011) \\
\hline N434501 & S5 & 9 & 1.153 & (0.058) & 1.371 & (0.086) & 0.0 & (0.0) \\
\hline N433501 & S6 & 9 & 0.424 & (0.058) & -0.599 & (0.091) & 0.339 & (0.023) \\
\hline N416701 & S6 & 15 & 0.867 & (0.089) & 0.089 & (0.033) & 0.0 & (0.0) \\
\hline N437701 & S7 & 9 & 1.009 & (0.078) & 1.977 & (0.184) & 0.194 & (0.010) \\
\hline N438001 & S7 & 12 & 0.592 & (0.070) & 1.583 & (0.175) & 0.292 & (0.013) \\
\hline N438201 & S7 & 14 & 1.023 & (0.096) & 0.432 & (0.065) & 0.181 & (0.016) \\
\hline N438301 & S7 & 15 & 0.460 & (0.052) & 0.763 & (0.095) & 0.204 & (0.017) \\
\hline N438401 & S 7 & 16 & 0.664 & (0.081) & 2.426 & (0.312) & 0.251 & (0.011) \\
\hline N438501 & S7 & 17 & 0.902 & (0.079) & 1.929 & (0.195) & 0.241 & (0.011) \\
\hline
\end{tabular}

Table E. 19
1986 IRT Parameters, Science, Grade 7/Age 13
Life Sciences Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N404501 & S 1 & 12 & 0.890 & (0.047) & -1.484 & (0.085) & 0.172 & (0.028) \\
\hline N 404601 & S1 & 13 & 0.676 & (0.024) & 0.565 & (0.028) & 0.248 & (0.010) \\
\hline N404701 & S1 & 14 & 0.900 & (0.056) & -0.635 & (0.049) & 0.223 & (0.019) \\
\hline N404702 & S1 & 15 & 0.802 & (0.052) & 0.336 & (0.035) & 0.225 & (0.012) \\
\hline N400201 & S1 & 16 & 0.769 & (0.033) & -0.292 & (0.023) & 0.232 & (0.013) \\
\hline N405001 & S1 & 23 & 0.474 & (0.019) & 0.478 & (0.025) & 0.205 & (0.010) \\
\hline N405201 & S1 & 25 & 0.391 & (0.020) & 0.381 & (0.026) & 0.217 & (0.010) \\
\hline N401201 & S1 & 28 & 1.202 & (0.027) & 0.808 & (0.029) & 0.265 & (0.006) \\
\hline N405601 & S1 & 30 & 0.321 & (0.042) & 1.783 & (0.236) & 0.207 & (0.010) \\
\hline N405701 & S1 & 31 & 1.454 & (0.063) & 0.887 & (0.058) & 0.198 & (0.009) \\
\hline N405801 & S1 & 32 & 0.820 & (0.051) & 1.255 & (0.086) & 0.161 & (0.009) \\
\hline N405901 & S1 & 33 & 0.895 & (0.075) & 1.970 & (0.181) & 0.198 & (0.008) \\
\hline N406001 & S1 & 34 & 1.577 & (0.034) & 2.053 & (0.071) & 0.219 & (0.005) \\
\hline N406101 & S1 & 35 & 1.184 & (0.044) & 2.550 & (0.122) & 0.255 & (0.005) \\
\hline N406201 & S1 & 36 & 1.138 & (0.030) & 2.438 & (0.080) & 0.115 & (0.004) \\
\hline N412101 & S4 & 10 & 0.825 & (0.027) & -0.808 & (0.032) & 0.270 & (0.011) \\
\hline N412201 & S4 & 11 & 1.630 & (0.051) & -0.481 & (0.029) & 0.225 & (0.009) \\
\hline N415501 & S4 & 16 & 2.438 & (0.076) & 1.050 & (0.072) & 0.197 & (0.004) \\
\hline N412301 & 54 & 21 & 1.126 & (0.0.64) & 0.194 & (0.027) & 0.285 & (0.007) \\
\hline N419501 & S5 & 3 & 0.683 & (0.031) & -0.814 & (0.041) & 0.236 & (0.015) \\
\hline N419201 & S5 & 4 & 1.345 & (0.048) & -0.268 & (0.024) & 0.152 & (0.013) \\
\hline N419301 & S5 & 7 & 0.919 & (0.023) & 0.437 & (0.021) & 0.141 & (0.009) \\
\hline N419401 & S5 & 9 & 1.018 & (0.023) & 1.335 & (0.039) & 0.219 & (0.006) \\
\hline N420101 & \(\because 5\) & 10 & 0.759 & (0.021) & 0.903 & (0.030) & 0.163 & (0.007) \\
\hline N419101 & S5 & 13 & 1.129 & (0.026) & 0.831 & (0.029) & 0.233 & (0.007) \\
\hline N418401 & S6 & 11 & 1.073 & (0.037) & 0.010 & (0.020) & 0.199 & (0.011) \\
\hline N418301 & S6 & 12 & 1.064 & (0.041) & -0.124 & (0.020) & 0.199 & (0.012) \\
\hline N418201 & S6 & 17 & 1.288 & (0.031) & 1.499 & (0.053) & 0.351 & (0.006) \\
\hline N418501 & S6 & 20 & 0.581 & (0.021) & 1.743 & (0.068) & 0.216 & (0.006) \\
\hline N418101 & S6 & 22 & 0.908 & (0.025) & 1.490 & (0.049) & 0.267 & (0.006) \\
\hline N417101 & S6 & 27 & 1.286 & (0.033) & 2.117 & (0.075) & 0.217 & (0.005) \\
\hline N421101 & S7 & 11 & 0.503 & (0.042) & -0.409 & (0.042) & 0.236 & (0.015) \\
\hline N421301 & S7 & 14 & 0.974 & (0.053) & 0.580 & (0.044) & 0.192 & (0.010) \\
\hline N421302 & S7 & 15 & 1.184 & (0.072) & 0.233 & (0.033) & 0.184 & (0.011) \\
\hline N421401 & S7 & 17 & 0.575 & (0.043) & 0.136 & (0.026) & 0.206 & (0.013) \\
\hline N433701 & S7 & 18 & 0.738 & (0.051) & 0.961 & (0.073) & 0.216 & (0.010) \\
\hline N421201 & S7 & 21 & 0.915 & (0.060) & 1.270 & (0.095) & 0.277 & (0.008) \\
\hline N423401 & S8 & 15 & 1.301 & (0.074) & -0.623 & (0.048) & 0.217 & (0.019) \\
\hline N423501 & S8 & 18 & 1.048 & (0.073) & -0.029 & (0.028) & 0.215 & (0.013) \\
\hline N423301 & S8 & 23 & 0.978 & (0.059) & 0.849 & (0.062) & 0.232 & (0.009) \\
\hline N423601 & S8 & 27 & 0.854 & (0.066) & 1.581 & (0.133) & 0.246 & (0.008) \\
\hline N435801 & S9 & 22 & 1.336 & (0.026) & 1.064 & (0.032) & 0.179 & (0.006) \\
\hline N436301 & S9 & 27 & 1.347 & (0.077) & 1.111 & (0.086) & 0.288 & (0.008) \\
\hline N436601 & S9 & 31 & 1.166 & (0.130) & 2.287 & (0.303) & 0.232 & (0.007) \\
\hline
\end{tabular}

Table E. 20
1986 IRT Parameters, Science, Grade 7/Age 13 Chemistry Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N404901 & S1 & 17 & 1.136 & (0.076) & -0.317 & (0.043) & 0.259 & (0.015) \\
\hline N404902 & S1 & 18 & 0.567 & (0.213) & 4.197 & (1.655) & 0.432 & (0.008) \\
\hline N404801 & S1 & 20 & 1.057 & (0.060) & -1.624 & (0.111) & 0.458 & (0.033) \\
\hline \$404802 & S1 & 21 & 1.721 & (0.136) & -0.363 & (0.062) & 0.330 & (0.016) \\
\hline N404803 & S1 & 22 & 1.184 & (0.126) & 0.248 & (0.057) & 0.341 & (0.012) \\
\hline N405101 & S1 & 24 & 0.946 & (0.039) & 0.807 & (0.047) & 0.239 & (0.008) \\
\hline \$405301 & S1 & 26 & 1.053 & (0.111) & 0.900 & (0.112) & 0.216 & (0.010) \\
\hline N405401 & S1 & 27 & 0.720 & (0.032) & 1.069 & (0.055) & 0.166 & (0.008) \\
\hline N405501 & S1 & 29 & 0.613 & (0.034) & 0.267 & (0.029) & 0.197 & (0.012) \\
\hline N419801 & S5 & 2 & 1.135 & (0.068) & -0.433 & (0.039) & 0.319 & (0.014) \\
\hline N418701 & S5 & 11 & 1.236 & (0.041) & 1.109 & (0.054) & 0.162 & (0.006) \\
\hline N418702 & S5 & 12 & 0.508 & (0.027) & 1.461 & (0.081) & 0.148 & (0.007) \\
\hline N420201 & S5 & 14 & 1.120 & (0.043) & 1.244 & (0.067) & 0.277 & (0.007) \\
\hline N420001 & S5 & 15 & 0.849 & (0.032) & 1.135 & (0.051) & 0.112 & (0.006) \\
\hline N419701 & S5 & 16 & 0.592 & (0.031) & 1.451 & (0.081) & 0.186 & (0.007) \\
\hline N419901 & S5 & 17 & 0.473 & (0.028) & 1.195 & (0.074) & 0.187 & (0.008) \\
\hline N419601 & S5 & 19 & 1.105 & (0.047) & 1.515 & (0.088) & 0.356 & (0.007) \\
\hline N423101 & S 8 & 17 & 0.702 & (0.057) & -0.211 & (0.034) & 0.193 & (0.015) \\
\hline N423001 & S8 & 21 & 0.547 & (0.057) & 0.199 & (0.037) & 0.211 & (0.013) \\
\hline N423201 & S8 & 24 & 0.828 & (0.081) & 1.792 & (0.181) & 0.0 & (0.0) \\
\hline N422901 & S8 & 29 & 0.789 & (0.097) & 0.657 & (0.091) & 0.225 & (0.011) \\
\hline N422801 & S8 & 30 & 1.124 & (0.123) & 0.315 & (0.053) & 0.155 & (0.011) \\
\hline N436201 & S9 & 26 & 0.729 & (0.040) & 1.253 & (0.075) & 0.171 & (0.007) \\
\hline
\end{tabular}

Table E. 21
1986 IRT Parameters, Science, Grade 7/Age 13 Nature of Science Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N408301 & S3 & 10 & 2.513 & (0.057) & 0.800 & (0.050) & 0.358 & \\
\hline N408302 & S3 & 11 & 0.773 & (0.043) & -0.458 & (0.039) & 0.404 & (0.016) \\
\hline N408303 & S3 & 12 & 0.920 & (0.045) & -0.574 & (0.040) & 0.410 & (0.016) \\
\hline N408304 & S3 & 13 & 0.946 & (0.054) & -0.362 & (0.038) & 0.424 & (0.016) \\
\hline N408401 & S3 & 14 & 0.672 & (0.049) & 0.260 & (0.032) & 0.221 & (0.012) \\
\hline N408501 & S3 & 15 & 0.963 & (0.052) & -0.676 & (0.046) & 0.205 & (0.019) \\
\hline N408502 & S3 & 16 & 0.614 & (0.045) & 1.060 & (0.083) & 0.156 & (0.009) \\
\hline N408601 & S3 & 17 & 0.462 & (0.024) & -0.376 & (0.026) & 0.196 & (0.012) \\
\hline N 408701
\(N 408801\) & S3 & 18 & 0.512 & (0.043) & 0.458 & (0.047) & 0.233 & (0.012) \\
\hline 08801 & S3 & 19 & 0.634 & (0.025) & 0.460 & (0.027) & 0.195 & (0.010) \\
\hline \(N 408901\)
\(N 408902\) & S3 & 20 & 1.444 & (0.060) & 0.380 & (0.040) & 0.521 & (0.009) \\
\hline N 408902
N 408903 & S3 & 21 & 1.553 & (0.104) & -0.554 & (0.057) & 0.516 & (0.016) \\
\hline N408904 & S3 & 22 & 1.003 & (0.039) & 0.563 & (0.037) & 0.419 & (0.009) \\
\hline N409001 & S3
S3 & 23 & 1.21 . & (0.043) & 0.528 & (0.052) & 0.496 & (0.008) \\
\hline N409101 & S3 & 25 & 1.230 & (0.047)
\((0.078)\) & 0.283
-0.239 & (0.029) & 0.137 & (0.011) \\
\hline N409102 & S3 & 26 & 0.987 & (0.061) & 0.618 & (0.051) & 0.258 & \\
\hline N409103 & S3 & 27 & 0.798 & (0.081) & 1.871 & (0.205) & 0.342 & (0.008) \\
\hline N409201 & S3 & 28 & 1.082 & (0.073) & 0.880 & (0.077) & 0.328 & (0.010) \\
\hline N409301 & S3 & 29 & 1.362 & (0.052) & 0.232 & (0.027) & 0.167 & (0.010) \\
\hline N409501 & S3 & 33 & 0.842 & (0.026) & 1.657 & (0.060) & 0.128 & (0.006) \\
\hline N409601 & S3 & 34 & 1.471 & (0.089) & 1.349 & (0.119) & 0.296 & (0.008) \\
\hline N409701 & S3 & 35 & 0.653 & (0.077) & 2.262 & (0.275) & 0.144 & (0.008) \\
\hline N434401 & S4 & 15 & 0.887 & (0.038) & -0.171 & (0.020) & 0.155 & (0.009) \\
\hline N413201 & S4 & 17 & 1.771 & (0.097) & 0.413 & (0.045) & 0.367 & (0.006) \\
\hline N413401 & S4 & 19 & 1.690 & (0.099) & -0.115 & (0.027) & 0.178 & (0.008) \\
\hline N435001 & S4 & 23 & 0.905 & (0.055) & 0.658 & (0.049) & 0.175 & (0.010) \\
\hline N434901 & S4 & 27 & 0.916 & (0.059) & 0.922 & (0.070) & 0. 248 & (0.009) \\
\hline N435501 & S9 & 15 & 1.213 & (0.066) & -0.717 & (0.050) & 0.197 & (0.020) \\
\hline N413701 & S9 & 18 & 0.504 & (0.020) & 0.221 & (0.017) & 0.162 & (0.008) \\
\hline N436001 & S9 & 24 & 0.728 & (0.065) & 0.390 & (0.045) & 0.253 & (0.011) \\
\hline N436401 & S9 & 28 & 1.399 & (0.061) & 2.287 & (0.145) & 0.359 & (0.005) \\
\hline N436501 & S9 & 29 & 1.895 & (0.045) & 0.678 & (0.035) & 0.135 & (0.007) \\
\hline
\end{tabular}

Table E. 22
1986 IRT Parameters, Science, Grade 7/Age Physics Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N406701 & S2 & 21 & 0.617 & (0.055) & -0.222 & (0.037) & 0.197 & (0.016) \\
\hline N406901 & S2 & 28 & 0.550 & (0.033) & 0.017 & (0.022) & 0.195 & (0.012) \\
\hline N407001 & S2 & 29 & 0.368 & (0.028) & 0.241 & (0.029) & 0.219 & (0.012) \\
\hline N407101 & S2 & 30 & 1.152 & (0.038) & 2.019 & (0.091) & 0.160 & (0.006) \\
\hline N407201 & S2 & 31 & 0.555 & (0.032) & 0.762 & (0.050) & 0.219 & (0.009) \\
\hline N408001 & S2 & 34 & 1.138 & (0.114) & 0.889 & (0.109) & 0.223 & (0.010) \\
\hline \$407601 & S2 & 35 & 0.890 & (0.103) & 0.687 & (0.091) & 0.163 & (0.011) \\
\hline N407901 & S2 & 39 & 0.748 & (0.107) & 1.484 & (0.225) & 0.241 & (0.011) \\
\hline N413601 & S4 & 12 & 0.627 & (0.070) & 1.888 & (0.212) & 0.0 & (0.0) \\
\hline N412801 & S4 & 14 & 1.067 & (0.053) & -0.935 & (0.060) & 0.191 & (0.021) \\
\hline N433601 & S4 & 20 & 0.401 & (0.049) & 0.377 & (0.054) & 0.200 & (0.014) \\
\hline N412701 & S4 & 22 & 0.603 & (0.075) & 0.692 & (0.093) & 0.195 & (0.011) \\
\hline N412601 & S4 & 24 & 0.484 & (0.136) & 3.589 & (1.013) & 0.162 & (0.007) \\
\hline N421801 & S7 & 10 & 0.466 & (0.040) & -1.399 & (0.123) & 0.203 & (0.022) \\
\hline N421901 & S 7 & 16 & 0.681 & (0.045) & -0.076 & (0.023) & 0.217 & (0.012) \\
\hline N421701 & S7 & 24 & 0.350 & (0.037) & 2.919 & (0.308) & 0.220 & (0.007) \\
\hline N422001 & S7 & 26 & 0.641 & (0.113) & 2.069 & (0.372) & 0.235 & (0.009) \\
\hline N421501 & S 7 & 27 & 0.512 & (0.127) & 3.132 & (0.782) & 0.239 & (0.008) \\
\hline N422101 & S 8 & 16 & 0.378 & (0.029) & -0.907 & (0.072) & 0.209 & (0.015) \\
\hline N422201 & S 8 & 19 & 0.641 & (0.040) & 0.347 & (0.031) & 0.195 & (0.010) \\
\hline N422501 & S8 & 22 & 0.889 & (0.115) & 0.549 & (0.083) & 0.216 & (0.011) \\
\hline N422301 & S8 & 25 & 0.506 & (0.069) & 1.162 & (0.163) & 0.175 & (0.011) \\
\hline N422401 & S 8 & 26 & 0.666 & (0.047) & 2.305 & (0.173) & 0.285 & (0.007) \\
\hline N423701 & S8 & 28 & 0.879 & (0.105) & 1.306 & (0.168) & 0.183 & (0.009) \\
\hline N421601 & S8 & 32 & 0.134 & (0.029) & 6.522 & (1.395) & 0.202 & (0.007) \\
\hline N435401 & S9 & 14 & 0.864 & (0.050) & -0. \(2: 3\) & (0.037) & 0.185 & (0.014) \\
\hline N436701 & S9 & 17 & 0.525 & (0.055) & 0.114 & (0.033) & 0.225 & (0.014) \\
\hline N435701 & S9 & 21 & 0.521 & (0.060) & 0.749 & (0.092) & 0.197 & (0.012) \\
\hline +435901 & S9 & 23 & 1.154 & (0.046) & 2.079 & (0.106) & 0.144 & (0.005) \\
\hline +436107 & S9 & 25 & 0.872 & (0.095) & 1.114 & (0.132) & 0.177 & (0.009) \\
\hline
\end{tabular}

Table E. 23
1986 IRT Parameters, Science, Grade \(7 /\) Age 13 Earth and Space Science Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & 3 & SE & C & SE \\
\hline N406301 & S2 & 10 & 0.328 & (0.034) & -0.658 & (0.073) & 0.486 & (0.014) \\
\hline N406302 & S2 & 11 & 0.427 & (0.036) & 0.638 & (0.063) & 0.458 & (0.012) \\
\hline N406303 & S2 & 12 & 0.691 & (0.041) & 0.971 & (0.070) & 0.452 & (0.010) \\
\hline N406304 & S2 & 13 & 0.537 & (0.039) & 0.618 & (0.056) & 0.395 & (0.012) \\
\hline N406401 & S2 & 14 & 0.675 & (0.044) & 0.553 & (0.052) & 0.532 & (0.011) \\
\hline N406402 & S2 & 15 & 1.042 & (0.054) & 0.598 & (0.051) & 0.439 & (0.011) \\
\hline N406403 & S2 & 16 & 0.960 & (0.077) & -0.387 & (0.051) & 0.533 & (0.015) \\
\hline N406404 & S2 & 17 & 1.373 & (0.089) & 0.137 & (0.047) & 0.464 & (0.013) \\
\hline N406405 & S2 & 18 & 0.865 & (0.059) & 0.024 & (0.041) & 0.486 & (0.015) \\
\hline N406501 & S2 & 19 & 0.828 & (0.064) & 0.800 & (0.076) & 0.191 & (0.013) \\
\hline N406601 & S2 & 20 & 0.628 & (0.039) & 0.129 & (0.026) & 0.257 & (0.013) \\
\hline N406801 & S2 & 22 & 1.084 & (0.063) & -0.834 & (0.062) & 0.420 & (0.020) \\
\hline N406802 & S2 & 23 & 1.085 & (0.055) & 1.837 & (0.122) & 0.523 & (0.007) \\
\hline N406803 & S2 & 24 & 0.958 & (0.050) & -0.404 & (0.036) & 0.321 & (0.015) \\
\hline N406804 & S2 & 25 & 0.899 & (0.043) & -0.681 & (0.044) & 0.339 & (0.017) \\
\hline N406805 & S2 & 26 & 1.630 & (0.072) & 1.526 & (0.119) & 0.601 & (0.007) \\
\hline N406806 & S2 & 27 & 0.454 & (0.030) & 0.492 & (0.042) & 0.376 & (0.012) \\
\hline N407301 & S2 & 32 & 0.326 & (0.024) & 1.568 & (0.120) & 0.239 & (0.009) \\
\hline N407302 & S2 & 33 & 0.711 & (0.048) & 2.258 & (0.165) & 0.426 & (0.008) \\
\hline N407701 & S2 & 37 & 0.637 & (0.027) & 1.161 & (0.057) & 0.167 & (0.009) \\
\hline N407801 & S2 & 38 & 0.807 & (0.091) & 2.299 & (0.287) & 0.270 & (0.010) \\
\hline N408201 & S2 & 40 & 1.169 & (0.108) & 2.347 & (0.279) & 0.205 & (0.009) \\
\hline N412901 & S4 & 13 & 0.896 & (0.069) & -0.528 & (0.053) & 0.244 & (0.018) \\
\hline N416401 & S4 & 26 & 0.956 & (0.095) & -0.002 & (0.037) & 0.231 & (0.015) \\
\hline N435201 & S5 & 6 & 0.908 & (0.055) & 0.356 & (0.036) & 0.311 & (0.010) \\
\hline N417601 & S6 & 13 & 1.283 & (0.059) & 0.247 & (0.033) & 0.278 & (0.010) \\
\hline N418001 & S6 & 15 & 0.711 & (0.032) & -0.009 & (0.022) & 0.199 & (0.012) \\
\hline N435101 & S6 & 16 & 0.820 & (0.034) & 0.114 & (0.023) & 0.175 & (0.011) \\
\hline N417801 & S6 & 19 & 1.488 & (0.040) & 0.987 & (0.047) & 0.229 & (0.007) \\
\hline N417701 & S6 & 21 & 1.855 & (0.050) & 0.926 & (0.052) & 0.264 & (0.007) \\
\hline N414401 & S6 & 23 & 0.937 & (0.030) & 1.030 & (0.043) & 0.248 & (0.006) \\
\hline N416801 & S6 & 25 & 1.025 & (0.033) & 1.309 & (0.057) & 0.277 & (0.007) \\
\hline N417901 & S6 & 26 & 1.050 & (0.031) & 1.766 & (0.067) & 0.193 & (0.006) \\
\hline N420601 & S7 & 13 & 0.533 & (0.057) & 0.185 & (0.038) & 0.256 & (0.015) \\
\hline N420401 & S7 & 19 & 0.888 & (0.097) & 0.039 & (0.038) & 0.257 & (0.014) \\
\hline N420501 & S7 & 20 & 1.490 & (0.141) & 1.727 & (0.240) & 0.324 & (0.008) \\
\hline N420701 & S7 & 22 & 0.854 & (0.082) & 3.190 & (0.320) & 0.0 & (0.0) \\
\hline N420301 & S7 & 23 & 0.667 & (0.071) & 1.826 & (0.203) & 0.174 & (0.009) \\
\hline N413001 & S9 & 16 & 1.111 & (0.071) & -0.605 & (0.055) & 0.241 & (0.019) \\
\hline N413101 & S9 & 19 & 1.095 & (0.091) & -0.239 & (0.042) & 0.215 & (0.016) \\
\hline N435601 & S9 & 20 & 0.545 & (0.058) & 0.629 & (0.077) & 0.279 & (0.013) \\
\hline N417401 & S9 & 30 & 1.276 & (0.044) & 1.821 & (0.092) & 0.281 & (0.007) \\
\hline
\end{tabular}

Table E. 24
1986 IRT Parameters, Science, Grade 11/Age 17 Life Sciences Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N400201 & S 1 & 12 & 0.769 & (0.033) & -0.292 & (0.023) & 0.232 & (0.013) \\
\hline N404601 & S1 & 13 & 0.676 & (0.024) & 0.565 & (0.028) & 0.248 & (0.010) \\
\hline N410001 & S 1 & 14 & 0.638 & (0.132) & 4.270 & (0.920) & 0.518 & (0.007) \\
\hline N410003 & S 1 & 16 & 0.554 & (0.043) & -0.719 & (0.066) & 0.533 & (0.019) \\
\hline N410004 & S 1 & 17 & 0.590 & (0.039) & 0.199 & (0.038) & 0.554 & (0.015) \\
\hline N409901 & S 1 & 18 & 0.921 & (0.036) & 0.156 & (0.028) & 0.221 & (0.018) \\
\hline N405001 & S1 & 29 & 0.474 & (0.019) & 0.478 & (0.025) & 0.205 & (0.010) \\
\hline N401201 & S 1 & 30 & 1.202 & (0.027) & 0.808 & (0.029) & 0.265 & (0.006) \\
\hline N405201 & S1 & 21 & 0.391 & (0.020) & 0.381 & (0.026) & 0.217 & (0.010) \\
\hline N406001 & S1 & 33 & 1.577 & (0.034) & 2.053 & (0.071) & 0.219 & (0.005) \\
\hline N406101 & S 1 & 35 & 1.184 & (0.044) & 2.550 & (0.122) & 0.255 & (0.005) \\
\hline N410301 & S1 & 36 & 0.469 & (0.118) & 6.652 & (1.688) & 0.080 & (0.004) \\
\hline N406201 & S 1 & 37 & 1.138 & (0.030) & 2.438 & (0.080) & 0.115 & (0.004) \\
\hline N430401 & S4 & 12 & 0.988 & (0.053) & -0.302 & (0.033) & 0.221 & (0.022) \\
\hline N433801 & S4 & 16 & 0.697 & (0.024) & 1.123 & (0.046) & 0.211 & (0.011) \\
\hline N430001 & S4 & 20 & 1.214 & (0.046) & 2.588 & (0.127) & 0.207 & (0.006) \\
\hline N430002 & S4 & 21 & 0.229 & (0.022) & 0.514 & (0.054) & 0.297 & (0.014) \\
\hline N430003 & S4 & 22 & 0.428 & (0.023) & 0.419 & (0.031) & 0.232 & (0.014) \\
\hline N430301 & S4 & 30 & 0.771 & (0.045) & 2.926 & (0.184) & 0.256 & (0.007) \\
\hline N419501 & S5 & 3 & 0.683 & (0.031) & -0.214 & (0.041) & 0.236 & (0.015) \\
\hline N419201 & S 5 & 4 & 1.345 & (0.048) & -0.268 & (0.024) & 0.152 & (0.013) \\
\hline N419301 & S5 & 7 & 0.919 & (0.023) & 0.437 & (0.021) & 0.141 & (0.009) \\
\hline N419401 & S5 & 9 & 1.018 & (0.023) & 1.335 & (0.039) & 0.219 & (0.006) \\
\hline N420101 & S5 & 10 & 0.759 & (0.021) & 0.903 & (0.030) & 0.163 & (0.007) \\
\hline N419101 & S5 & 13 & 1.129 & (0.026) & 0.831 & (0.029) & 0.233 & (0.007) \\
\hline N418401 & S6 & 11 & 1.073 & (0.037) & 0.010 & (0.020) & 0.199 & (0.011) \\
\hline N418301 & S6 & 12 & 1.064 & (0.041) & -0.124 & (0.020) & 0.199 & (0.012) \\
\hline N418201 & S6 & 17 & 1.288 & (0.031) & 1.499 & (0.053) & 0.351 & (0.006) \\
\hline N418501 & S6 & 20 & 0.581 & (0.021) & 1.743 & (0.068) & 0.216 & (0.006) \\
\hline N418101 & S6 & 22 & 0.908 & (0.025) & 1.490 & (0.049) & 0.267 & (0.006) \\
\hline \$417101 & S6 & 27 & 1.286 & (0.033) & 2.117 & (0.075) & 0.217 & (0.005) \\
\hline N427801 & S7 & 18 & 1.368 & (0.048) & 0.288 & (0.032) & 0.229 & (0.016) \\
\hline N428101 & S7 & 21 & 0.577 & (0.032) & 2.965 & (0.172) & 0.216 & (0.007) \\
\hline N428102 & S7 & 22 & 1.075 & (0.040) & 0.167 & (0.029) & 0.255 & (0.017) \\
\hline N428001 & S7 & 25 & 0.922 & (0.026) & 1.538 & (0.054) & 0.262 & (0.009) \\
\hline N428201 & S7 & 26 & 0.434 & (0.018) & 2.685 & (0.114) & 0.0 & (0.0) \\
\hline N428301 & S7 & 27 & 1.521 & (0.033) & 1.047 & (0.042) & 0.275 & (0.010) \\
\hline N427901 & S7 & 32 & 0.878 & (0.025) & 1.691 & (0.059) & 0.231 & (0.009) \\
\hline N431201 & S8 & 14 & 0.703 & (0.030) & 0.020 & (0.024) & 0.236 & (0.017) \\
\hline N431301 & S 8 & 19 & 0.842 & (0.019) & 2.125 & (0.053) & 0.0 & (0.0) \\
\hline N432701 & S8 & 21 & 1.290 & (0.030) & 0.909 & (0.037) & 0.237 & (0.011) \\
\hline N432601 & S 8 & 22 & 0.703 & (0.025) & 1.447 & (0.060) & 0.290 & (0.010) \\
\hline N432901 & S 8 & 24 & 1.312 & (0.030) & 0.959 & (0.038) & 0.239 & (0.011) \\
\hline N432801 & S8 & 29 & 0.445 & (0.022) & 1.752 & (0.092) & 0.231 & (0.010) \\
\hline N424301 & S9 & 19 & 0.886 & (0.030) & 0.429 & (0.029) & 0.225 & (0.015) \\
\hline N424701 & S9 & 21 & 1.088 & (0.041) & 0.193 & (0.029) & 0.245 & (0.017) \\
\hline N424501 & S9 & 27 & 0.769 & (0.023) & 0.754 & (0.032) & 0.172 & (0.013) \\
\hline N424401 & S9 & 31 & 1.538 & (0.032) & 1.679 & (0.060) & 0.302 & (0.008) \\
\hline N426601 & S9 & 32 & 1.150 & (0.028) & 2.068 & (0.068) & 0.195 & (0.007) \\
\hline N424201 & S9 & 36 & 1.345 & (0.025) & 1.463 & (0.043) & 0.137 & (0.008) \\
\hline N427001 & S10 & 21 & 1.221 & (0.027) & 1.122 & (0.039) & 0.211 & (0.010) \\
\hline N427101 & S10 & 23 & 0.819 & (0.024) & 1.280 & (0.047) & 0.240 & (0.010) \\
\hline N426501 & S10 & 26 & 0.459 & (0.024) & 2.326 & (0.126) & 0.233 & (0.009) \\
\hline N426901 & S10 & 28 & 0.629 & (0.026) & 2.177 & (0.096) & 0.240 & (0.009) \\
\hline N426801 & S10 & 29 & 0.600 & (0.025) & 2.126 & (0.094) & 0.222 & (0.009) \\
\hline N434201 & 1 S 10 & 33 & 1.338 & (0.031) & 2.124 & (0.073) & 0.155 & (0.007) \\
\hline N434202 & S10 & 34 & 1.527 & (0.032) & 1.748 & (0.061) & 0.192 & (C.008) \\
\hline N437202 & S 11 & 19 & 1.436 & (0.028) & 1.146 & (0.038) & 0.159 & (0.009) \\
\hline N435801 & 1 S11 & 20 & 1.336 & (0.026) & 1.064 & (0.032) & 0.179 & (0.006) \\
\hline
\end{tabular}

Table E. 25
1986 IRT Parameters, Science, Grade 11/Age 17
Chomistry Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N407403 & S2 & 30 & 0.465 & (0.067) & 0.384 & (0.074) & 0.448 & (0.020) \\
\hline N407404 & S2 & 31 & 0.464 & (0.081) & -0.962 & (0.175) & 0.439 & (0.028) \\
\hline N405101 & S3 & 14 & 0.946 & (0.039) & 0.807 & (0.047) & 0.239 & (0.008) \\
\hline N405401 & S3 & 19 & 0.720 & (0.032) & 1.069 & (0.055) & 0.166 & (0.008) \\
\hline N411301 & S3 & 20 & 0.708 & (0.107) & 4.437 & (0.716) & 0.127 & (0.009) \\
\hline N405501 & S3 & 21 & 0.613 & (0.034) & 0.267 & (0.029) & 0.197 & (0.012) \\
\hline N411101 & S3 & 22 & 0.562 & (0.035) & 1.026 & (0.075) & 0.225 & (0.015) \\
\hline N411401 & S3 & 25 & 2.033 & (0.067) & 1.035 & (0.078) & 0.193 & (0.012) \\
\hline N411601 & S3 & 28 & 0.924 & (0.040) & 1.546 & (0.087) & 0.208 & (0.012) \\
\hline N411701 & S3 & 29 & 0.910 & (0.036) & 1.779 & (0.092) & 0.150 & (0.011) \\
\hline N411801 & S3 & 30 & 1.710 & (0.055) & 1.104 & (0.072) & 0.173 & (0.012) \\
\hline N412001 & S3 & 32 & 0.924 & (0.053) & 2.459 & (0.171) & 0.237 & (0.012) \\
\hline N429901 & S4 & 13 & 0.366 & (0.047) & -0.727 & (0.099) & 0.212 & (0.023) \\
\hline N429601 & S4 & 25 & 0.514 & (0.042) & 1.902 & (0 163) & 0.219 & (0.012) \\
\hline N429801 & S4 & 27 & 0.384 & (0.040) & 1.713 & (0.183) & 0.220 & (0.014) \\
\hline N429701 & S4 & 29 & 0.534 & (0.046) & 1.767 & (0.161) & 0.250 & (0.013) \\
\hline N419801 & S 5 & 2 & 1.135 & (0.068) & -0.433 & (0.039) & 0.319 & (0.014) \\
\hline N418701 & S 5 & 11 & 1.236 & (0.041) & 1.109 & (0.054) & 0.162 & (0.006) \\
\hline N418702 & S5 & 12 & 0.508 & (0.027) & 1.461 & (0.081) & 0.148 & (0.007) \\
\hline N420201 & S5 & 14 & 1.120 & (0.043) & 1.244 & (0.067) & 0.277 & (0.007) \\
\hline N420001 & S5 & 15 & 0.849 & (0.032) & 1.135 & (0.051) & 0.112 & (0.006) \\
\hline N419701 & S5 & 16 & 0.592 & (0.031) & 1.451 & (0.081) & 0.186 & (0.007) \\
\hline N419901 & S5 & 17 & 0.473 & (0.028) & 1.195 & (0.074) & 0.187 & (0.008) \\
\hline N419601 & S5 & 19 & 1.105 & (0.047) & 1.515 & (0.088) & 0.356 & (0.007) \\
\hline N427601 & S 7 & 19 & 0.194 & (0.029) & -0.241 & (0.046) & 0.222 & (0.020) \\
\hline N427501 & S7 & 20 & 0.661 & (0.073) & -0.199 & (0.041) & 0.214 & (0.022) \\
\hline N433801 & S7 & 33 & 1.843 & (0.069) & 1.854 & (0.133) & 0.210 & (0.009) \\
\hline N427701 & S7 & 35 & 1.927 & (0.064) & 2.179 & (0.145) & 0.113 & (0.007) \\
\hline \$432201 & S8 & 23 & 1.657 & (0.067) & 2.661 & (0.189) & 0.102 & (0.006) \\
\hline N432301 & S8 & 30 & 1.516 & (0.061) & 2.036 & (0.134) & 0.168 & (0.009) \\
\hline N432501 & S8 & 32 & 0.707 & (0.046) & 1.949 & (0.139) & 0.238 & (0.011) \\
\hline N434101 & S8 & 33 & 0.764 & (0.052) & 2.362 & (0.182) & 0.272 & (0.011) \\
\hline N423901 & S9 & 22 & 0.961 & (0.061) & 0.779 & (0.068) & 0.263 & (0.015) \\
\hline N423902 & S9 & 23 & 0.583 & (0.046) & 2.195 & (0.183) & 0.345 & (0.012) \\
\hline N424001 & S9 & 34 & 1.361 & (0.088) & 2.805 & (0.275) & 0.284 & (0.009) \\
\hline \$435301 & S9 & 37 & 1.075 & (0.075) & 3.112 & (0.281) & 0.205 & (0.008) \\
\hline N427201 & S10 & 18 & 0.455 & (0.044) & -0.167 & (0.035) & 0.220 & (0.021) \\
\hline N427202 & S10 & 19 & 0.792 & (0.050) & 0.716 & (0.060) & 0.212 & (0.016) \\
\hline N427401 & S10 & 24 & 0.580 & (0.040) & 1.035 & (0.080) & 0.228 & (0.015) \\
\hline N425701 & S10 & 30 & 0.876 & (0.035) & 2.877 & (0.130) & 0.0 & (0.0) \\
\hline N436201 & S11 & 24 & 0.729 & (0.040) & 1.253 & (0.075) & 0.171 & (0.007) \\
\hline N437301 & S11 & 25 & 0.699 & (0.047) & 2.847 & (0.207) & 0.137 & (0.009) \\
\hline \$437401 & S11 & 27 & 0.806 & (0.042) & 1.822 & (0.108) & 0.138 & (0.011) \\
\hline N437501 & S11 & 29 & 0.995 & (0.059) & 2.465 & (0.182) & 0.207 & (0.009) \\
\hline
\end{tabular}

Table E. 26
1986 IRT Parameters, Science, Grade 11/Age 17 Nature of Science Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N408601 & S 1 & 19 & 0.462 & (0.024) & -0.376 & (0.026) & 0.196 & (0.012) \\
\hline N409301 & S 1 & 20 & 1.362 & (0.052) & 0.232 & (0.027) & 0.167 & (0.010) \\
\hline N410101 & S1 & 25 & 0.707 & (0.048) & 0.272 & (0.045) & 0.489 & (0.018) \\
\hline N410102 & S1 & 26 & 0.432 & (0.037) & 0.674 & (0.069) & 0.476 & (0.016) \\
\hline N410103 & S1 & 27 & 0.607 & (0.051) & -0.401 & (0.053) & 0.461 & (0.023) \\
\hline N409501 & S 1 & 34 & 0.842 & (0.026) & 1.657 & (0.060) & 0.128 & (0.006) \\
\hline N408301 & S3 & 10 & 2.513 & (0.057) & 0.800 & (0.050) & 0.358 & (0.007) \\
\hline N408302 & S3 & 11 & 0.773 & (0.043) & -0.458 & (0.039) & 0.404 & (0.016) \\
\hline N408303 & S3 & 12 & 0.920 & (0.045) & -0.574 & (0.040) & 0.410 & (0.016) \\
\hline N408304 & S 3 & 13 & 0.946 & (0.054) & -0.362 & (0.038) & 0.424 & (0.016) \\
\hline N408901 & S3 & 15 & 1.444 & (0.260) & 0.380 & (0.040) & 0.521 & (0.009) \\
\hline N408902 & S3 & 16 & 1.553 & (0.104) & -0.554 & (0.057) & 0.516 & (0.016) \\
\hline N408903 & S3 & 17 & 1.003 & (0.039) & 0.563 & (0.037) & 0.419 & (0.009) \\
\hline N408904 & S3 & 18 & 1.218 & (0.043) & 0.928 & (0.052) & 0.496 & (0.008) \\
\hline N411201 & S3 & 23 & 0.730 & (0.030) & 1.372 & (0.067) & 0.251 & (0.012) \\
\hline N408801 & S3 & 24 & 0.634 & (0.025) & 0.460 & (0.027) & 0.195 & (0.010) \\
\hline N411501 & S3 & 26 & 1.666 & (0.042) & 1.928 & (0.084) & 0.187 & (0.008) \\
\hline N411502 & S3 & 27 & 0.764 & (0.044) & 0.110 & (0.037) & 0.314 & (0.021) \\
\hline N428901 & S7 & 24 & 0.832 & (0.032) & 1.234 & (0.059) & 0.236 & (0.012) \\
\hline N428801 & S7 & 28 & 1.093 & (0.034) & 1.201 & (0.053) & 0.199 & (0.011) \\
\hline N434001 & S7 & 29 & 1.073 & (0.079) & 2.944 & (0.271) & 0.373 & (0.008) \\
\hline N428601 & S 7 & 30 & 1.146 & (0.033) & 1.640 & (0.064) & 0.166 & (0.009) \\
\hline N429001 & S7 & 37 & 1.007 & (0.048) & 2.996 & (0.171) & 0.094 & (0.006) \\
\hline N431901 & S8 & 17 & 1.178 & (0.049) & 0.395 & (0.037) & 0.181 & (0.017) \\
\hline N431902 & S 8 & 18 & 0.870 & (0.029) & 1.964 & (0.076) & 0.114 & (0.008) \\
\hline N432401 & S8 & 25 & 1.226 & (0.042) & 0.650 & (0.041) & 0.164 & (0.015) \\
\hline N425201 & S9 & 26 & 0.827 & (0.032) & 1.095 & (0.053) & 0.163 & (0.013) \\
\hline N425301 & S9 & 30 & 0.674 & (0.031) & 1.335 & (0.068) & 0.182 & (0.012) \\
\hline N425401 & S9 & 33 & 1.196 & (0.067) & 2.686 & (0.196) & 0.226 & (0.008) \\
\hline N425901 & S 10 & 22 & 0.724 & (0.032) & 1.778 & (0.087) & 0.181 & (0.010) \\
\hline N425801 & S10 & 25 & 0.680 & (0.035) & 1.983 & (0.111) & 0.222 & (0.010) \\
\hline N413701 & S11 & 12 & 0.504 & (0.020) & 0.221 & (0.017) & 0.162 & (0.008) \\
\hline N436901 & S11 & 15 & 0.996 & (0.031) & 1.248 & (0.051) & 0.173 & (0.011) \\
\hline N436501 & S11 & 21 & 1.895 & (0.045) & 0.678 & (0.035) & 0.135 & (0.007) \\
\hline N436401 & S11 & 22 & 1.399 & (0.081) & 2.287 & (0.145) & 0.359 & (0.005) \\
\hline N432001 & S11 & 28 & 1.380 & (0.045) & 2.323 & (0.110) & 0.121 & (0.007) \\
\hline
\end{tabular}

\footnotetext{
-596-
}

64

Table E. 27
1986 IRT Parameters, Science, Grade 11/Age 17 Physics Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N410401 & S2 & 15 & 0.349 & (0.036) & 0.316 & (0.044) & 0.267 & (0.017) \\
\hline N410501 & S2 & 22 & 0.402 & (0.036) & 0.318 & (0.041) & 0.228 & (0.018) \\
\hline N410601 & S2 & 23 & 1.909 & (0.051) & 1.900 & (0.102) & 0.129 & (0.007) \\
\hline N410602 & S2 & 24 & 0.430 & (0.061) & -2.279 & (0.326) & 0.343 & (0.034) \\
\hline N410603 & S2 & 25 & 1.145 & (0.049) & 1.580 & (0.094) & 0.335 & (0.010) \\
\hline N410604 & S2 & 26 & 0.351 & (0.047) & -2.514 & (0.341) & 0.348 & (0.032) \\
\hline N406901 & S2 & 27 & 0.550 & (0.033) & 0.017 & (0.022) & 0.195 & (0.012) \\
\hline N407401 & S2 & 28 & 0.582 & (0.041) & 0.591 & (0.054) & 0.321 & (0.015) \\
\hline N407402 & S2 & 29 & 0.240 & (0.040) & 2.515 & (0.426) & 0.386 & (0.014) \\
\hline N407201
\(N 407001\) & S2 & 32
33 & 0.555 & (0.032) & 0.762 & (0.050) & 0.219 & (0.009) \\
\hline N 407001
N 410701 & S2 & 33 & 0.368 & (0.028) & 0.241 & (0.029) & 0.219 & (0.012) \\
\hline N410701
\(N 407101\) & S2 & 34 & 0.754 & (0.041) & 1.423 & (0.089) & 0.264 & (0.012) \\
\hline N407101 & S2 & 38 & 1.152 & (0.038) & 2.019 & (0.091) & 0.160 & (0.006) \\
\hline N410801
N410901 & S2 & 39 & 0.715 & (0.040) & 1.828 & (0.113) & 0.223 & (0.011) \\
\hline N410901
N411001 & S2 & 40 & 0.971 & (0.035) & 1.774 & (0.080) & 0.123 & (0.009) \\
\hline N411001
N411901 & S2 & 41 & 0.932 & (0.045) & 2.452 & (0.142) & 0.178 & (0.008) \\
\hline N411901
N421901 & S3 & 31 & 0.653 & (0.057) & 2.503 & (0.230) & 0.206 & (0.010) \\
\hline N421901
N430801 & S4 & 14 & 0.681 & (0.045) & -0.076 & (0.023) & 0.217 & (0.012) \\
\hline N430801
\(N+429401\) & S4 & 17 & 0.8805
0.848 & \((0.039)\)
\((0.059)\) & 0.781 & \((0.046)\)
\((0.203)\) & 0.0 & \((0.0)\) \\
\hline N421601 & 54 & 24 & 0.134 & (0.029) & 2.634
6.522 & (0.203) & 0.204 & \((0.008)\)
\((0.007)\) \\
\hline N430501 & S4 & 26 & 0.746 & (0.043) & 1.229 & (0.082) & 0.225 & (0.012) \\
\hline N430601 & S4 & 28 & 0.402 & (0.037) & 0.803 & (0.080) & 0.205 & (0.015) \\
\hline N432101 & S 8 & 16 & 0.900 & (0.055) & 0.380 & (0.040) & 0.176 & (0.016) \\
\hline N431401 & S 8 & 20 & 0.820 & (0.055) & 0.131 & (0.033) & 0.187 & (0.017) \\
\hline N421701 & S8 & 26 & 0.350 & (0.037) & 2.919 & (0.308) & 0.220 & (0.007) \\
\hline N422401 & S8 & 27 & 0.666 & (0.047) & 2.305 & (0.172) & 0.285 & (0.007) \\
\hline N431101 & S8 & 31 & 0.548 & (0.038) & 1.376 & (0.101) & 0.183 & (0.012) \\
\hline N423801 & S9 & 18 & 0.584 & (0.042) & -0.012 & (0.029) & 0.187 & (0.018) \\
\hline N425001 & S9 & 20 & 0.488 & (0.040) & -0.312 & (0.038) & 0.193 & (0.020) \\
\hline N424801 & S9 & 24 & 0.783 & (0.045) & 0.561 & (0.047) & 0.226 & (0.015) \\
\hline N424802 & S9 & 25 & 0.873 & (0.031) & 1.397 & (0.058) & 0.0 & (0.0) \\
\hline N424901 & S9 & 28 & 0.388 & (0.033) & 0.721 & (0.067) & 0.227 & (0.015) \\
\hline N425501 & S9 & 29 & 0.810 & (0.040) & 0.782 & (0.051) & 0.152 & (0.013) \\
\hline N426101 & S10 & 16 & 0.320 & (0.040) & -0.561 & (0.075) & 0.209 & (0.020) \\
\hline N422201 & S10 & 17 & 0.641 & (0.040) & 0.347 & (0.031) & 0.195 & (0.010) \\
\hline N426401 & S10 & 20 & 0.243 & (0.036) & 2.055 & (0.308) & 0.219 & (0.013) \\
\hline N425601 & S10 & 27 & 0.335 & (0.095) & 6.641 & (1.885) & 0.147 & (0.007) \\
\hline \(N 426201\)
\(N 427301\) & S10 & 32
35 & 0.838 & (0.049) & 1.569 & (0.104) & 0.210 & (0.011) \\
\hline N427301
N435401 & S10 & 35 & 0.448 & (0.048) & 2.537 & (0.277) & 0.208 & (0.011) \\
\hline \(N 435401\)
\(N 422101\) & S11 & 10 & 0.864
0.378 & (0.050) & -0.513 & (0.037) & 0.185 & (0.014) \\
\hline N437001 & S11 & 11 & 0.378
1.033 & (0.029) & -0.907
2.709 & (0.072) & 0.209 & (0.015) \\
\hline N435901 & S11 & 23 & 1.154 & (0.046) & 2.079 & (0.106) & 0.144 & \((0.005)\) \\
\hline
\end{tabular}

Table E. 28
1986 IRT Parameters, Science, Grade 11/Age 17 Earth and Space Scionces Subscale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N406301 & S 1 & 21 & 0.328 & (0 034) & -0.658 & (0.073) & 0.486 & (0.014) \\
\hline N406302 & S 1 & 22 & 0.427 & (0.036) & 0.638 & (0.063) & 0.458 & (0.012) \\
\hline N406303 & S1 & 23 & 0.691 & (0.041) & 0.971 & (0.070) & 0.452 & (0.010) \\
\hline N406304 & S1 & 24 & 0.537 & (0.039) & 0.618 & (0.056) & 0.395 & (0.012) \\
\hline N406601 & S 1 & 28 & 0.628 & (0.039) & 0.129 & (0.026) & 0.257 & (0.013) \\
\hline N410201 & S1 & 32 & 0.674 & (0.046) & 2.454 & (0.182) & 0.250 & (0.011) \\
\hline N408101 & S 1 & 38 & 0.861 & (0.041) & 2.224 & (0.121) & 0.165 & (0.010) \\
\hline N406401 & S2 & 10 & 0.675 & (0.044) & 0.553 & (0.052) & 0.532 & (0.011) \\
\hline N406402 & S2 & 11 & 1.042 & (0.054) & 0.598 & (0.051) & 0.439 & (0.011) \\
\hline N406403 & S2 & 12 & 0.960 & (0.077) & -0.387 & (0.051) & 0.533 & (0.015) \\
\hline N406404 & S2 & 13 & 1.373 & (0.089) & 0.137 & (0.047) & 0.464 & (0.013) \\
\hline N406405 & S2 & 14 & 0.865 & (0.059) & 0.024 & (0.041) & 0.486 & (0.015) \\
\hline N406801 & S2 & 16 & 1.084 & (0.063) & -0.834 & (0.062) & 0.420 & (0.020) \\
\hline N406802 & S2 & 17 & 1.085 & (0.055) & 1.837 & (0.122) & 0.523 & (0.007) \\
\hline N406803 & S2 & 18 & 0.958 & (0.050) & -0.404 & (0.036) & 0.321 & (0.015) \\
\hline N406804 & S2 & 19 & 0.899 & (0.043) & -0.681 & (0.044) & 0.339 & (0.017) \\
\hline N406805 & S2 & 20 & 1.630 & (0.072) & 1.526 & (0.119) & 0.601 & (0.007) \\
\hline N406806 & S2 & 21 & 0.454 & (0.030) & 0.492 & (0.042) & 0.376 & (0.012) \\
\hline N407701 & S2 & 35 & 0.637 & (0.027) & 1.161 & (0.057) & 0.167 & (0.009) \\
\hline N407301 & S2 & 36 & 0.326 & (0.024) & 1.568 & (0.120) & 0.239 & (0.009) \\
\hline N407302 & S2 & 37 & 0.711 & (0.048) & 2.258 & (0.165) & 0.426 & (0.008) \\
\hline N434801 & S4 & 15 & 0.728 & (0.039) & 1.442 & (0.090) & 0.314 & (0.012) \\
\hline N434301 & S4 & 18 & 1.192 & (0.043) & 1.193 & (0.062) & 0.178 & (0.012) \\
\hline N435201 & S 5 & 6 & 0.908 & (0.055) & 0.356 & (0.036) & 0.311 & (0.010) \\
\hline N417601 & S6 & 13 & 1.283 & (0.059) & 0.247 & (0.033) & 0.278 & (0.010) \\
\hline N418001 & S6 & 15 & 0.711 & (0.032) & -0.009 & (0.022) & 0.199 & (0.012) \\
\hline N435101 & S6 & 16 & 0.820 & (0.034) & 0.114 & (0.023) & 0.175 & (0.011) \\
\hline N417801 & S6 & 19 & 1.488 & (0.040) & 0.987 & (0.047) & 0.229 & (0.007) \\
\hline N417701 & S6 & 21 & 1.855 & (0.050) & 0.926 & (C.052) & 0.264 & (0.007) \\
\hline N414401 & S6 & 23 & 0.937 & (0.030) & 1.030 & (0.043) & 0.248 & (0.006) \\
\hline N416801 & S6 & 25 & 1.025 & (0.033) & 1.309 & (0.057) & 0.277 & (0.007) \\
\hline N417901 & S 6 & 26 & 1.050 & (0.031) & 1.766 & (0.067) & 0.193 & (0.006) \\
\hline N428501 & S 7 & 23 & 1.619 & (0.074) & 0.690 & (0.061) & 0.240 & (0.015) \\
\hline N429201 & S7 & 31 & 0.267 & (0.032) & 1.994 & (0.243) & 0.271 & (0.014) \\
\hline N428401 & S7 & 34 & 0.875 & (0.050) & 2.428 & (0.159) & 0.236 & (0.009) \\
\hline N436801 & S11 & 13 & 1.195 & (0.044) & 1.167 & (0.063) & 0.199 & (0.012) \\
\hline N436802 & S11 & 14 & 1.455 & (0.048) & 1.781 & (0.094) & 0.234 & (0.009) \\
\hline N437101 & S11 & 17 & 1.174 & (0.048) & 1.905 & (0.107) & 0.312 & (0.010) \\
\hline N417401 & S 11 & 26 & 1.276 & (0.044) & 1.821 & (0.092) & 0.281 & (0.007) \\
\hline
\end{tabular}

Table E. 29
1986 IRT Perameters, U.S. History, Grade \(11 /\) Age 17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & 8 & SE & C & SE \\
\hline -000101 & H1 & 13 & 1.159 & (0.086) & -0.128 & (0.067) & 0.186 & (0.029) \\
\hline H000201 & E1 & 14 & 1.291 & (0.153) & 1.224 & (0.247) & 0.235 & (0.017) \\
\hline H000301 & H1 & 15 & 0.601 & (0.052) & -1.220 & (0.127) & 0.216 & \((0.05\) \\
\hline H000401 & H1 & 16 & 0.407 & (0.054) & -0.381 & (0.122) & 0.301 & (0.06 \\
\hline H000501 & H1 & 17 & 1.181 & (0.103) & 0.147 & (0.089) & 0.243 & (0.029) \\
\hline H000601 & H1 & 18 & 0.364 & (0.044) & -0.447 & (0.105) & 0.231 & (0.05 \\
\hline H000701 & H1 & 19 & 1.556 & (0.159) & 1.989 & (0.339) & 0.188 & (0.010) \\
\hline H000801 & H1 & 20 & 0.900 & (0.084) & -2.362 & (0.248) & 0.213 & (0.054) \\
\hline H000901 & H1 & 21 & 1.167 & (0.106) & 0.788 & (0.134) & 0.154 & (0.01 \\
\hline H001001 & H1 & 22 & 0.751 & (0.069) & 0.056 & (0.082) & 0.196 & (0.038) \\
\hline H001101 & H1 & 23 & 0.625 & (0.061) & -0.147 & (0.085) & 0.202 & (0.046) \\
\hline H001201 & H1 & 24 & 1.813 & (0.123) & -0.397 & (0.066) & 0.153 & (0.02 \({ }^{(0.04}\) \\
\hline H001202 & E1 & 25 & 1.208 & (0.095) & -1.239 & (0.127) & 0.223 & (0.046) \\
\hline H001203 & E1 & 26 & 0.673 & (0.059) & -0.244 & (0.076) & 0.198 & (0.041) \\
\hline H001204 & H1 & 27 & 1.447 & (0.112) & -0.479 & (0.077) & 0.258 & (0.033) \\
\hline H001205 & H1 & 28 & 1.401 & (0.120) & -1.517 & (0.177) & 0.230 & (0.04 \\
\hline H001301 & H1 & 29 & 1.059 & (0.091) & -0.445 & (0.087) & 0.291 & (0.041) \\
\hline H001401 & E1 & 30 & 0.385 & (0.041) & -1. 202 & (0.149) & 0.225 & (0.056) \\
\hline H001501 & H1 & 31 & 0.728 & (0.057) & -0.563 & (0.078) & 0.179 & (0.042) \\
\hline E001601 & E1 & 32 & 0.601 & (0.054) & -1.495 & (0.154) & 0.236 & (0.059) \\
\hline E001701 & E1 & 33 & 1.106 & (0.106) & 0.486 & (0.118) & 0.222 & (0.026) \\
\hline H001801 & E1 & 34 & 0.882 & (0.156) & 1.664 & (0.386) & 0.322 & (0.022) \\
\hline E001901 & E1 & 35 & 0.383 & (0.058) & 0.658 & (0.160) & 0.234 & (0.055) \\
\hline स002001 & H1 & 36 & 0.529 & (0.062) & 0.203 & (0.103) & 0.237 & (0.048) \\
\hline E002101 & H1 & 37 & 1.064 & (0.110) & 0.704 & (0.144) & 0.233 & (0.024) \\
\hline E002201 & H1 & 38 & 0.602 & (0.060) & -0.798 & (0.117) & 0.264 & (0.059) \\
\hline H002301 & E1 & 39 & 1.190 & (0.147) & 1.839 & (0.326) & 0.172 & (0.012) \\
\hline H002401 & H1 & 40 & 0.444 & (0.088) & 1.622 & (0.369) & 0.260 & (0.045) \\
\hline E002402 & E1 & 41 & 0.828 & (0.067) & -1.466 & (0.139) & 0.213 & (0.051) \\
\hline H002403 & E1 & 42 & 0.911 & (0.107) & 1.551 & (0.236) & 0.110 & (0.016) \\
\hline H002404 & E1 & 43 & 0.924 & (0.145) & 1.741 & (0.357) & 0.197 & (0.019) \\
\hline H002501 & H1 & 44 & 0.651 & (0.057) & -0.922 & (0.108) & 0.215 & (0.052) \\
\hline H002601 & H1 & 45 & 0.878 & (0.104) & 0.706 & (0.156) & 0.270 & (0.030) \\
\hline E002701 & H1 & 46 & 0.791 & (0.101) & 1.220 & (0.213) & 0.187 & (0.025) \\
\hline E002801 & H1 & 47 & 1.432 & (0.168) & 1.962 & (0.367) & 0.261 & (0.012) \\
\hline H002901 & H1 & 48 & 0.848 & (0.075) & -0.754 & (0.102) & 0.252 & (0.051) \\
\hline H003001 & H2 & 13 & 1.209 & (0.097) & -0.740 & (0.092) & 0.248 & (0.042) \\
\hline H003101 & H2 & 14 & 0.725 & (0.071) & 0.025 & (0.087) & 0.226 & (0.041) \\
\hline H003201 & H2 & 15 & 0.680 & (0.101) & 1.428 & (0.264) & 0.205 & (0.028) \\
\hline E003301 & H2 & 16 & 0.758 & (0.082) & 0.268 & (0.105) & 0.243 & (0.039) \\
\hline H003401 & H2 & 17 & 1.337 & (0.191) & 1.990 & (0.437) & 0.342 & (0.013) \\
\hline H003501 & H2 & 18 & 0.973 & (0.137) & 1.199 & (0.254) & 0.294 & (0.023) \\
\hline H003601 & H2 & 19 & 0.966 & (0.104) & 0.474 & (0.125) & 0.281 & (0.030) \\
\hline H002405 & H2 & 20 & 1.772 & (0.170) & 0.938 & (0.205) & 0.208 & (0.014) \\
\hline H002406 & H2 & 21 & 2.475 & (0.237) & 0.665 & (0.211) & 0.334 & (0.015) \\
\hline H002407 & H2 & 22 & 1.785 & (0.179) & 0.942 & (0.219) & 0.275 & (0.015) \\
\hline H002408 & H2 & 23 & 1.175 & (0.129) & 0.554 & (0.146) & 0.315 & (0.026) \\
\hline H003701 & H2 & 24 & 1.560 & (0.178) & 1.426 & (0.304) & 0.393 & (0.014) \\
\hline H003801 & H2 & 25 & 0.952 & (0.103) & 1.109 & (0.177) & 0.143 & (0.020) \\
\hline H003901 & H2 & 26 & 0.836 & (0.075) & -0.086 & (0.079) & 0.211 & (0.038) \\
\hline H004001 & H2 & 27 & 0.822 & (0.097) & 0.516 & (0.136) & 0.299 & (0.034) \\
\hline H004101 & H2 & 28 & 0.989 & (0.122) & 0.377 & (0.143) & 0.399 & (0.033) \\
\hline H004201 & H2 & 29 & 0.693 & (0.319) & 4.222 & (2.157) & 0.190 & (0.010) \\
\hline H004301 & H2 & 30 & 0.380 & (0.098) & 2.340 & (0.649) & 0.354 & (0.042) \\
\hline H004401 & H2 & 31 & 0.862 & (0.094) & -0.113 & (0.104) & 0.357 & (0.043) \\
\hline H004501 & H2 & 32 & 0.327 & (0.041) & -2.027 & (0.265) & 0.253 & (0.064) \\
\hline B004502 & H2 & 33 & 0.593 & (0.055) & -0.075 & (0.093) & 0.216 & (0.049) \\
\hline H004601 & H2 & 34 & 0.484 & (0.050) & 0.093 & (0.081) & 0.179 & (0.043) \\
\hline H004701 & H2 & 35 & 0.588 & (0.053) & -1.938 & (0.186) & 0.205 & (0.052) \\
\hline H004801 & H2 & 36 & 1.131 & (0.168) & 1.628 & (0.351) & 0.209 & (0.016) \\
\hline H004901 & H2 & 37 & 0.464 & (0.046) & -0.765 & (0.107) & 0.213 & (0.052) \\
\hline H005u01 & H2 & 38 & 1.437 & (0.113) & -0.612 & (0.084) & 0.242 & (0.036) \\
\hline H005101 & H2 & 39 & 1.468 & (0.149) & 1.067 & (0.205) & 0.163 & (0.015) \\
\hline H005102 & H2 & 40 & 1.357 & (0.097) & -0.506 & (..070) & 0.160 & (0.032) \\
\hline H005103 & H2 & 41 & 1.250 & (0.094) & -0.313 & (0.068) & 0.184 & (0.032) \\
\hline H005201 & H2 & 42 & 0.792 & (0.064) & 0.297 & (0.073) & 0.131 & (0.027) \\
\hline H005301 & H2 & 43 & 0.390 & (0.068) & 0.923 & (0.217) & 0.268 & (0.055) \\
\hline H095401 & H2 & 44 & 0.921 & (0.074) & -0.325 & (0.073) & 0.188 & (0.037) \\
\hline H005501 & H2 & 45 & 0.640 & (0.095) & 1.417 & (0.257) & 0.190 & (0.029) \\
\hline H005601 & H2 & 46 & 1.041 & (0.097) & 0.284 & (0.097) & 0.220 & (0.029) \\
\hline E005701 & H2 & 47 & 0.822 & (0.105) & 1.162 & (0.210) & 0.191 & (0.025) \\
\hline H005801 & H2 & 48 & 0.676 & (0.060) & -1.415 & (0.145) & 0.226 & (0.055) \\
\hline H005901 & H3 & 13 & 1.055 & (0.090) & 0.171 & (0.082) & 0.217 & (0.028) \\
\hline
\end{tabular}
-599-


Table E. 29
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD BL & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline H006001 & H3 & 14 & 1.025 & (0.083) & -0.439 & (0.078) & 0.229 & (0.039) \\
\hline H006101 & H3 & 15 & 1.115 ( & (0.086) & -1.351 (0) & (0.132) & 0.208 & (0.047) \\
\hline H006201 & H3 & 16 & 0.647 & (0.104) & 1.613 ( & (0.308) & 0.191 & (0.027) \\
\hline H006331 & H3 & 17 & 1.109 & (0.101) & -0.159 & (0.085) & 0.289 & (0.036) \\
\hline H006401 & H3 & 18 & 0.942 & (0.119) & 1.637 ( & (0.267) & 0.120 & (0.015) \\
\hline H006501 & H3 & 19 & 0.621 & (0.168) & 2.572 ( & (0.768) & 0.335 & (0.023) \\
\hline HC06601 & H3 & 20 & 0.636 & (0.084) & 0.833 ( & (0.165) & 0.217 & (0.036) \\
\hline H006701 & H3 & 21 & 1.035 & (0.179) & 2.193 & (0.489) & 0.167 & (0.013) \\
\hline H006801 & H3 & 22 & 1.418 & (0.115) & -0.149 & (0.074) & 0.268 & (0.029) \\
\hline H006901 & H3 & 23 & 0.246 & (0.054) & 3.231 & (0.725) & 0.246 & (0.037) \\
\hline H007001 & H3 & 24 & 1.173 & (0.092) & 0.187 & (0.077) & 0.167 & (0.024) \\
\hline H007101 & H3 & 25 & 0.859 & (0.132) & 1.484 & (0.301) & 0.238 & (0.022) \\
\hline H007102 & H3 & 26 & 1.133 & (0.090) & 0.106 & (0.074) & 0.189 & (0.026) \\
\hline H007103 & H3 & 27 & 0.844 & (0.078) & -0.364 & (0.088) & 0.275 & (0.044) \\
\hline H007201 & H3 & 28 & 0.698 & (0.118) & 1.025 & (0.248) & 0.366 & (0.035) \\
\hline H007301 & H3 & 29 & 0.859 & (0.112) & 1.557 & (0.259) & 0.130 & (0.018) \\
\hline H007401 & H3 & 30 & 0.774 & (0.134) & 1.607 & (0.347) & 0.275 & (0.024) \\
\hline H007501 & H3 & 31 & 0.881 & (0.087) & 0.435 & (0.105) & 0.206 & (0.030) \\
\hline H007601 & H3 & 32 & 1.189 & (0.152) & 1.138 & (0.242) & 0.272 & (0.019) \\
\hline H007701 & H3 & 33 & 1.755 & (0.142) & -0.2.81 & (0.075) & 0.270 & (0.028) \\
\hline H007801 & H3 & 34 & 0.759 & (0.070) & 0.255 & (0.084) & 0.176 & (0.033) \\
\hline H007901 & H3 & 35 & 0.995 & (0.232) & 2.356 & (0.702) & 0.338 & (0.015) \\
\hline H008001 & H3 & 36 & 0.872 & (0.139) & 1.693 & (0.344) & 0.211 & (0.020) \\
\hline H008101 & H3 & 37 & 0.633 & (0.070) & 0.505 & (0.111) & 0.183 & (0.037) \\
\hline H008201 & H3 & 38 & 0.535 & (0.088) & 1.599 & (0.303) & 0.178 & (0.033) \\
\hline H008301 & H3 & 39 & 1.092 & (0.102) & 1.203 & (0.166) & 0.092 & (0.014) \\
\hline H008302 & H3 & 40 & 0.801 & (0.073) & 0.421 & (0.091) & 0.151 & (0.029) \\
\hline H008303 & H3 & 41 & 0.688 & (0.084) & 0.285 & (0.119) & 0.278 & (0.044) \\
\hline H008304 & H3 & 42 & 0.836 & (0.072) & -0.438 & (0.083) & 0.225 & (0.044) \\
\hline H008305 & H3 & 43 & 0.624 & (0.111) & 1.664 & (0.350) & 0.252 & (0.029) \\
\hline H008401 & H3 & 44 & 1.098 & (0.099) & 0.091 & (0.087) & 0.246 & (0.031) \\
\hline H008501 & H3 & 45 & 0.524 & (0.055) & -2.574 & (0.280) & 0.233 & (0.059) \\
\hline H008601 & H3 & 46 & 0.426 & (0.060) & 0.676 & (0.149) & 0.223 & (0.048) \\
\hline H008701 & H3 & 47 & 0.507 & (0.094) & 1.246 & (0.286) & 0.299 & (0.043) \\
\hline H008801 & \(\mathrm{H}_{4}\) & 13 & 0.698 & (0.068) & 0.021 & (0.086) & 0.207 & (0.041) \\
\hline H008901 & H4 & 14 & 1.249 & (0.108) & 0.355 & (0.099) & 0.230 & (0.024) \\
\hline H009001 & H4 & 15 & 0.981 & (0.088) & 0.825 & (0.123) & 0.143 & (0.020) \\
\hline H009101 & H4 & 16 & 0.865 & (0.070) & -1.444 & (0.139) & 0.235 & (0.053) \\
\hline H005004 & \(\mathrm{H}_{4}\) & 17 & 1.087 & (0.077) & -0.003 & (0.061) & 0.116 & (0.025) \\
\hline H005005 & H4 & 18 & 0.899 & (0.067) & -0.402 & (0.069) & 0.149 & (0.036) \\
\hline H005006 & H4 & 19 & 1.082 & (0.085) & -0.015 & (0.070) & 0.175 & (0.029) \\
\hline H005007 & H4 & 20 & 1.718 & (0.154) & 1.315 & (0.240) & 0.300 & (0.013) \\
\hline H005008 & H4 & 21 & 1.300 & (0.078) & -0.289 & (0.052) & 0.085 & (0.021) \\
\hline H005009 & \(\mathrm{H}_{4}\) & 22 & 0.799 & (0.059) & 0.028 & (0.060) & 0.109 & (0.028) \\
\hline H005010 & H4 & 23 & 1.283 & (0.101) & 0.709 & (0.112) & 0.113 & (0.016) \\
\hline H009201 & H4 & 24 & 0.451 & (0.050) & -0.125 & (0.089) & 0.212 & (0.050) \\
\hline H009301 & H4 & 25 & 0.804 & (0.113) & 1.433 & (0.263) & 0.223 & (0.023) \\
\hline H009401 & H4 & 26 & 0.646 & (0.068) & -0.306 & (0.099) & 0.254 & (0.053) \\
\hline H009501 & E4 & 27 & 0.593 & (0.081) & 0.737 & (0.164) & 0.242 & (0.042) \\
\hline H009601 & H4 & 28 & 1.423 & (0.143) & 1.318 & (0.232) & 0.187 & (0.013) \\
\hline H009701 & H4 & 29 & 1.207 & (0.095) & -0.533 & (0.080) & 0.251 & (0.038) \\
\hline H009801 & H4 & 30 & 1.162 & (0.087) & -0.797 & (0.089) & 0.220 & (0.040) \\
\hline H009901 & 14 & 31 & 0.994 & (0.074) & -1.363 & (0.125) & 0.194 & (0.046) \\
\hline H010001 & 1 4 & 32 & 1.064 & (0.088) & -1.058 & (0.116) & 0.269 & (0.050) \\
\hline H010101 & 目4 & 33 & 1.090 & (0.094) & 0.415 & (0.097) & 0.190 & (0.024) \\
\hline H010201 & [ 4 & 34 & 0.560 & (0.075) & 0.372 & (0.133) & 0.270 & (0.050) \\
\hline H010301 & \(1 \mathrm{H}_{4}\) & 35 & 0.824 & (0.064) & -0.720 & (0.085) & 0.198 & (0.043) \\
\hline H010401 & H4 & 36 & 0.925 & (0.082) & 0.839 & (0.120) & 0.125 & (0.020) \\
\hline H010501 & 1 H4 & 37 & 0.847 & (0.066) & -0.849 & (0.094) & 0.211 & (0.046) \\
\hline H010601 & 1 H4 & 38 & 1.104 & (0.117) & 0.945 & (0.173) & 0.232 & (0.021) \\
\hline H010701 & 1 H4 & 39 & 0.884 & (0.115) & 1.474 & (0.256) & 0.183 & (0.020) \\
\hline H010801 & 1 H4 & 40 & 0.279 & (0.041) & 0.631 & (0.133) & 0.235 & (0.048) \\
\hline H010901 & 1 H4 & 41 & 0.863 & (0.079) & 0.373 & (0.094) & 0.195 & (0.030) \\
\hline H011001 & 1 H4 & 42 & 1.028 & (0.081) & -0.321 & (0.072) & 0.201 & (0.036) \\
\hline H011101 & 1 H4 & 43 & 0.804 & 4 (0.081) & 0.827 & 7 (0.133) & 0.154 & (0.026) \\
\hline H011201 & 1 E4 & 44 & 0.610 & (0.062) & -1. 123 & (0.144) & 0.284 & 4 (0.065) \\
\hline H011301 & \(1 \mathrm{H4}\) & 45 & 1.046 & 6 (0.078) & -0.460 & (0.072) & 0.192 & (0.036) \\
\hline H011401 & 1 H4 & 46 & 0.505 & 5 (0.087) & 1. 173 & 3 (0.259) & 0.250 & (0.045) \\
\hline
\end{tabular}

Table E. 30
1986 IRT Parameters, Literature, Grade 11/Age 17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline L000101 & L 1 & 19 & 0.763 & (0.095) & 0.423 & (0.132) & 0.320 & 8) \\
\hline L000201 & L1 & 20 & 0.632 & (0.064) & 0.165 & (0.087) & 0.185 & (0.040) \\
\hline L000301 & L1 & 21 & 0.471 & (0.117) & 2.701 & (0.714) & 0.262 & (0.029) \\
\hline L000401 & L1 & 22 & 0.765 & (0.065) & -0.561 & (0.084) & 0.212 & (0.044) \\
\hline L000501 & L1 & 23 & 1.063 & (0.124) & 1.104 & (0.202) & 0.209 & (0.020) \\
\hline L000601 & L1 & 24 & 0.373 & (0.041) & -1.195 & (0.152) & 0.223 & (0.057) \\
\hline L000701 & L1 & 25 & 0.908 & (0.083) & 0.216 & (0.085) & 0.205 & (0.031) \\
\hline 100080! & L1 & 26 & 0.755 & (0.087) & 0.872 & (0.151) & 0.192 & (0.028) \\
\hline L000901 & L1 & 27 & 0.512 & (0.094) & 1.614 & (0.344) & 0.256 & (0.037) \\
\hline L001001 & L1 & 28 & 0.965 & (0.099) & 0.963 & (0.153) & 0.145 & (0.021) \\
\hline L001101 & L1 & 29 & 0.847 & (0.115) & 1.396 & (0.253) & 0.221 & (0.022) \\
\hline L001201 & L1 & 30 & 0.652 & (0.068) & 0.263 & (0.093) & 0.205 & (0.038) \\
\hline L001301 & I. 1 & 31 & 0.841 & (0.090) & 0.498 & (0.117) & 0.217 & (0.032) \\
\hline L001401 & L1 & 32 & 1.364 & (0.113) & 0.094 & (0.080) & 0.228 & (0.025) \\
\hline L001501 & L1 & 33 & 0.898 & (0.154) & 1.369 & (0.328) & 0.396 & (0.024) \\
\hline L001601 & L1 & 34 & 0.763 & (0.062) & -1.398 & (0.134) & 0.217 & (0.053) \\
\hline L001701 & I. 1 & 35 & 0.347 & (0.055) & 0.692 & (0.163) & 0.267 & (0.053) \\
\hline L001801 & L1 & 36 & 1.152 & (0.135) & 1.212 & (0.225) & 0.210 & (0.018) \\
\hline L001901 & L1 & 37 & 0.353 & (0.048) & 0.062 & (0.102) & 0.239 & (0.056) \\
\hline L002001 & L1 & 38 & 1.776 & (0.167) & 2.078 & (0.361) & 0.131 & (0.008) \\
\hline L002101 & L1 & 39 & 0.985 & (0.074) & -0.791 & (0.086) & 0.193 & (0.040) \\
\hline L002201 & L1 & 40 & 0.088 & (0.023) & 10.790 & (2.792) & 0.091 & (0.020) \\
\hline L002301 & L1 & 41 & 0.540 & (0.083) & 1.528 & (0.273) & 0.179 & (0.032) \\
\hline L002401 & L1 & 42 & 0.902 & (0.090) & -0.021 & (0.091) & 0.268 & (0.039) \\
\hline L002501 & L1 & 43 & 0.765 & (0.064) & -1.655 & (0.159) & 0.225 & (0.056) \\
\hline L002601 & L1 & 44 & 1.085 & (0.151) & 1.373 & (0.286) & 0.278 & (0.019) \\
\hline L002701 & L1 & 45 & 0.901 & (0.092) & 0.229 & (0.100) & 0.265 & (0.034) \\
\hline L002801 & L1 & 46 & 0.561 & (0.079) & 1.362 & (0.230) & 0.166 & (0.031) \\
\hline L002901 & L1 & 47 & 0.644 & (0.073) & 0.116 & (0.099) & 0.240 & (0.045) \\
\hline L003001 & L1 & 48 & 0.942 & (0.079) & -0.532 & (0.083) & 0.227 & (0.042) \\
\hline L003101 & L2 & 19 & 0.955 & (0.080) & -1.271 & (0.132) & 0.248 & (0.054) \\
\hline L003201 & L2 & 20 & 1.021 & (0.150) & 1.366 & (0.291) & 0.276 & (0.020) \\
\hline L003301 & L2 & 21 & 0.552 & (0.088) & 1.245 & (0.247) & 0.219 & (0.038) \\
\hline L003401 & L2 & 22 & 0.383 & (0.041) & -1.919 & (0.219) & 0.216 & (0.056) \\
\hline L003501 & L2 & 23 & 0.931 & (0.147) & 1.988 & (0.397) & 0.152 & (0.015) \\
\hline L003601 & L2 & 24 & 0.531 & (0.054) & -0.783 & (0.115) & 0.243 & (0.057) \\
\hline L003701 & L2 & 25 & 1.202 & (0.164) & 1.007 & (0.242) & 0.368 & (0.021) \\
\hline L003801 & L2 & 26 & 0.420 & (0.062) & 1.120 & (0.202) & 0.186 & (0.042) \\
\hline L003901 & L2 & 27 & 0.392 & (0.052) & 0.267 & (0.106) & 0.224 & (0.051) \\
\hline L004001 & L2 & 28 & 0.231 & (0.062) & 4.497 & (1.220) & 0.269 & (0.034) \\
\hline L004101 & L2 & 29 & 1.451 & (0.112) & -1.162 & (0.129) & 0.203 & (0.041) \\
\hline L004201 & L2 & 30 & 0.475 & (0.093) & 2.002 & (0.432) & 0.218 & (0.034) \\
\hline L004301 & L2 & 31 & 0.869 & (0.141) & 0.957 & (0.248) & 0.429 & (0.029) \\
\hline L004401 & L2 & 32 & 0.544 & (0.068) & 1.113 & (0.176) & 0.155 & (0.032) \\
\hline L904501 & L2 & 33 & 0.834 & (0.102) & 0.816 & (0.162) & 0.249 & (0.029) \\
\hline L004601 & L2 & 34 & 1.201 & (0.092) & -0.817 & (0.092) & 0.211 & (0.040) \\
\hline L004701 & L2 & 35 & 0.618 & (0.066) & 0.283 & (0.095) & 0.194 & (0.040) \\
\hline L004801 & L2 & 36 & 1.094 & (0.172) & 2.412 & (0.504) & 0.106 & (0.010) \\
\hline L004901 & L2 & 37 & 0.773 & (0.074) & -0.202 & (0.084) & 0.237 & (0.043) \\
\hline L005001 & L2 & 38 & 1.531 & (0.228) & 2.867 & (0.699) & 0.142 & (0.008) \\
\hline L005101 & L2 & 39 & 1.101 & (0.094) & -1.883 & (0.198) & 0.217 & (0.053) \\
\hline L005201 & L2 & 40 & 0.449 & (0.181) & 5.616 & (2.363) & 0.177 & (0.011) \\
\hline L005301 & L2 & 41 & 0.982 & (0.108) & 1.297 & (0.198) & 0.118 & (0.017) \\
\hline L005401 & L2 & 42 & 1.157 & (0.128) & 0.842 & (0.169) & 0.252 & (0.621) \\
\hline L005501 & L2 & 43 & 1.098 & (0.086) & -0.751 & (0.089) & 0.226 & (0.041) \\
\hline L005601 & L2 & 44 & 1.217 & (0.115) & 0.901 & (0.149) & 0.134 & (0.017) \\
\hline L005701 & L2 & 45 & 0.671 & (0.059) & -0.471 & (0.082) & 0.196 & (0.044) \\
\hline L005801 & L2 & 46 & 0.440 & (0.113) & 2.654 & (0.724) & 0.281 & (0.034) \\
\hline L005901 & L2 & 47 & 0.646 & (0.067) & -0.224 & (0.090) & 0.240 & (0.048) \\
\hline L006001 & L2 & 48 & 0.699 & (0.071) & -0.034 & (0.087) & 0.217 & (0.043) \\
\hline L006101 & L2 & 49 & 1.196 & (0.116) & 0.788 & (0.143) & 0.149 & (0.020) \\
\hline L006201 & L3 & 19 & 1.423 & (0.103) & -1.001 & (0.105) & 0.176 & (0.036) \\
\hline L006301 & L3 & 20 & 0.354 & (0.057) & 1.384 & (0.253) & 0.192 & (0.044) \\
\hline L006401 & L3 & 21 & 0.245 & (0.071) & 5.454 & (1.598) & 0.192 & (0.029) \\
\hline L006501 & L3 & 22 & 0.605 & (0.054) & -1.097 & (0.120) & 0.219 & (0.054) \\
\hline L006601 & L3 & 23 & 0.744 & (0.131) & 1.974 & (0.413) & 0.183 & (0.021) \\
\hline L006701 & L3 & 24 & 0.548 & (0.050) & -2.051 & (0.201) & 0.214 & (0.055) \\
\hline L006801 & L3 & 25 & 0.771 & (0.103) & 0.891 & (0.183) & 0.281 & (0.031) \\
\hline L006901 & L3 & 26 & 0.654 & (0.092) & 0.787 & \((0.174)\) & 0.284 & (0.038) \\
\hline L007001 & L3 & 27 & 0.434 & (0.049) & -0.042 & (0.086) & 0.203 & (0.049) \\
\hline L007101 & L3 & 28 & 0.745 & (0.121) & 1.303 & (0.281) & 0.325 & (0.029) \\
\hline L007201 & L3 & -. 5 & 0.855 & (0.079) & -0.567 & (0.095) & 0.282 & (0.048) \\
\hline L007301 & L3 & 30 & 1.046 & (0.119) & 1.221 & (0.207) & 0.176 & (0.018) \\
\hline
\end{tabular}

Table E. 30 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline L007401 & 1.3 & 31 & 0.550 & (0.055) & -0.077 & (0.080) & 0.193 & (0.044) \\
\hline L007501 & L3 & 32 & 0.852 & (0.124) & 1.585 & (0.296) & 0.203 & (0.021) \\
\hline L007601 & L3 & 33 & 0.354 & (0.056) & 0.867 & (0.182) & 0.226 & (0.052) \\
\hline L007701 & L3 & 34 & 0.733 & (0.060) & -1.565 & (0.148) & 0.216 & (0.054) \\
\hline L007801 & L3 & 35 & 0.703 & (0.078) & 0.853 & (0.140) & 0.164 & (0.029) \\
\hline L007901 & L3 & 36 & 1.183 & (0.172) & 2.355 & (0.472) & 0.144 & (0.010) \\
\hline L008001 & L3 & 37 & 0.385 & (0.04.5) & 0.140 & (0.086) & 0.189 & (0.047) \\
\hline L008101 & L3 & 38 & 0.401 & (0.046) & -0.402 & (0.097) & 0.219 & (0.054) \\
\hline L008201 & L3 & 39 & 0.788 & (0.069) & -2.063 & (0.200) & 0.225 & (0.057) \\
\hline L008301 & L3 & 40 & 1.613 & (0.193) & 2.335 & (0.477) & 0.176 & (0.009) \\
\hline L008401 & L3 & 41 & 0.517 & (0.084) & 1.215 & (0.247) & 0.252 & (0.040) \\
\hline L0085501 & L3 & 42 & 0.887 & (0.115) & 0.463 & (0.149) & 0.391 & (0.035) \\
\hline L008601 & L3 & 43 & 0.986 & (0.075) & -0.589 & (0.077) & 0.193 & (0.038) \\
\hline L008701 & L3 & 44 & 0.312 & (0.045) & 0.361 & (0.110) & 0.227 & (0.051) \\
\hline L0088801 & L3 & 45 & 0.938 & (0.086) & -0.151 & (0.082) & 0.253 & (0.039) \\
\hline L008901 & L3 & 46 & 0.496 & (0.065) & 0.588 & (0.134) & 0.215 & (0.045) \\
\hline L009001 & L3 & 47 & 0.889 & (0.065) & -0.575 & (0.072) & 0.155 & (0.036) \\
\hline L009101 & L3 & 48 & 0.747 & (0.069) & -0.032 & (0.078) & 0.202 & (0.039) \\
\hline L009201 & L4 & 19 & 0.591 & (0.051) & -1.240 & (0.128) & 0.215 & (0.053) \\
\hline L009301 & L4 & 20 & 0.238 & (0.034) & -0.936 & (0.157) & 0.227 & (0.056) \\
\hline L009401 & L4 & 21 & 1.064 & (0.310) & 3.229 & (1.226) & 0.275 & (0.011) \\
\hline L009501 & L4 & 22 & 0.360 & (0.048) & 0.094 & (0.100) & 0.226 & (0.055) \\
\hline L009601 & L4 & 23 & 0.596 & (0.194) & 3.606 & (1.259) & 0.301 & (0.018) \\
\hline L009701 & 14 & 24 & 1.156 & (0.092) & -1.447 & (0.145) & 0.224 & (0.050) \\
\hline L009801 & L4 & 25 & 0.455 & (0.076) & 1.044 & (0.223) & 0.246 & (0.047) \\
\hline L009901 & 14 & 26 & 0.907 & (0.093) & 0.048 & (0.097) & 0.311 & (0.038) \\
\hline L010001 & 14 & 27 & 0.399 & (0.045) & -0.181 & (0.086) & 0.202 & (0.050) \\
\hline L010101 & L4 & 28 & 0.587 & (0.134) & 2.368 & (0.598) & 0.271 & (0.026) \\
\hline L010201 & 14 & 29 & 0.778 & (0.061) & -0.756 & (0.088) & 0.191 & (0.044) \\
\hline L010301 & L4 & 30 & 0.141 & (0.032) & 3.858 & (0.878) & 0.242 & (0.036) \\
\hline L010401 & 14 & 31 & 0.693 & (0.056) & -0.663 & (0.084) & 0.185 & (0.044) \\
\hline L010501 & 14 & 32 & 0.736 & (0.087) & 0.861 & (0.153) & 0.210 & (0.029) \\
\hline L010601 & 14 & 33 & 0.503 & (0.050) & -0.282 & (0.082) & 0.196 & (0.047) \\
\hline L010701 & 14 & 34 & 0.974 & (0.073) & -1.284 & (0.118) & 0.196 & (0.046) \\
\hline L010801 & L4 & 35 & 0.920 & (0.146) & 2.270 & (0.440) & 0.164 & (0.012) \\
\hline L010901 & L4 & 36 & 0.981 & (0.266) & 2.890 & (0.992) & 0.300 & (0.013) \\
\hline L011001 & 14 & 37 & 0.764 & (0.151) & 2.782 & (0.621) & 0.095 & (0.012) \\
\hline L011101 & 14 & 38 & 0.474 & (0.049) & -0.784 & (0.113) & 0.228 & (0.055) \\
\hline L011201 & 14 & 39 & 0.509 & (0.051) & -0.698 & (0.106) & 0.224 & (0.054) \\
\hline L011301 & 14 & 40 & 1.138 & (0.240) & 2.824 & (0.805) & 0.229 & (0.011) \\
\hline L011401 & L4 & 41 & 0.686 & (0.148) & 2.653 & (0.637) & 0.147 & (0.018) \\
\hline LO:1501 & 14 & 42 & 1.040 & (0.089) & 0.065 & (0.078) & 0.200 & (0.031) \\
\hline L011601 & L4 & 43 & 0.934 & (0.091) & 0.011 & (0.090) & 0.290 & (0.036) \\
\hline L011701 & 14 & 44 & 0.959 & (0.099) & 0.669 & (0.130) & 0.221 & (0.026) \\
\hline L011801 & L4 & 45 & 1.204 & (0.176) & 1.110 & (0.278) & 0.393 & (0.021) \\
\hline L011901 & 14 & 46 & 1.733 & (0.170) & 0.949 & (0.201) & 0.185 & (0.015) \\
\hline L012001 & L. 4 & 47 & 0.809 & (0.069) & -0.336 & (0.076) & 0.198 & (0.040) \\
\hline L012101 & L4 & 48 & 0.944 & (0.068) & -0.660 & (0.075) & 0.159 & (0.036) \\
\hline
\end{tabular}

TableE. 31
1986 IRT Parameters, Mathematice Trend Items, Age
9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & I TEM & A & SE & B & SE & C & SE \\
\hline N270901 & M1 & 1 & 0.894 & (0.037) & -2.165 & (0.098) & 0.0 & (0.0) \\
\hline N277401 & M1 & 2 & 1.026 & (0.063) & -1.573 & (0.114) & 0.177 & (0.038) \\
\hline N267601 & M1 & 3 & 1.268 & (0.066) & -0.611 & (0.049) & 0.156 & (0.020) \\
\hline N276801 & M1 & 4 & 0.490 & (0.045) & \(-3.763\) & (0.353) & 0.0 & \((0.0)\) \\
\hline N276802 & M1 & 5 & 0.725 & (0.038) & -1.591 & (0.090) & 0.0 & 10.0 \\
\hline N276803 & M1 & 6 & 0.621 & (0.035) & 0.147 & (0.027) & 0.0 & (0.0 \\
\hline N250701 & M1 & 7 & 0.743 & (0.044) & -0.850 & (0.059) & 0.139 & (0.022) \\
\hline H 250702 & M1 & 8 & 1.001 & (0.048) & 0.841 & (0.054) & 0.117 & (0.011) \\
\hline N250703 & M1 & 9 & 1.054 & (0.064) & 0.015 & (0.033) & 0.123 & (0.016) \\
\hline N262201 & M1 & 10 & 0.441 & (0.036) & -1.218 & (0.105) & 0.196 & (0.024) \\
\hline N257201 & M1 & 11 & 1.233 & (0.084) & -0.533 & (0.055) & 0.283 & (0.020) \\
\hline N276101 & M1 & 12 & 0.963 & (0.040) & -0.758 & (0.042) & 0.0 & \((0.0)\) \\
\hline N286101 & M1 & 13 & 0.814 & (0.039) & -0.521 & (0.035) & 0.0 & (0.0 \\
\hline N270001 & M1 & 14 & 0.448 & \((0.030)\) & -0.727 & (0.053) & 0.0 & 60.0 \\
\hline N272102 & M1 & 15 & 0.992 & (0.062) & 0.034 & (0.039) & 0.173 & (0.018) \\
\hline N284001 & M1 & 16 & 0.981 & \((0.050)\) & -0.383 & (0.033) & 0.0 & \((0.0)\) \\
\hline N284002 & M1 & 17 & 0.792 & \((0.037)\) & 2.054 & (0.103) & 0.0 & \((0.0)\) \\
\hline N267602 & M1 & 18 & 1.103 & (0.057) & -0.074 & (0.031) & 0.104 & (0.014) \\
\hline N262501 & M1 & 19 & 0.269 & (0.031) & -0.688 & (0.084) & 0.227 & (0.019) \\
\hline N262502 & M1 & 20 & 0.254 & (0.062) & 6.169 & (1.519) & 0.172 & (0.008) \\
\hline N265401 & M1 & 21 & 1.582 & (0.164) & 2.224 & (0.360) & 0.340 & (0.011) \\
\hline N266101 & M1 & 22 & 0.542 & (0.052) & 1.917 & (0.192) & 0.264 & (0.011) \\
\hline N269101 & M1 & 23 & 0.540 & (0.071) & 2.970 & (0.402) & 0.238 & (0.009) \\
\hline N268201 & M1 & 24 & 1.248 & (0.058) & 1.026 & (0.068) & 0.201 & (0.010) \\
\hline N252101 & M1 & 25 & 0.839 & (0.060) & 1.752 & (0.143) & 0.170 & (0.012) \\
\hline N272301 & M2 & 1 & 0.946 & (0.052) & -1.947 & (0.123) & 0.180 & (0.040) \\
\hline N276601 & M2 & 2 & 1.061 & (0.062) & -1.010 & (0.076) & 0.170 & (0.029) \\
\hline N257801 & M2 & 3 & 0.588 & (0.038) & -0.909 & (0.066) & 0.240 & (0.022) \\
\hline N263401 & M2 & 4 & 0.888 & (0.063) & -0.701 & (0.063) & 0.299 & (0.022) \\
\hline N 263402 & M2 & 5 & 1.010 & (0.080) & -0.203 & (0.043) & 0.282 & (0.018) \\
\hline N273501 & M2 & 6 & 0.744 & (0.058) & -0.684 & (0.068) & 0.261 & (0.026) \\
\hline N275401 & M2 & 7 & 0.985 & (0.043) & -0.478 & (0.033) & 0.0 & (0.0) \\
\hline N277501 & M2 & 8 & 0.842 & (0.039) & -0.421 & (0.031) & 0.0 & (0.0 \\
\hline N277601 & M2 & 9 & 1.438 & (0.049) & -0.522 & \((0.037)\) & 0.0 & \[
(0.0)
\] \\
\hline N277602 & M2 & 10 & 1.267 & (0.053) & 0.172 & (0.029) & 0.0 & \((0.0)\) \\
\hline N277603 & M2 & 11 & 1. 507 & (0.063) & -0.011 & \((0.030)\) & 0.0 & \((0.0)\) \\
\hline N261401 & M2 & 12 & 0.509 & (0.042) & -0.145 & (0.037) & 0.232 & (0.020) \\
\hline N250601 & M2 & 13 & 1.097 & (0.078) & -0.231 & (0.045) & 0.212 & (0.019) \\
\hline N250602 & M2 & 14 & 0.791 & (0.053) & -0.584 & (0.054) & 0.189 & (0.023) \\
\hline N250603 & M2 & 15 & 1.366 & (0.071) & 0.566 & (0.056) & 0.158 & (0.013) \\
\hline N251401 & M2 & 16 & 0.654 & (0.042) & -0.2E5 & (0.038) & 0.151 & (0.021) \\
\hline N250901 & M2 & 17 & 0.599 & (0.040) & -0.411 & (0.040) & 0.178 & (0.019) \\
\hline N250902 & M2 & 18 & 1.101 & (0.051) & 1.181 & (0.072) & 0.157 & (0.010) \\
\hline N250903 & M 2 & 19 & 0.970 & (0.051) & 0.685 & (0.050) & 0.109 & (0.012) \\
\hline N276001 & M2 & 21 & 0.879 & (0.037) & -0.975 & (0.04?) & 0.0 & \((0.0)\) \\
\hline N276002 & M2 & 22 & 0.778 & (0.035) & 1.507 & (0.074) & 0.0 & (0.0) \\
\hline N271101 & M2 & 24 & 0.626 & (0.034) & -0.305 & (0.028) & 0.0 & (0.0) \\
\hline N252001 & M2 & 25 & 1.244 & (0.131) & 2.670 & (0.372) & 0.196 & (0.009) \\
\hline N269001 & M2 & 26 & 0.565 & (0.087) & 4.055 & (0.634) & 0.082 & (0.007) \\
\hline N272801 & M3 & 15 & 0.576 & (0.049) & -2.007 & (0.176) & 0.180 & (0.036) \\
\hline N267001 & M3 & 16 & 0.597 & (0.045) & -1.392 & (0.110) & 0.249 & (0.026) \\
\hline N272101 & M3 & 17 & 0.990 & (0.096) & -0.533 & (0.071) & 0.286 & (0.024) \\
\hline N262401 & M3 & 18 & 0.594 & (0.069) & 0.928 & (0.116) & 0.300 & (0.013) \\
\hline N258501 & M3 & 19 & 0.876 & (0.066) & 1.029 & (0.092) & 0.236 & (0.012) \\
\hline
\end{tabular}

Table E. 32
1986 IRT Parameters. Mathematics Trend Items, Age 13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD B & BLOCX & ITEM & A & SE & B & SE & C & SE \\
\hline N281901 & M1 & 15 & 0.925 & (0.040) & -2.181 & (0.105) & 0.146 & (0.034) \\
\hline N254601 & M1 & 16 & 1.092 & (0.054) & -1.553 & (0.089) & 0.284 & (0.030) \\
\hline N276801 & M1 & 17 & 0.433 & (0.049) & -4.715 & (0.542) & 0.0 & (0.0 \\
\hline N276802 & M1 & 18 & 0.493 & (0.044) & -3.957 & (0.359) & 0.0 & (0.0 \\
\hline N276803 & M1 & 19 & 0.435 & (0.033) & -1.927 & (0.148) & 0.0 & (0.0 \\
\hline N277601 & M1 & 20 & 0.856 & (0.036) & -2.504 & (0.113) & 0.0 & (0.0 \\
\hline N277602 & M1 & 22 & 0.624 & (0.030) & -1.885 & (0.095) & 0.0 & ¢0.0 \\
\hline N277603 & M1 & 22 & 0.617 & (0.031) & -2.287 & (0.117) & 0.0 & (0.0 \\
\hline N267201 & M1 & 23 & 0.776 & (0.058) & -1.051 & (0.087) & 0.254 & (0.026) \\
\hline N286201 & M1 & 24 & 0.891 & (0.051) & -0.892 & (0.061) & 0.243 & (0.021) \\
\hline N250901 & M1 & 25 & 0.423 & (0.029) & -2.565 & (0.176) & 0.152 & (0.027) \\
\hline N250902 & :1 & 26 & 1.020 & (0.049) & -0.349 & (0.031) & 0.075 & (0.014) \\
\hline N250903 & M1 & 27 & 0.820 & (0.039) & -1.510 & (0.078) & 0.096 & (0.025) \\
\hline N262401 & M1 & 28 & 0.854 & (0.054) & -0.556 & (0.048) & 0.323 & (0.017) \\
\hline N274801 & M1 & 29 & 0.829 & (0.051) & -0.192 & (0.036) & 0.269 & (0.018) \\
\hline N265202 & M1 & 20 & 0.843 & (0.074) & -0.176 & (0.041) & 0.339 & (0.018) \\
\hline N266801 & M1 & 31 & 0.559 & (0.038) & -1.108 & (0.080) & 0.248 & (0.021) \\
\hline N252901 & M1 & 32 & 1.249 & (0.072) & -0.036 & (0.033) & 0.109 & (0.015) \\
\hline N262501 & M1 & 33 & 0.360 & (0.033) & -0.237 & (0.034) & 0.348 & (0.015) \\
\hline - 262502 & M1 & 34 & 1.216 & (0.068) & 1.974 & (0.151) & 0.379 & (0.008) \\
\hline N257601 & M1 & 35 & 1.280 & (0.055) & -0.538 & (0.035) & 0.0 & (0.0 \\
\hline N265201 & M1 & 36 & 0.810 & (0.062) & -1.548 & (0.127) & 0.339 & (0.032) \\
\hline N273901 & M1 & 37 & 1.788 & (0.111) & 0.258 & (0.047) & 0.184 & (0.013) \\
\hline N258801 & M1 & 38 & 1.273 & (0.055) & 1.124 & (0.076) & 0.397 & (0.010) \\
\hline N263101 & M1 & 39 & 0.527 & (0.027) & -0.291 & (0.024) & 0.0 & (0.0) \\
\hline N265901 & M1 & 40 & 0.933 & (0.060) & 0.930 & (0.079) & 0.333 & (0.012) \\
\hline N252101 & M1 & 41 & 0.933 & (0.056) & 0.623 & (0.054) & 0.240 & (0.013) \\
\hline N275001 & M1 & 42 & 0.946 & (0.040) & 0.363 & (0.027) & 0.0 & (0.0 \\
\hline N260101 & M1 & 43 & 1.299 & (0.072) & 0.415 & (0.042) & 0.160 & (0.011) \\
\hline N269001 & M1 & 44 & 1.012 & (0.053) & 0.382 & (0.036) & 0.152 & (0.011) \\
\hline N286301 & M1 & 45 & 1.189 & (0.050) & 0.660 & (0.046) & 0.205 & (0.010) \\
\hline N254602 & M1 & 46 & 0.744 & (0.045) & 1.413 & (0.095) & 0.235 & (0.009) \\
\hline N261001 & MI & 47 & 0.833 & (0.049) & 1.011 & (0.070) & 0.219 & (0.010) \\
\hline N286501 & M1 & 48 & 1.256 & (0.042) & 1. 161 & (0.058) & 0.141 & (0.008) \\
\hline N278904 & M1 & 49 & 1.315 & (0.057) & 1.487 & (0.097) & 0.194 & (0.010) \\
\hline N255701 & M1 & 50 & 1.317 & (0.044) & 1.268 & (0.063) & 0.139 & (0.008) \\
\hline N283101 & M1 & 51 & 1.579 & (0.049) & 2.554 & (0.080) & 0.148 & (0.006) \\
\hline N277401 & M2 & 8 & 0.778 & (0.056) & -2.903 & (0.220) & 0.145 & (0.042) \\
\hline N277901 & M2 & 9 & 0.591 & (0.033) & -3.506 & (0.199) & 0.0 & ( 0.0 \\
\hline N277902 & M2 & 10 & 0.688 & (0.036) & -3.301 & (0.178) & 0.0 & (0.0 \\
\hline N277903 & M2 & 11 & 0.573 & (0.030) & -2.859 & (0.154) & 0.0 & (0.0) \\
\hline N263401 & M2 & 12 & 0.675 & (0.046) & -2.751 & (0.196) & 0.257 & (0.040) \\
\hline N263402 & M2 & 13 & 0.635 & (0.045) & -2.478 & (0.181) & 0.263 & (0.036) \\
\hline N 250701 & M2 & 14 & 0.588 & (0.035) & -2.717 & (0.143) & 0.106 & (0.033) \\
\hline N250702 & M2 & 15 & 1.145 & (0.051) & -0.797 & (0.047) & 0.102 & (0.018) \\
\hline N250703 & M2 & 16 & 0.649 & (0.031) & -2.110 & (0.106) & 0.110 & (0.028) \\
\hline N256101 & 1 M 2 & 17 & 0.760 & (0.033) & -1.056 & (0.052) & 0.0 & (0.0 \\
\hline N262201 & M2 & 18 & 0.520 & (0.037) & -1.789 & (0.132) & 0.361 & (0.023) \\
\hline N270301 & M2 & 20 & 0.421 & (0.031) & -1.596 & (0.119) & 0.126 & (0.022) \\
\hline N270302 & M2 & 21 & 1.018 & (0.047) & 2.194 & (0.118) & 0.051 & (0.005) \\
\hline N253701 & 1 M2 & 22 & 0.361 & (0.031) & -0.50\% & (0.050) & 0.271 & (0.016) \\
\hline N286601 & 1 M2 & 23 & 1.698 & (0.059) & -0.194 & (0.029) & 0.0 & (0.0 \\
\hline N286602 & 2 M 2 & 24 & 1.363 & (0.051) & -0.247 & (0.027) & 0.0 & \((0.0\) \\
\hline N286603 & M2 & 25 & 1.494 & (0.050) & 0.405 & (0.030) & 0.0 & (0.0 \\
\hline N269101 & 1 M2 & 26 & 0.752 & (0.48) & -0.384 & (0.037) & 0.213 & (0.016) \\
\hline N282201 & 1 M2 & 28 & 1.063 & (0.058) & 0.576 & (0.051) & 0.343 & (0.011) \\
\hline N278902 & 2 M2 & 29 & 2. 720 & (0.051) & 1.338 & (0.107) & 0.216 & (0.012) \\
\hline N263501 & 1 M2 & 30 & 1.389 & (0.092) & 0.187 & (0.036) & 0.115 & (0.012) \\
\hline N258802 & 2 M2 & 31 & 1.619 & (0.078) & 0.484 & (0.051) & 0.254 & (0.011) \\
\hline N278901 & 1 M2 & 32 & 1.559 & (0.086) & 0.415 & (0.051) & 0.212 & (0.013) \\
\hline N2.64701 & 1 M2 & 33 & 1.175 & (0.056) & 0.867 & (0.059) & 0.206 & (0.010) \\
\hline N261501 & 1 H2 & 34 & 0.661 & (0.056) & -0.545 & (0.055) & 0.141 & (0.020) \\
\hline N261801 & 1 M2 & 35 & 0.679 & (0.053) & 0.044 & (0.033) & 0.223 & (0.017) \\
\hline N261001 & 1 M2 & 36 & 0.344 & (0.043) & 1.903 & (0.239) & 0.155 & (0.012) \\
\hline N261301 & 1 M2 & 37 & 0.700 & (0.048) & 0.768 & (0.062) & 0.113 & (0.012) \\
\hline N261201 & 1 M2 & 38 & 0.525 & (0.052) & 1.619 & (0.166) & 0.218 & (0.012) \\
\hline N281401 & 1 M2 & 39 & 0.728 & (0.050) & 1.711 & (0.127) & 0.106 & (0.009) \\
\hline N252001 & 1 M2 & 40 & 1.423 & (0.064) & 0.832 & (0.062) & 0.179 & (0.010) \\
\hline N258803 & 3 M2 & 41 & 1.191 & (0.044) & 1.351 & (0.068) & 0.170 & (0.007) \\
\hline N278903 & 3 M2 & 42 & 1.338 & (0.058) & 1.066 & (0.073) & 0.169 & (0.010) \\
\hline N286502 & 2 M2 & 43 & 1.671 & (0.054) & 1.171 & (0.068) & 0.160 & (0.028) \\
\hline N275301 & 1 M3 & 25 & 0.372 & (0.028) & -1.728 & (0.132) & 0.147 & (0.0!2) \\
\hline N282202 & 2 M3 & 26 & 0.936 & (0.066) & -0.458 & (0.045) & 0.255 & (0.0.7) \\
\hline
\end{tabular}

Table E. 32
(continued)
\begin{tabular}{lcccccccc} 
FIELD & BLOCK ITEM & A & SE & B & SE & C & SE \\
N266101 & M3 & 27 & \(0.849(0.065)\) & \(-0.161(0.033)\) & \(0.292(0.014)\) \\
N254001 & M3 & 28 & 1.161 & \((0.084)\) & -0.479 & \((0.047)\) & 0.118 & \((0.017)\) \\
N269901 & M3 & 29 & 0.664 & \((0.049)\) & -0.274 & \((0.035)\) & 0.288 & \((0.015)\) \\
N256501 & M3 & 30 & 0.866 & \((0.069)\) & 0.581 & \((0.061)\) & 0.318 & \((0.012)\) \\
N265902 & M3 & 31 & \(1.077(0.073)\) & 1.170 & \((0.103)\) & 0.328 & \((0.011)\) \\
N256801 & M3 & 32 & 1.051 & \((0.069)\) & 0.841 & \((0.072)\) & \(0.312(0.011)\)
\end{tabular}
\(65 i\)

Table E. 33
1986 IRT Parameters, Mathematics Trend Items, Age 17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N256101 & M1 & 15 & 1.011 & (0.035) & -1.769 & (0.071) & 0.0 & (0.0 \\
\hline N262601 & M1 & 16 & 1.295 & (0.035) & -1.305 & (0.049) & 0.0 & (0.0) \\
\hline N262401 & M1 & 17 & 0.832 & (0.040) & -1.129 & (0.063) & 0.244 & (0.023) \\
\hline N258804 & M1 & 18 & 0.524 & (0.038) & -1.545 & (0.115) & 0.282 & (0.024) \\
\hline N286001 & M1 & 19 & 0.827 & (0.043) & -0.908 & (0.055) & 0.187 & (0.021) \\
\hline N286002 & M1 & 20 & 1.370 & (0.048) & -1.234 & (0.060) & 0.151 & (0.027) \\
\hline N286302 & M1 & 22 & 1.474 & (0.071) & -0.297 & (0.042) & 0.300 & (0.016) \\
\hline N278501 & M1 & 23 & 1.405 & (0.042) & -0.803 & (0.038) & 0.0 & (0.0) \\
\hline N278502 & M1 & 24 & 1.364 & (0.050) & -0.464 & (0.032) & 0.0 & (0.0) \\
\hline N278503 & M1 & 25 & 1.252 & (0.039) & -0.755 & (0.036) & 0.0 & (0.0) \\
\hline N258802 & M1 & 26 & 1.429 & (0.087) & -0.343 & (0.043) & 0.278 & (0.016) \\
\hline N254602 & M1 & 27 & 1.607 & (0.087) & -0.365 & (0.042) & 0.214 & (0.016) \\
\hline N259901 & M1 & 28 & 0.943 & (0.c50) & -0.568 & (0.043) & 0.218 & (0.018) \\
\hline N287101 & M1 & 29 & 1.956 & (0.101) & -0.319 & (0.043) & 0.218 & (0.014) \\
\hline N270301 & M1 & 30 & 0.987 & (0.041) & -1.293 & (0.064) & 0.178 & (0.02's) \\
\hline N270302 & M1 & 31 & 1.865 & (0.093) & 0.262 & (0.040) & 0.093 & (0.010) \\
\hline N255701 & M1 & 32 & 1.393 & (0.090) & -0.381 & (0.044) & 0.201 & (0.017) \\
\hline - N254301 & M1 & 33 & 1.100 & (0.065) & 0.007 & (0.033) & 0.267 & (0.013) \\
\hline N286502 & M1 & 34 & 2.315 & (0.106) & -0.185 & (0.039) & 0.079 & (0.011) \\
\hline N260901 & M1 & 35 & 1.622 & (0.096) & -0.066 & (0.034) & 0.148 & (C.013) \\
\hline N256801 & M1 & 36 & 1.059 & (0.062) & -0.389 & (0.040) & 0.242 & (0.017) \\
\hline N258803 & M1 & 37 & 1.231 & (0.057) & 0.468 & (0.042) & 0.221 & (0.010) \\
\hline N262601 & M1 & 38 & 0.723 & (0.048) & 0.452 & (0.043) & 0.220 & (0.012) \\
\hline N253901 & M1 & 39 & 1.643 & (0.110) & -0.110 & (0.041) & 0.256 & (0.014) \\
\hline N253902 & M1 & 40 & 0.650 & (0.047) & 0.527 & (0.053) & 0.374 & (0.013) \\
\hline N253903 & M1 & 41 & 1.226 & (0.061) & 0.608 & (0.053) & 0.297 & (0.011) \\
\hline N253904 & M1 & 42 & 1.725 & (0.088) & 0.461 & (0.056) & 0.324 & (0.011) \\
\hline N263001 & M1 & 43 & 0.574 & (0.028) & 0.367 & (0.027) & 0.0 & (0.0) \\
\hline N278905 & M1 & 44 & 1.116 & (0.056) & 1.169 & (0.084) & 0.247 & (0.011) \\
\hline N287301 & M1 & 45 & 0.738 & (0.030) & -0.363 & (0.025) & 0.0 & (0.0) \\
\hline N287302 & M1 & 46 & 0.700 & (0.029) & 1.442 & (0.065) & 0.0 & (0.0) \\
\hline N264301 & M1 & 47 & 0.671 & (0.029) & 1.008 & (0.049) & 0.0 & (0.0) \\
\hline N282801 & M1 & 48 & 1.762 & (0.057) & 1.427 & (0.086) & 0.168 & (0.008) \\
\hline N251101 & M1 & 49 & 1.132 & (0.036) & 1.268 & (0.051) & 0.0 & (0.0) \\
\hline N254601 & M2 & 15 & 1.170 & (0.045) & -2.100 & (0.100) & 0.242 & (0.042) \\
\hline N262301 & M2 & 17 & 0.465 & (0.037) & -1.753 & (0.141) & 0.268 & (0.025) \\
\hline N263201 & M2 & 18 & 1.037 & (0.052) & -1.051 & (0.066) & 0.358 & (0.022) \\
\hline N263202 & M2 & 19 & 1.199 & (0.090) & -0.231 & (0.044) & 0.435 & (0.014) \\
\hline N260101 & M2 & 20 & 1.418 & (0.054) & -0.857 & (0.049) & 0.180 & (0.021) \\
\hline N254001 & M2 & 21 & 0.961 & (0.044) & -0.786 & (0.046) & 0.188 & (0.019) \\
\hline N269001 & M2 & 22 & 0.903 & (0.079) & -0.271 & (0.043) & 0.420 & (0.009) \\
\hline N278901 & M2 & 23 & 0.961 & (0.065) & -0.609 & (0.057) & 0.293 & (0.022) \\
\hline N261501 & M2 & 24 & 0.941 & (0.050) & -1.360 & (0.083) & 0.189 & (0.030) \\
\hline N261801 & M2 & 25 & 0.590 & (0.045) & -1.011 & (0.085) & 0.234 & (0.024) \\
\hline N261201 & M2 & 26 & 0.579 & (0.046) & 0.159 & (0.035) & 0.205 & (0.016) \\
\hline N261601 & M2 & 27 & 0.456 & (0.043) & 1.128 & (0.114) & 0.219 & (0.013) \\
\hline N261301 & M2 & 28 & 0.662 & (0.047) & 0.530 & (0.051) & 0.167 & (0.014) \\
\hline N281401 & M2 & 29 & 0.680 & (0.046) & 1.303 & (0.099) & 0.176 & (0.011) \\
\hline N280401 & M2 & 30 & 0.638 & (0.028) & -1.099 & (0.053) & 0.0 & (0.0) \\
\hline N259001 & M2 & 31 & 0.804 & (0.031) & -0.725 & (0.036) & 0.0 & (0.0) \\
\hline N287102 & M2 & 32 & 1.992 & (0.088) & -0.493 & (0.046) & 0.209 & (0.016) \\
\hline N286301 & M2 & 33 & 1.468 & (0.045) & -0.431 & (0.033) & 0.123 & (0.014) \\
\hline N286501 & M2 & 34 & 2.287 & (0.081) & -0.380 & (0.043) & 0.136 & (0.013) \\
\hline N262501 & M2 & 35 & 0.449 & (0.037) & -0.340 & (0.040) & 0.373 & (0.015) \\
\hline N262502 & M2 & 36 & 1.071 & (0.063) & 1.342 & (0.105) & 0.462 & (0.009) \\
\hline N263101 & M2 & 37 & 0.671 & (0.030) & -0.710 & (0.039) & 0.0 & (0.0) \\
\hline N258801 & M2 & 38 & 0.991 & (0.058) & -0.207 & (0.034) & 0.264 & (0.015) \\
\hline N264701 & 1 M 2 & 39 & 1.396 & (0.069) & -0.259 & (0.037) & 0.216 & (0.015) \\
\hline N261001 & 1 M2 & 40 & 0.741 & (0.045) & -0.322 & (0.033) & 0.213 & (0.016) \\
\hline N251701 & M2 & 41 & 1.168 & (0.067) & 0.042 & (0.039) & 0.186 & (0.016) \\
\hline N278902 & 2 M2 & 42 & 1.286 & (0.096) & 0.148 & (0.048) & 0.286 & (0.015) \\
\hline N260801 & 1 M2 & 43 & 1.453 & (0.061) & 0.148 & (0.027) & 0.0 & (0.0) \\
\hline N278903 & 3 M 2 & 44 & 1.287 & (0.082) & 0.138 & (0.043) & 0.196 & (0.015) \\
\hline N255601 & 1 M2 & 45 & 0.896 & (0.057) & 1.867 & (0.141) & 0.366 & (0.010) \\
\hline N255301 & 1 M 2 & 46 & 1.375 & (0.054) & 1.594 & (0.096) & 0.259 & (0.008) \\
\hline N268901 & \(1 \mathrm{H2}\) & 47 & 2.090 & (0.073) & 0.679 & (0.058) & 0.175 & (0.009) \\
\hline N268801 & 1 M2 & 48 & 1.447 & (0.046) & 1.292 & (0.065) & 0.097 & (0.007) \\
\hline N255801 & 1 M2 & 49 & 0.870 & (0.030) & 1.800 & (0.070) & 0.0 & (0.0) \\
\hline N266501 & 1 M3 & 31 & 0.678 & (0.051) & -0.532 & (0.049) & 0.248 & (0.018) \\
\hline N271301 & 1 M3 & 32 & 1.416 & (0.116) & 0.349 & (0.056) & 0.290 & (0.012: \\
\hline N255501 & 1 M3 & 33 & 0.842 & (0.067) & 0.436 & (0.052) & 0.316 & (0.013) \\
\hline N256001 & 1 M3 & 34 & 0.836 & (0.050) & 0.106 & (0.024) & 0.0 & (0.0) \\
\hline N257101 & 1 M3 & 35 & 0.438 & (0.058) & 2.771 & (0.372) & 0.298 & (0.010) \\
\hline
\end{tabular}
-606-

Table E. 34
1986 IRT Parameters, Science Trend Items, Age 9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BT.OCK & ITEM & A & SE & B & SE & C & SE \\
\hline N400001 & S1 & 6 & 0.899 & (0.093) & -0.793 & (0.118) & 0.218 & (0.053) \\
\hline N400301 & S1 & 8 & 0.725 & (0.099) & -0.093 & (0.121) & 0.323 & (0.052) \\
\hline N400401 & S1 & 9 & 0.899 & (0.121) & -1.400 & (0.229) & 0.468 & (0.067) \\
\hline N400402 & S1 & 10 & 1.592 & (0.177) & -0.594 & (0.122) & 0.353 & (0.043) \\
\hline N400403 & S1 & 11 & 0.508 & (0.084) & -2.237 & (0.388) & 0.470 & (0.071) \\
\hline N400404 & S1 & 12 & 1.162 & (0.134) & -0.430 & (0.112) & 0.355 & (0.045) \\
\hline N400405 & S1 & 13 & 0.818 & (0.109) & -0.843 & (0.163) & 0.440 & (0.061) \\
\hline N400501 & S1 & 14 & 0.530 & (0.095) & 0.558 & (0.188) & 0.334 & (0.054) \\
\hline N400101 & S1 & 15 & 0.589 & (0.193) & 2.037 & (0.767) & 0.531 & (0.033) \\
\hline N400102 & S1 & 16 & 0.849 & (0.202) & 1.392 & (0.456) & 0.455 & (0.030) \\
\hline N400601 & S1 & 17 & 0.620 & (0.075) & -0.094 & (0.098) & 0.197 & (0.050) \\
\hline N400701 & S1 & 18 & 0.630 & (0.066) & 0.068 & (0.088) & 0.184 & (0.042) \\
\hline N400901 & S1 & 19 & 0.228 & (0.048) & 2.692 & (0.581) & 0.210 & (0.041) \\
\hline N401001 & S1 & 20 & 0.474 & (0.063) & 0.648 & (0.137) & 0.181 & (0.044) \\
\hline N401101 & S1 & 21 & 0.270 & (0.063) & 1.807 & (0.449) & 0.227 & (0.056) \\
\hline N401201 & S1 & 22 & 0.750 & (0.238) & 2.672 & (0.972) & 0.278 & (0.022) \\
\hline N401301 & S1 & 23 & 0.527 & (0.117) & 1.634 & (0.416) & 0.220 & (0.041) \\
\hline N401501 & S2 & 1 & 0.288 & (0.056) & -0.529 & (0.162) & 0.349 & (0.068) \\
\hline N401601 & S2 & 2 & 0.596 & (0.064) & -1.008 & (0.131) & 0.172 & (0.051) \\
\hline N401702 & S2 & 4 & 0.374 & (0.096) & 0.845 & (0.308) & 0.508 & (0.059) \\
\hline N401703 & S2 & 5 & 0.323 & (0.086) & 1.157 & (0.376) & 0.488 & (0.059) \\
\hline N401801 & S2 & 6 & 0.742. & (0.120) & -0.028 & (0.150) & 0.437 & (0.053) \\
\hline N401802 & S2 & 7 & 0.646 & (0.101) & -0.650 & (0.172) & 0.472 & (0.064) \\
\hline N401803 & S2 & 8 & 0.493 & (0.094) & -0.020 & (0.165) & 0.461 & (0.062) \\
\hline N401804 & S2 & 9 & 0.472 & (0.114) & 1.097 & (0.344) & 0.439 & (0.052) \\
\hline N401901 & S2 & 10 & 0.506 & (0.125) & 1.381 & (0.412) & 0.363 & (0.049) \\
\hline N402001 & S2 & 11 & 1.034 & (0.132) & -0.747 & (0.148) & 0.429 & (0.056) \\
\hline N402002 & S2 & 12 & 1.015 & (0.130) & -0.994 & (0.173) & 0.438 & (0.060) \\
\hline N402005 & S2 & 15 & 0.906 & (0.125) & -0.397 & (0.136) & 0.430 & (0.053) \\
\hline N402101 & S2 & 16 & 0.482 & (0.063) & 0.307 & (0.112) & 0.192 & (0.050) \\
\hline N402201 & S2 & 17 & 0.357 & (0.058) & 0.317 & (0.120) & 0.204 & (0.055) \\
\hline N402401 & S2 & 18 & 0.198 & (0.044) & 3.003 & (0.680) & 0.218 & (0.041) \\
\hline N402501 & S2 & 19 & 0.372 & (0.116) & 3.363 & (1.085) & 0.221 & (0.036) \\
\hline N402602 & S2 & 21 & 0.393 & (0.073) & -0.971 & (0.228) & 0.474 & (0.069) \\
\hline N402701 & S2 & 23 & 0.522 & (0.120) & 1.954 & (0.498) & 0.196 & (0.037) \\
\hline N402801 & S2 & 24 & 0.582 & (0.189) & 3.145 & (1.091) & 0.180 & (0.023) \\
\hline N402901 & S2 & 25 & 0.405 & (0.144) & 4.516 & (1.645) & 0.168 & (0.023) \\
\hline N403001 & S3 & 12 & 0.671 & (0.096) & -2.884 & (0.431) & 0.201 & (0.057) \\
\hline N403101 & S3 & 13 & 0.639 & (0.088) & -2.688 & (0.386) & 0.204 & (0.058) \\
\hline N403201 & S3 & 14 & 0.688 & (0.077) & -2.008 & (0.243) & 0.182 & (0.054) \\
\hline N403202 & S3 & 15 & 0.450 & (0.055) & -1.124 & (0.159) & 0.195 & (0.055) \\
\hline N403301 & S3 & 16 & 0.700 & (0.075) & -0.767 & (0.116) & 0.200 & (0.053) \\
\hline N403401 & S3 & 17 & C. 412 & (0.082) & 0.688 & (0.210) & 0.332 & (0.058) \\
\hline N403501 & S3 & 18 & 0.722 & (0.130) & 0.400 & (0.188) & 0.426 & (0.048) \\
\hline N403502 & S3 & 19 & 0.678 & (0.094) & -1.627 & (0.255) & 0.441 & (0.067) \\
\hline N403503 & S3 & 20 & 0.476 & (0.089) & -0.025 & (0.158) & 0.447 & (0.062) \\
\hline N403601 & S3 & 21 & 0.676 & (0.103) & 0.562 & (0.161) & 0.262 & (0.043) \\
\hline N403701 & S3 & 22 & 2.672 & (0.286) & -0.178 & (0.097) & 0.390 & (0.025) \\
\hline N403702 & S3 & 23 & 2.116 & (0.205) & -0.376 & (0.094) & 0.339 & (0.030) \\
\hline N403703 & S3 & 24 & 2.121 & (0.204) & -0.196 & (0.087) & 0.337 & (0.027) \\
\hline N403801 & S3 & 25 & 0.442 & (0.128) & 1.599 & (0.534) & 0.486 & (0.048) \\
\hline N403803 & S3 & 27 & 0.540 & (0.085) & -0.660 & (0.167) & 0.440 & (0.065) \\
\hline N403804 & S3 & 28 & 0.657 & (0.100) & -0.352 & (0.144) & 0.428 & (0.059) \\
\hline N403901 & S3 & 29 & 0.760 & (0.072) & -0.245 & (0.083) & 0.195 & (0.043) \\
\hline N404001 & S3 & 30 & 0.257 & (0.043) & 1.084 & (0.206) & 0.179 & (0.048) \\
\hline N404201 & S3 & 31 & 0.379 & (0.076) & 1.464 & (0.331) & 0.187 & (0.049) \\
\hline
\end{tabular}

Table E. 35
1986 IRT Parameters. Science Trend Items, Age 13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N404501 & S 1 & 12 & 1.348 & (0.039) & -2.091 & (0.082) & 0.182 & (0.037) \\
\hline N404601 & S1 & 13 & 0.420 & (0.023) & -1.199 & (0.069) & 0.270 & (0.013) \\
\hline N404701 & S1 & 14 & 0.684 & (0.034) & -1.687 & (0.090) & 0.216 & (0.025) \\
\hline N404702 & S1 & 15 & 0.592 & (0.046) & -0.304 & (0.037) & 0.231 & (0.015) \\
\hline N400201 & S1 & 16 & 0.425 & (0.024) & -1.954 & (0.114) & 0.229 & (0.016) \\
\hline N404901 & S1 & 17 & 0.868 & (0.039) & -0.955 & (0.050) & 0.231 & (0.017) \\
\hline N404801 & S1 & 20 & 1.058 & (0.053) & -2.193 & (0.130) & 0.405 & (0.041) \\
\hline \$404802 & S1 & 21 & 1.720 & (0.076) & -0.839 & (0.065) & 0.349 & (0.019) \\
\hline N404803 & S1 & 22 & 1.127 & (0.100) & -0.273 & (0.046) & 0.335 & (0.014) \\
\hline N405001 & S1 & 23 & 0.388 & (0.021) & -0.045 & (0.015) & 0.205 & (0.009) \\
\hline N405101 & S 1 & 24 & 0.783 & (0.029) & 0.350 & (0.022) & 0.216 & (0.007) \\
\hline N405201 & S1 & 25 & 0.374 & (0.021) & -0.205 & (0.019) & 0.223 & (0.010) \\
\hline N405301 & S 1 & 26 & 0.929 & (0.105) & 0.582 & (0.078) & 0.243 & (0.010) \\
\hline N405401 & S1 & 27 & 0.769 & (0.029) & 0.821 & (0.038) & 0.166 & (0.007) \\
\hline N401201 & S1 & 28 & 0.707 & (0.030) & 0.014 & (0.019) & 0.242 & (0.009) \\
\hline N405501 & S 1 & 29 & 0.497 & (0.027) & 0.813 & (0.048) & 0.208 & (0.008) \\
\hline N405601 & S1 & 30 & 0.215 & (0.038) & 1.799 & (0.320) & 0.224 & (0.012) \\
\hline N405701 & S 1 & 31 & 1.243 & (0.129) & 0.290 & (0.050) & 0.183 & (0.011) \\
\hline N405801 & S1 & 32 & 0.711 & (0.083) & 1.022 & (0.126) & 0.163 & (0.009) \\
\hline N405901 & S1 & 33 & 0.878 & (0.037) & 1.187 & (0.059) & 0.221 & (0.007; \\
\hline N406001 & S 1 & 34 & 0.926 & (0.039) & 2.078 & (0.100) & 0.226 & (0.005) \\
\hline N406101 & S 1 & 35 & 0.689 & (0.029) & 2.085 & (0.094) & 0.185 & (0.005) \\
\hline N406201 & S1 & 36 & 1.129 & (0.033) & 2.082 & (0.077) & 0.133 & (0.004) \\
\hline N406301 & S2 & 10 & 0.237 & (0.023) & -3.920 & (0.386) & 0.432 & (0.016) \\
\hline N406302 & S2 & 11 & 0.435 & (0.027) & -0.015 & (0.021) & 0.434 & (0.009) \\
\hline N406303 & S2 & 12 & 0.600 & (0.030) & 0.360 & (0.028) & 0.393 & (0.008) \\
\hline N406304 & S2 & 13 & 0.460 & (0.027) & -0.043 & (0.020) & 0.377 & (0.009) \\
\hline N406401 & S2 & 14 & 0.486 & (0.031) & -0.236 & (0.026) & 0.471 & (0.009) \\
\hline N406402 & S2 & 15 & 0.624 & (0.030) & -0.369 & (0.027) & 0.339 & (0.011) \\
\hline N406403 & S2 & 16 & 0.722 & (0.032) & -1.552 & (0.074) & 0.411 & (0.017) \\
\hline N406404 & S2 & 17 & 0.966 & (0.047) & -0.481 & (0.034) & 0.426 & (0.011) \\
\hline N406405 & S2 & 18 & 0.613 & (0.031) & -1.014 & (0.056) & 0.387 & (0.014) \\
\hline N406501 & S2 & 19 & 0.670 & (0.045) & -0.317 & (0.032) & 0.203 & (0.013) \\
\hline N406601 & S2 & 20 & 0.376 & (0.021) & -1.155 & (0.066) & 0.202 & (0.012) \\
\hline N406701 & S2 & 21 & 0.583 & (0.036) & -0.492 & (0.038) & 0.223 & (0.013) \\
\hline N406801 & S2 & 22 & 0.928 & (0.033) & -1.612 & (0.065) & 0.357 & (0.020) \\
\hline N406882 & S2 & 23 & 0.474 & (0.057) & 3.024 & (0.367) & 0.548 & (0.005) \\
\hline N406803 & S2 & 24 & 0.835 & (0.031) & -1.080 & (0.046) & 0.315 & (0.014) \\
\hline N406804 & S2 & 25 & 0.726 & (0.028) & -1.292 & (0.055) & 0.300 & (0.015) \\
\hline N406805 & S2 & 26 & 1.259 & (0.059) & 1.575 & (0.106) & 0.611 & (0.005) \\
\hline N406806 & S2 & 27 & 0.326 & (0.023) & -0.114 & (0.020) & 0.349 & (0.010) \\
\hline N406901 & S2 & 28 & 0.526 & (0.024) & -0.296 & (0.021) & 0.201 & (0.010) \\
\hline N407001 & S2 & 29 & 0.280 & (0.021) & -0.069 & (0.017) & 0.206 & (0.010) \\
\hline N407101 & S2 & 30 & 0.998 & (0.032) & 1.561 & (0.062) & 0.140 & (0.006) \\
\hline N407201 & S2 & 31 & 0.414 & (0.025) & 0.556 & (0.037) & 0.229 & (0.008) \\
\hline N407301 & S2 & 32 & 0.316 & (0.027) & 1.903 & (0.165) & 0.259 & (0.008) \\
\hline N407302 & S2 & 33 & 0.271 & (0.026) & 1.448 & (0.143) & 0.277 & (0.009 \({ }^{\text {c }}\) \\
\hline N408001 & S2 & 34 & 0.991 & (0.112) & 0.474 & (0.064) & 0.237 & (0.008, \\
\hline N407601 & S2 & 35 & 0.712 & (0.101) & 0.697 & (0.106) & 0.198 & (0.011) \\
\hline N407701 & S2 & 37 & 0.456 & (0.023) & 0.642 & (0.037) & 0.164 & (0.008) \\
\hline N407801 & S2 & 38 & 0.707 & (0.038) & 1.721 & (0.098) & 0.241 & (0.006) \\
\hline N407901 & S2 & 39 & 0.428 & (0.039) & 0.386 & (0.043) & 0.190 & (0.011) \\
\hline N408201 & S2 & 40 & 0.544 & (0.090) & 2.959 & (0.502) & 0.218 & (0.008) \\
\hline N408301 & S3 & 10 & 1.401 & (0.047) & 0.235 & (0.026) & 0.290 & (0.007) \\
\hline N408302 & S3 & 11 & 0.763 & (0.030) & -1.618 & (0.068) & 0.351 & (0.019) \\
\hline N408303 & S3 & 12 & 0.865 & (0.034) & -1.368 & (0.060) & 0.421 & (0.016) \\
\hline N408304 & S3 & 13 & 1.044 & (0.038) & -1.270 & (0.055) & 0.415 & (0.017) \\
\hline N408401 & S3 & 14 & 0.294 & (0.036) & -1.361 & (0.166) & 0.238 & (0.019) \\
\hline N408501 & S3 & 15 & 0.899 & (0.039) & -0.916 & (0.045) & 0.251 & (0.015) \\
\hline N408502 & S3 & 16 & 0.756 & (0.037) & 0.389 & (0.027) & 0.150 & (0.008) \\
\hline \(v 108601\) & S3 & 17 & 0.602 & (0.022) & -0.628 & (0.028) & 0.185 & (0.011) \\
\hline , 1408701 & S3 & 18 & 0.391 & (0.030) & -0.088 & (0.020) & 0.244 & (0.011) \\
\hline N408801 & S3 & 19 & 0.418 & (0.024) & 0.077 & (0.017) & 0.291 & (0.009) \\
\hline N408901 & S3 & 20 & 1.172 & (0.059) & -0.422 & (0.036) & 0.494 & (0.011) \\
\hline N408902 & S3 & 21 & 1.118 & (0.040) & -1.646 & (0.071) & 0.442 & (0.023) \\
\hline N408903 & S3 & 22 & 0.809 & (0.034) & -0.160 & (0.022) & 0.357 & (0.010) \\
\hline N408904 & S3 & 23 & 0.652 & (0.030) & 0.319 & (0.027) & 0.435 & (0.008) \\
\hline N409001 & S3 & 24 & 0.967 & (0.058) & -0.420 & (0.039) & 0.168 & (0.015) \\
\hline N409101 & S3 & 25 & 0.646 & (0.026) & -0.974 & (0.043) & 0.213 & (0.014) \\
\hline N409102 & S3 & 26 & 0.556 & (0.026) & -0.178 & (0.019) & 0.215 & (0.010) \\
\hline N409103 & S3 & 27 & 0.224 & (0.030) & 3.708 & (0.494) & 0.274 & (0.006) \\
\hline N409201 & S3 & 28 & 0.667 & (0.041) & 0.048 & (0.022) & 0.347 & (0.009) \\
\hline N409301 & S3 & 29 & 1.027 & (0.039) & -0.217 & (0.021) & 0.162 & (0.010) \\
\hline
\end{tabular}

Table E. 35
(continued)
\begin{tabular}{lcccccccc} 
FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
N409501 & S3 & 33 & \(0.923(0.027)\) & 1.590 & \((0.056)\) & \(0.138(0.005)\) \\
N409501 & S3 & 34 & 1.157 & \((0.158)\) & 0.762 & \((0.120)\) & \(0.282(0.010)\) \\
N409701 & S3 & 35 & 0.878 & \((0.041)\) & 1.230 & \((0.066)\) & \(0.255(0.007)\)
\end{tabular}

Table E. 36
1986 IRT Parameters, Science Trend Items, Age 17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
\hline N400201 & S 1 & 12 & 0.425 & (0.024) & -1.954 & (0.114) & 0.229 & (0.016) \\
\hline N404601 & S1 & 13 & 0.420 & (0.023) & -1.199 & (0.069) & 0.270 & (0.013) \\
\hline N410003 & S1 & 16 & 0.386 & (0.060) & -3.255 & (0.505) & 0.413 & (0.035) \\
\hline N410004 & S1 & 17 & 0.515 & (0.057) & -1.290 & (0.148) & 0.419 & (0.025) \\
\hline N409901 & S 1 & 18 & 0.716 & (0.058) & -0.678 & (0.064) & 0.228 & (0.024) \\
\hline N408601 & S1 & 19 & 0.602 & (0.022) & -0.628 & (0.028) & 0.185 & (0.011) \\
\hline N409301 & S 1 & 20 & 1.027 & (0.039) & -0.217 & (0.021) & 0.162 & (0.010) \\
\hline N406301 & S1 & 21 & 0.237 & (0.023) & -3.920 & (0.386) & 0.432 & (0.016) \\
\hline N406302 & S 1 & 22 & 0.435 & (0.027) & -0.015 & (0.021) & 0.434 & (0.009) \\
\hline N406303 & S1 & 23 & 0.600 & (0.030) & 0.360 & (0.028) & 0.393 & (0.008) \\
\hline N406304 & S 1 & 24 & 0.460 & (0.027) & -0.043 & (0.020) & 0.377 & (0.009) \\
\hline N410101 & S1 & 25 & 0.713 & (0.076) & -0.583 & (0.074) & 0.427 & (0.022) \\
\hline N410102 & S1 & 26 & 0.279 & (0.036) & -1.015 & (0.135) & 0.425 & (0.019) \\
\hline N410103 & S1 & 27 & 0.429 & (0.047) & -1.569 & (0.177) & 0.408 & (0.025) \\
\hline N406601 & S1 & 28 & 0.376 & (0.021) & -1.155 & (0.066) & 0.202 & (0.012) \\
\hline N405001 & S1 & 29 & 0.388 & (0.021) & -0.045 & (0.015) & 0.205 & (0.009) \\
\hline N401201 & S1 & 30 & 0.707 & (0.030) & 0.014 & (0.019) & 0.242 & (0.009) \\
\hline N405201 & S1 & 31 & 0.374 & (0.021) & -0.205 & (0.019) & 0.223 & (0.010) \\
\hline N4 10201 & S1 & 32 & 0.763 & (0.036) & 1.638 & (0.088) & 0.226 & (0.011) \\
\hline N406001 & S1 & 33 & 0.926 & (0.039) & 2.078 & (0.100) & 0.226 & (0.005) \\
\hline N409501 & S1 & 34 & 0.923 & (0.027) & 1.590 & (0.056) & 0.138 & (0.005) \\
\hline N406101 & S1 & 35 & 0.689 & (0.029) & 2.085 & (0.094) & 0.185 & (0.005) \\
\hline N406201 & S 1 & 37 & 1.129 & (0.033) & 2.082 & (0.077) & 0.133 & (0.004) \\
\hline N408101 & S1 & 38 & 1.052 & (0.049) & 2.229 & (0.126) & 0.202 & (0.006) \\
\hline N406401 & S2 & 10 & 0.486 & (0.031) & -0.236 & (0.026) & 0.471 & (0.009) \\
\hline N406402 & S2 & 11 & 0.624 & (0.030) & -0.369 & (0.027) & 0.339 & (0.011) \\
\hline N406403 & S2 & 12 & 0.722 & (0.032) & -1. 552 & (0.074) & 0.411 & (0.017) \\
\hline N406404 & S2 & 13 & 0.966 & (0.047) & -0.481 & (0.034) & 0.426 & (0.011) \\
\hline N406405 & S2 & 14 & 0.613 & (0.031) & -1.014 & (0.056) & 0.387 & (0.014) \\
\hline N410401 & S2 & 15 & 0.265 & (0.026) & -0.362 & (0.041) & 0.270 & (0.015) \\
\hline N406801 & S2 & 16 & 0.928 & (0.033) & -1.612 & (0.065) & 0.357 & (0.020) \\
\hline N406802 & S2 & 17 & 0.474 & (0.057) & 3.024 & (0.367) & 0.548 & (0.005) \\
\hline N406803 & S2 & 18 & 0.835 & (0.031) & -1.080 & (0.046) & 0.315 & (0.014) \\
\hline N406804 & S2 & 19 & 0.726 & (0.028) & -1.292 & (0.055) & 0.300 & (0.015) \\
\hline N406805 & S2 & 20 & 1.259 & (0.059) & 1.575 & (0.106) & 0.611 & (0.005) \\
\hline N406806 & S2 & 21 & 0.326 & (0.023) & -0.114 & (0.020) & 0.349 & (0.010) \\
\hline N410501 & S2 & 22 & 0.264 & (0.023) & -0.635 & (0.059) & 0.190 & (0.016) \\
\hline N410601 & S2 & 23 & 1.457 & (0.038) & 1.680 & (0.071) & 0.164 & (0.008) \\
\hline N410602 & S2 & 24 & 0.543 & (0.059) & -2.006 & (0.224) & 0.412 & (0.032) \\
\hline N410603 & S2 & 25 & 1.146 & (0.045) & 1.023 & (0.061) & 0.361 & (0.011) \\
\hline N410604 & S2 & 26 & 0.456 & (0.049) & -1.955 & (0.214) & 0.407 & (0.029) \\
\hline N406901 & S2 & 27 & 0.526 & (0.024) & -0.296 & (0.021) & 0.201 & (0.010) \\
\hline N407401 & S2 & 28 & 0.532 & (0.041) & -0.249 & (0.036) & 0.391 & (0.017) \\
\hline N407403 & S2 & 30 & 0.561 & (0.049) & -0.282 & (0.041) & 0.416 & (0.018) \\
\hline N 407404 & S2 & 31 & 0.495 & (0.062) & -1.051 & (0.136) & 0.418 & (0.023) \\
\hline N407201 & S2 & 32 & 0.414 & (0.025) & 0.556 & (0.037) & 0.229 & (0.008) \\
\hline N407001 & S2 & 33 & 0.280 & (0.021) & -0.069 & (0.017) & 0.206 & (0.010) \\
\hline N410701 & S2 & 34 & 0.858 & (0.034) & 1.143 & (0.058) & 0.218 & (0.012) \\
\hline N407701 & S2 & 35 & 0.456 & (0.023) & 0.642 & (0.037) & 0.164 & (0.008) \\
\hline N407301 & S2 & 36 & 0.316 & (0.027) & 1.903 & (0.165) & 0.259 & (0.008) \\
\hline N407302 & S2 & 37 & 0.271 & (0.026) & 1.448 & (0.143) & 0.277 & (0.009) \\
\hline N407101 & S2 & 38 & 0.998 & (0.032) & 1.561 & (0.062) & 0.140 & (0.006) \\
\hline N410801 & S2 & 39 & 0.547 & (0.036) & 2.268 & (0.155) & 0.227 & (0.010) \\
\hline N410901 & S2 & 40 & 1.214 & (0.036) & 1.530 & (0.064) & 0.122 & (0.009) \\
\hline N411001 & S2 & 41 & 0.990 & (0.041) & 2.277 & (0.113) & 0.142 & (0.007) \\
\hline N408301 & S3 & 10 & 1.401 & (0.047) & 0.235 & (0.026) & 0.290 & (0.007) \\
\hline N408302 & S3 & 11 & 0.763 & (0.030) & -1.618 & (0.068) & 0.351 & (0.019) \\
\hline N408303 & S3 & 12 & 0.865 & (0.034) & -1.368 & (0.060) & 0.421 & (0.016) \\
\hline N408304 & S3 & 13 & 1.044 & (0.038) & -1.270 & (0.055) & 0.415 & (0.017) \\
\hline N405101 & S3 & 14 & 0.783 & (0.029) & 0.350 & (0.022) & 0.216 & (0.007) \\
\hline N408901 & S3 & 15 & 1.172 & (0.059) & -0.422 & (0.036) & 0.494 & (0.011) \\
\hline N408902 & S3 & 16 & 1.118 & (0.040) & -1.646 & (0.071) & 0.442 & (0.023) \\
\hline N408903 & S3 & 17 & 0.809 & (0.034) & -0.160 & (0.022) & 0.357 & (0.010) \\
\hline N408904 & S3 & 18 & 0.652 & (0.030) & 0.319 & (0.027) & 0.435 & (0.008) \\
\hline N405401 & S3 & 19 & 0.769 & (0.029) & 0.821 & (0.038) & 0.166 & (0.007) \\
\hline W411301 & S3 & 20 & 0.613 & (0.070) & 4.181 & (0.493) & 0.142 & (0.007) \\
\hline N405501 & S3 & 21 & 0.497 & (0.027) & 0.813 & (0.048) & 0.298 & (0.008) \\
\hline N411101 & S3 & 22 & 0.629 & (0.030) & 0.801 & (0.049) & 0.190 & (0.015) \\
\hline N411201 & S3 & 23 & 0.768 & (0.033) & 0.822 & (0.047) & 0.214 & (0.014) \\
\hline N408801 & S3 & 24 & 0.418 & (0.024) & 0.077 & (0.017) & 0.291 & (0.009) \\
\hline N411401 & S3 & 25 & 1.780 & (0.049) & 1.201 & (0.066) & 0.216 & (0.011) \\
\hline N411501 & S3 & 26 & 1.145 & (0.032) & 1.800 & (0.070) & 0.179 & (0.009) \\
\hline N411502 & S3 & 27 & 0.700 & (0.059) & -0.604 & (0.063) & 0.255 & (0.026) \\
\hline
\end{tabular}

Table E. 36
(continued)
\begin{tabular}{lcccccccc} 
FIELD & BLOCK & ITEM & A & SE & B & SE & C & SE \\
N411601 & S3 & 28 & 1.294 & \((0.040)\) & 1.652 & \((0.076)\) & 0.225 & \((0.010)\) \\
N411701 & S3 & 29 & 0.885 & \((0.034)\) & 1.850 & \((0.085)\) & 0.194 & \((0.010)\) \\
N411801 & S3 & 30 & 1.782 & \((0.048)\) & 1.146 & \((0.062)\) & 0.192 & \((0.011)\) \\
N411901 & S3 & 31 & 1.078 & \((0.035)\) & 1.859 & \((0.079)\) & 0.202 & \((0.009)\) \\
N412001 & S3 & 32 & 0.747 & \((0.046)\) & 2.543 & \((0.175)\) & 0.303 & \((0.010)\)
\end{tabular}

\section*{APPENDIX F}

\section*{U.S. History and Literature Items}

\section*{Table F. 1}

History and Literature Derived Variables

\section*{YRSHIST (Years of History and Related Courses)}

Items H800201 to H800205 asked students to indicate the number of years chat they had studied a particular history or history-related course. Each of the five items was recoded as follows:

Studiec 1 school year \(=1.0\)
Studied \(1 / 2\) school year \(=.5\)
Studied iess that \(1 / 2\) school year = . 25
Have not studied \(=0\)
The sum of the five recoded variables was therı assigned the codes:
\begin{tabular}{ll}
0 to 1 years & \(=1\) \\
More than 1 to 2 yaars & \(=2\) \\
More than 2 to 3 years & \(=3\) \\
More than 3 years & \(=4\)
\end{tabular}

\section*{NHIST (Number of Topics Studied)}

Items H800301 to H800306 asked students if they had taken various topics since 9 th grade. The sum of the number of topics taken was computed and recoded as follows:
\(0-2\) topics studied \(=1\)
3 topics studied \(\quad=2\)
4 topics studied \(=3\)
5 topics studied \(=4\)
6 topics scudied \(=5\)

\section*{NHIST2 (Number of Topics Studied)}

This variable was created from the same as items used for NHIST, but were recoded as:
```

0-2 topics studied = 1
3-4 topics studied = 2
5-6 topics studied = 3

```

Table F. 1 (continued)

HISLEN (How Long Since You Took a U.S. History Course)

Item H 800101 was recoded as:

Taking one now \(=1\)
1-2, 3-4 years ago \(=2\) ( \(1-4\) years ago)
Haven't taken one \(=3\)

USHIS1 to USHIS6 (How Often Do Things in U.S. History Course)

Responses to items H 800401 to H 800406 were collapsed as follows:

Once a week, once a month, several times a year \(\quad=1\) (ever)
Hardly ever or never \(=2\) (never)

HIS1 to HIS7 (How Often Do Things in History Course)

Responses to items H 800501 to H 800507 were collapsed as follows:

Every day, 2-3 times a week, orice a week, < once a week \(=1\) (ever)
Never \(=2\) (never)

\section*{NWKSCH (Number of Works Read for School)}

Items L 800601 to L 800607 asked students to indicate the number of works they had read for school during the first half of the school year. First, responses to each of the seven items were recoded as follows:
```

None = 0
1-2 = 1.5
3.4 = 3.5
5-6 = 5.5
More than 6 = 7.5

```

The sum of the seven recoded variables was then assigned the values:
```

5 or less
= 1
6o 10
= 2
11 to 15 = 3
16 to 20 = 4
21 to 25 = 5
Greater than 25=6

```

Table F. 1 (continued)

\section*{NWKOWN (Number of Works Read on Your Own)}

Items L800701 to \(L 800705\) asked students to indicate the number of works they had read on their own during the first half of the school year. The five values were recoded in the same way as were the component variables used in NWKSCH. The sum of these five recoded variables was then assigned the values:
```

5 or less = = 1
6 to 10 = 2
11 to 15 = 3
Greater than 15=4

```

FRQPRAL (Frequency of Classroom Practices)
Items L801201 to 2801209 asked students to indicate if their English teacher practiced various activities. The sum of the number of practices conducted is assigned the values:
```

Low (0-5 practices) = 1
Medium (6 or }7\mathrm{ practices) = 2
High (8 or }9\mathrm{ practices) = =

```

\section*{NBOOKS (Number of Books Read on Own or for School)}

Items L801401 to L 801410 asked students to indicate whether they had read specific books either for school, on their own, or not at all. The sum of the number of books that the student had read on his or her own or read for school was assigned the values:
```

0-1 books = 1
2-3 bnoks = 2
4 books = 3
5 books = 4
6 or more books - 5

```

\section*{NBKSCH (Number of Books Read for School)}

Items L801401 to 1801410 asked students to indicate whether they had read specific books either for school, on their own, or not at all. The sum of the number of books that the student had read for school was assigned the values:
\begin{tabular}{ll}
0 books & \(=1\) \\
1 book & \(=2\) \\
2 books & \(=3\) \\
3 books & \(=4\) \\
4 or more books & \(=5\)
\end{tabular}

PERLIT (In English Class, Percentage of Time Spent on Literature)
Item L800101 was recoded as follows:
\begin{tabular}{lll}
\(<25 \%\), about \(25 \%\) & \(=1\) & \((25 \%\) or less \()\) \\
About \(50 \%\) & \(=2\) & \((50 \%)\) \\
About \(75 \%,>75 \%\) & \(=3\) & \((75 \%\) or more \()\)
\end{tabular}

WRITLIT (Does Your English teacher: Plot and Analyses)

Responses to item L801207 (Woes your English teacher ask you to write summaries [plot]) and item L801208 (Does your English teacher ask you to write analyses) were combined as follows:
```

Plot - no , analysis - no = 1
Plot - yes, analysis - no = 2
Plot - no , analysis - yes = 3
Plot - yes, analysis - no - 4

```

Table F. 2
NAEP ID Numbers for items Used in Mean Percents Correct in Literature and U.S. History
\begin{tabular}{|c|c|c|}
\hline Women's History & Other Social Trends & People \\
\hline & \& Movements & \\
\hline H005801 & & H000801 \\
\hline H002501 & H000701 & H001101 \\
\hline H009401 & H001301 & H001601 \\
\hline H005301 & H001401 & H002001 \\
\hline H002101 & H001501 & H002901 \\
\hline H006901 & H002う01 & H003001 \\
\hline H007301 & H003201 & H004301 \\
\hline H006401 & H005701 & H004601 \\
\hline & H007201 & H004701 \\
\hline Black History & H007301 & H005801 \\
\hline & H008601 & H006201 \\
\hline H002601 & H009301 & H006401 \\
\hline H002701 & H009501 & H006601 \\
\hline H003101 & H010101 & H006901 \\
\hline H003401 & H009901 & H007501 \\
\hline H004301 & H005501 & H007601 \\
\hline H005801 & H007801 & H008501 \\
\hline H006001 & H001001 & H008701 \\
\hline H006101 & H004001 & H009401 \\
\hline H007401 & H007901 & H009701 \\
\hline H009201 & & H010801 \\
\hline H009601 & & H010901 \\
\hline H010601 & & H011101 \\
\hline H010801 & & \\
\hline H001601 & & B1ack Leaders \\
\hline Documents & & H005801 \\
\hline & & H004301 \\
\hline H000201 & & H010801 \\
\hline H000901 & & \\
\hline H001701 & & \\
\hline H001801 & & \\
\hline H002801 & & \\
\hline H003501 & & \\
\hline H006301 & & \\
\hline H006501 & & \\
\hline H006801 & & \\
\hline H008101 & & \\
\hline H009101 & & \\
\hline H010201 & & \\
\hline H011201 & & \\
\hline
\end{tabular}

Table F. 2 (continued)
\begin{tabular}{|c|c|c|}
\hline Slavery and Civil & Revolutionary War Era & World War II \\
\hline \multicolumn{3}{|l|}{Rights} \\
\hline & H010201 & H010301 \\
\hline H006101 & H000901 & H009801 \\
\hline H001601 & H003001 & H000301 \\
\hline H006001 & H006801 & H007701 \\
\hline H006301 & H009101 & H008304 \\
\hline H009201 & H005103 & H008303 \\
\hline H003101 & H005401 & H005004 \\
\hline H003401 & H006501 & H008302 \\
\hline H010601 & H007501 & H008305 \\
\hline H007401 & H000201 & H003601 \\
\hline H009601 & H011401 & H001201 \\
\hline H002701 & & H001204 \\
\hline & Constitution \& the & H001205 \\
\hline Civil War & New Government & H001202 \\
\hline \multirow[t]{2}{*}{\& Reconstruction} & & H001203 ; \\
\hline & H000501 & H004701 \\
\hline H011001 & H001101 & H002901 \\
\hline H000101 & H002701 & H010901 \\
\hline H002601 & H003501 & \\
\hline H005007 & H005006 & Maps \\
\hline H002403 & H010001 & \\
\hline H005101 & H011201 & H000101 \\
\hline \multirow[t]{2}{*}{H006701} & H002402 & H001201 \\
\hline & & H001202 \\
\hline Hispanic History & Territorial Expansion & H001203 \\
\hline . & \& Foreign Policy & H001204 \\
\hline H001001 & & H001205 \\
\hline \multirow[t]{2}{*}{H007103} & H001701 & H004501 \\
\hline & H010701 & H004502 \\
\hline Exploration \& Early & H000601 & H007101 \\
\hline \multirow[t]{2}{*}{Golonization} & H001901 & H007102 \\
\hline & H003301 & H007103 \\
\hline H005010 & H003801 & H010001 \\
\hline H005901 & H005601 & \\
\hline H000401 & H008001 & \\
\hline H005201 & H008101 & \\
\hline H008201 & H007001 & \\
\hline H008401 & H003701 & \\
\hline H008801 & H003901 & \\
\hline H002201 & H004101 & \\
\hline \multirow[t]{3}{*}{H004201} & H007101 & \\
\hline & H007102 & \\
\hline & H007103 & \\
\hline
\end{tabular}

Table F. 2 (continued)
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Chronology} & Biblical Characters \\
\hline & \& Stories \\
\hline H001001 & \\
\hline H002101 & L000401 \\
\hline H002401 & L001201 \\
\hline H002402 & L002101 \\
\hline H002403 & L002701 \\
\hline H002404 & L003401 \\
\hline H002405 & L004201 \\
\hline H002406 & L005101 \\
\hline H002407 & L005701 \\
\hline H002408 & L006501 \\
\hline H004001 & L008201 \\
\hline H005101 & L011201 \\
\hline H005102 & L003801 \\
\hline H005103 & L009501 \\
\hline H005301 & L007301 \\
\hline H007901 & L010301 \\
\hline \multicolumn{2}{|l|}{H008301} \\
\hline H008302 & Shakespeare \\
\hline \multicolumn{2}{|l|}{H008303} \\
\hline H008304 & L009701 \\
\hline H008305 & L000601 \\
\hline H005004 & L000201 \\
\hline H005005 & L004501 \\
\hline H005006 & L008401 \\
\hline H005007 & L003601 \\
\hline 1:005008 & L006701 \\
\hline \multicolumn{2}{|l|}{H005009} \\
\hline H005010 & Classical Myths, \\
\hline H010401 & Legends \& Epics \\
\hline \multicolumn{2}{|l|}{H010501} \\
\hline & L000701 \\
\hline \multirow[t]{2}{*}{Black Literature} & L001401 \\
\hline & L001501 \\
\hline L002501 & L002901 \\
\hline L005201 & L003791 \\
\hline L007601 & L005401 \\
\hline L010101 & L005901 \\
\hline \multirow[t]{9}{*}{L010901} & L006101 \\
\hline & L006801 \\
\hline & L007701 \\
\hline & L008501 \\
\hline & L009801 \\
\hline & L011101 \\
\hline & L011501 \\
\hline & L011801 \\
\hline & L005801 \\
\hline
\end{tabular}

REFERENCES

663
Co

\section*{References}

Applebee, A. N., Langer, J. A., \& Mullis, I. V. S. (1987). Literature \& U.S. history: The instr:ictional experience and factual knowledge of high school juniors. (No. 17-HL-01) Princeton, NJ: National Assessment of Educational Progress.

Applebee, A. N., Langer, J. A., \& Mullis, I. V. S. (1988). Who reads best? Factors related to reading achievement in grades 3, 7, and 11. (No. 17-R-01) Princeton, NJ: National Assessment of Educational Progress.

Baratz-Snowden, J. C., Rock, D., Pollack, J., \& Wilder, G. (1988). The educational progress of language minority children: Findings from the NAEP 1985-86 special study. Princeton, NJ: Educational Testing Service.

Barone, J. L., Norris, N. A., \& Rogers, A. M. (1986). NAEP 1983-84 publicuse data tapes version 3.1 users' guide. Princeton, NJ: National Assessment of Educational Progress.

Beaton, A. E. (1988). The NAEP 1985-86 reading anomaly: A technical report. (No. 17-TR-10) Princeton, NJ: National Assessment of Educational Progress.

Beaton, A. E. (1987a). Implementing the new design: The NAEP 1983-84 technical report. (No. 15-TR-20) Princeton, NJ: National Assessment of Educational Progress.

Beaton, A. E. (1987b). The NAEP reading scale. In A. E. Beaton, Implementing the new design: The NAEP 1983-84 technical report. (No. 15-TR-20) Princeton, NJ: National Assessment of Educational Progress.

Beaton, A. E., \& Johnson, E. G. (1987). The average response method (ARM) of scaling. In A. E. Beaton, Implementing the new design: The NAEP 1983-84 technical report. (No. 15-TR-20) Princeton, NJ: National Assessment of Educational Progress.

Bock, R. D., Gibbons, R. D., and Muraki, E. (1985). Full-information item factor analysis. (MRC Report No. 85-1) Chicago: National Opinion Research Center.

Bock, R. D., \& Mislevy, R. J. (1981). An item-response model for matrixsampling data: The California grade 3 assessment. In D. Carlson (Ed.), Testing in the states: Beyond accountability. New directions in testing and measurement, no. 10. San Francisco: Jossey-Bass.

Bock, R. D., \& Mislevy, R. J. (1988). Comprehensive educational assessment for the states: The duplex design. Educational Evaluation and Policy Analysis, 10(2), 89-105.

Burke, J., Braden, J., Hansen, M., Lago, J., \& Tepping, B. (1987). National Assessment of Educational Progress--17th year. Sampling and weighting procedures. Final l:eport. Rockville, MD: Westat, Inc.

Caldwell, N., \& Slobasky, R. (1988). Report on field operations and data collection activities. NAEP-year 17 (1985-86). Rockville, MD: Westat, Inc.

Carroll, J. B. (1945). The effect of difficulty and chance success on correlations between items and between tests. Psychometrika, 26, 347372.

Dossey, J. A., Mullis, I. V. S., Lindquist, M. M., \& Chambers, D. L. (1988). The mathematics report card: Are we measuring up? Trends and achievement based on the 1986 National Assessment. (No. 17-M-01) Princeton, NJ: National Assessment of Educational Progress.

Educational Testing Service. (1983). ETS standards for quality and fairness. Princeton, NJ: Author.

Educational Testing Servi•e. (1982). NAEP: A proposal submitted in response to Grant Announcement No. PA-82-001: Technical application. Princeton, NJ: Author.

Ferris, J. J. (1987). Quality control. In A. E. Beaton, Implementing the new design: The NAEP 1983-84 technical report. (No. 15-TR-20) Princeton, NJ: National Assessment of Educational Progress.

Goldstein, H. (1980). Dimensionality, bias, independence and measurement scale problems in laient trait test score models. British Journil of Mathematical and Statistical Psychology, 33, 234-246.

Harman, H. H. (1976). Modern factor analysis. Chicago: The University of Chicago Press.

Holland, P. W., \& Thayer, D. T. (1986). Differential item functioning and the Mante' -Haenszel procedure. (ETS Program Statistics Research Technical Report No. 86-69) Princeton, NJ: Educational Testing Service.

Johnson, E. G. (1988). Considerations and techniques for the analysis of NAEP data. (ETS Research Report RR-88-49) Princeton, NJ: Educational Testing Service.

Johnson, E. G. (1987a). Estimation of uncertainty due to sampling variability. In A. E. Beaton, Implementing the new design: The NAEP 1983-84 technical report. (No. 15-TR-20) Princeton, NJ: National Assessment of Educational Progress.

Johnson, E. G. (1987b). Design effects. In A. E. Beaton, Implementing the new design: The NAEP 1983-84 technical report. (No. 15-TR-20) Princeton, NJ: National Assessment of Educational Progress.

Johnson, E. G., \& King, B. F. (1987). Generalized variance functions for a complex sample survey. Journal of Official Statistics, 3, 235-250.

Kaplan, B. A., Beaton, A. E., Johnson, E. G., \& Johnson, J. R. (1988). National Assessment of Educational Progress 1986 bridge studies. (No. 17-TR-11) Princeton, NJ: National Assessment of Educational Progress.
Kirsch, I. S., \& Jungeblut, A. (1986). Literacy: Profiles of America's young adults, final report. (No. 16-PL-01). Princeton, NJ: National Assessment of Educat: \({ }^{\text {nal }}\) Progress.

Kish, L. (1965). Survey sampling. New York: John Wiley \& Sons.
Kish, L., \& Frankel, M. R. (1974). Inference from complex samples. Journal of the Royal Statistical Society, Series B, 36, 1-22.

Lord, F. M. (1980). Applications of item response theory to nractical testing problems. Hi.1sdale, NJ: Lawrence Erlbaum Associates.

Martinez, M. E., \& Mead, N. A. (1988). Computer competence: The first National Assessment. (No. 17-CG-01) Princeton, NJ: National Assessment of Educational Progress.

Messick, S. J., Beaton, A. E., \& Lord, F. M. (1983). NAEP reconsidered: A new design for a new era. (NAEP Report 83-1) Princeton, NJ: Educational Testing Service.

Messice, S. J. (1984). The psychology of educational meastrement. Journal of Educational Measurement, 21, 215-237.

Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49(3), 359-381.

Mislevy, R. J. (1985). Estimation of latent group effects. Journal of the American Statistical Association, 80, 993-997.

Mislevy, R. J. (1988). Randomization-based inferences about latent variables from complex samples. (ETS Research Report RR-88-54-ONR) Princeton, NJ: Educational Testing Service.

Mislevy, R. J., \& Bock, R. D. (1982). BTLOG: Item analysis and test scoring with binary logistic models [Computer program]. Mooresville, IN: Scientific Software.

Mislevy, R. J., \& Sheehan, K. M. (1987). Marginal estimation procedures. In A. E. Beaton, Implementing the new design: The NAEP 1983-84 technical report. (No. 15-TR-20) Princeton, NJ: National Assessment of Educational Progress.

Mislevy, R. J., \& Wu, P-K. (1988). Inferring examinee ability when some item responses are missing. (ETS Research Report RR-88-48-ONR). Princeton, NJ: Educational Testing Service.

Mosteller, F., \& Tukey, J. W. (1977). Data analysis and regression. Reading, MA: Addison-Wesley.

Mullis, I. V. S., \& Jenkins, L. B. (1988). The science report card: Elements of risk and recovery. Trends and achievement based on the 1986 National Assessment. (No. 17-S-01) Princeton, NJ: National Assessment of Educational Progress.

National Assessment of Educational Progress. (1985). The reading report card: Progress toward excellence in our schools. (No. 15-R-01) Princeton, NJ: National Assessment of Educational Progress.

National Assessment of Educational Progress. (1986a). Math objectives, 1985-86 assessmeit. (No. 17-M-10) Princeton, NJ: National Assessment of Educationai Progress.

National Assessment of Educational Progress. (1986b). Science objectives, 1985-86 assessment. (No. 17-S-10) Princeton, NJ: National Assessment of Educational Progress.

National Assessment of Educational Progress. (1986c). A framework for assessing computer competence: Defining objectives. (No. 17-CC-10) Princeton, NJ: National Assessment of Educational Progress.

National Assessment of Educational Progress. (1986d). Foundations of literacy: A description of the assessment of a basic knowledge of United States history and literature. (No. 17-HL-11) Princeton, NJ: National Assessment of Educational Progress.

Nations. 1 Assessment of Educational Progress. (1987a). Reading objectives. 1986 and 1988 assessments. (No. 17/19-R-10) Princeton, NJ: National Assessment of Educational Progress.

National Assessment of Educational Progress. (1987b). Learning by doing: A manual for teaching and assessing higher-order thinking in science and mathematics. (No. 17-HOS-80) Princeton, NJ: National Assessment of Educational Progress.

National Assessment of Educational Progress. (1987c). Pilot study of higher-order skills assessment techniques in science and mathematics. Princeton, NJ: National Assessment of Educational Progress.

Rogers, A. M. (1987). Data entry system. In A. E. Beaton, Implementing the new design: The NAEP 1983-84 technical report. (No. 15-TR-20) Princeton, NJ: National Assessment of Educational Progress.

Rogers, A. M., Kline, D. L., Norris, N. A., Johnson, E. G., Mislevy, R. J., Zwick, R., Barone, J. L., \& Kaplan, B. A. (1988). National Assessment of Educational Progress 1985-86 public-use data tapes version 2.0 users. guide. Princeton, NJ: National Assessment of Educational Progress.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: John Wiley \& Sons.

Sheehan, K. M. (1985). M-GROUP: Estimation of group effects in multivariate models [Computer program]. Princeton, NJ: Educational Testing Service.

Sheehan, K. M., \& Mislevy, R. J. (1988). Some consequences of the uncertainty in IRT linking procedures. (ETS Research Report RR-88-38ONR) Princeton, NJ: Educational Testing Service.

Stocking, M. L. (1986). TBLT: Transforming b's using a least squares technique [Computer program]. Princeton, NJ: Educational Testing Service.

Stocking, M. L., \& Lord, F. M. (1983). Developing a nommon metric in item response theory. Applied Psychological Measurement, Z, 201-210.

Wilson, D., Wood, R. L., \& Gibbons, R. (1983). TESTFACT: Test scoring and item factor analysis [Computer program]. Chicago: Scientific Software.

Zwick, R. (1987a). Assessing the dimensionality of NAEP reading data. Journal of Educational Measurement, 24, 293-308.

Zwick, R. (1987b). Use of the NAEP almanacs. In A. E. Beaton, Implementing the new design: The NAEP 1983-84 technical report. (No. 15-TR-20) Princeton, NJ: National Assessment of Educational Progress.

Zwick, R., \& Ercikan, K. (in press). Analysis of differential item functioning in the NAEP history assessment. Journal of Educational Measurement.

9086104 • RT 128 P. 25 - 249550 • Printed in U.S.A
672

1; :```


[^0]:    * IS: enrolled in public o: private schools; OS: dropped out of school or graduated prior to assessment. **Small, special-interest assessment conducted on limited samples at specific grades or ages.

    $$
    \begin{equation*}
    3 \tag{3}
    \end{equation*}
    $$

    $$
    -21-
    $$

